The RFID filesystem whitepaper

Achilleas Anagnostopoulos
(archie@istlab.dmst.aueb.gr)

Athens University of Economics and Business
Department of Management Science and Technology

1 Introduction

1.1 Why a new filesystem?

RFID tags are actually microscopic storage devices. While their storage
capacity is quite limited (i.e only a couple of bytes), they don’t require any
kind of external power supply but are powered by the radiowaves emitted
by readers. You can also find battery backed tags (active tags) which boast
greater transmission ranges and more memory but they are quite expensive.

In any case, it only seems logical to represent RFID tags as files. By
analogy to ordinary files, RFID tags are also read,written and have some
kind of modification mask. We can better manage a large number of tags by
organizing them in directories. In addition we can use them as input to the
unix tool-chain. Finally we can easily exploit the plethora of file notification
daemons available for responding to tag content. Some example uses of this
filesystem will be presented in the following sections.

1.2 Why another kernel module?

There is a lot of heated debate on whether new
features should be implemented as new kernel
modules or as user-land daemons.

The clean and elegant way to write filesystem
drivers is as modules exploiting the interfaces
already provided by the linux kernel (Linux
VFS). While several libraries for writing user-land
filesystems do exist, they are often slow and
complex.

Moreover, it is my belief that the actual hardware
dictates the use of a kernel module. RFID readers
come in many forms and employ different and
often proprietary communication interfaces. While
a reader with a serial interface could easily be
interfaced to a user-land daemon, the same cannot
be asserted for a reader in a PCI, ISA or PCMCIA
form. In order to provide a unified interface to
all reader hardware and to allow for future reader
support (i.e 2nd generation readers) I chose to
implement a new kernel module. The module’s
functionality is depicted in figure 1

1.3 Tag Types

READER HW

cmezoflll

1

‘ Low level reader drivers ‘

]

‘ RFID-fs module ‘

l

‘ LINUX VFS ‘

LINUX KERNEL

App 1
USER

Figure 1: The idea
behind RFID-fs

The current version of the filesystem supports the following types of RFID

tags:

e Read-only Tags (RO). These tags have a factory programmed unique

64bit number that cannot be reprogrammed.

e Read/Write Tags (R/W). These tags may be reprogrammed as
often as required or they can be locked to turn data into read-only.
Their capacity is 80bits. Tag locking is not yet implemented.

e Multipage Transponders (MPT). Similar to the R/W transponder
but with increased capacity. MPT tags have 1360bits organized in 17
pages of 80bits each. Paged reads/writes are handled transparently by

2

the reader driver.

e Selective Adressable Multipage Transponder (SAMPT).
Similar to the MPT transponder but may be read or programmed in
a group of transponders.

2 Filesystem specifications

2.1 File and Folder types

The filesystem supports 3 kinds of entities.

e Tag Files. They represent RFID tags. You can read them like ordinary
files and depending on the underlying transponder H/W, also write
them. Tag files may also be copied to other filesystems. In this case,
a new file will be created whose content is a snapshot (think of a
hard-link) of the current tag data.

e Reader Directories. These are automatically allocated by the
filesystem when a new reader is autodetected. All tags in the
reader’s range appear inside this folder. These directories may not
be renamed, moved or deleted. However it is possible to copy their
contents to another filesystem.

e User Directories. These are directories that users may create for

better organizing his tags. They may be freely copied, deleted, renamed
or even symlinked.

2.2 Internal structures

2.2.1 File data

typedef struct rfid_file_data
{

char *name;

int name_len;

char type;
char is_visible;

struct inode *my_inode;
}_rfid_file_data;

Each file/folder has a distinctive name, stored in the name field. The file’s
type (tag/reader folder /user folder) is stored in the type field while a pointer
to the allocated i-node for this file is stored in the my_inode field. The
is_visible field is a boolean flag which is set when a tag is in the reading
range of a specific reader. Once a tag moves out of range, it is marked as
invisible and does not appear during the enumeration of folder contents.

The primary reason behind this important design decision is the issue of
kernel memory allocation. Several readers support what is called
“interrupt-driven notifications”. This means that the actual hardware
generates an interrupt when new tags move in/out of range. The reader
driver installs an interrupt handler to process any hardware requests. This
approach has obvious advantages over the periodic polling scheme (namely
lower cpu resource usage). Unfortunately, one of the fundamental interrupt
handler design rules states that: “Interrupt handlers cannot invoke
functions that maight put the thread to sleep or the system might lock-up”.
One of this functions is kmalloc which is normally used by kernel modules
for allocating memory blocks. Fortunately, the Linux kernel API offers
several ways to bypass this limitation (tasklets, work queues, etc) but their
application is outside the scope of this paper. By employing the visibility
scheme described above we minimize the number of memory allocations and
deallocations and therefore increase the efficiency of the filesystem.

2.2.2 Tag data

typedef struct rfid_tag_data
{

void *data;

int data_len;

long data_hash;

int capacity;
int tag_type;

char address([8];

struct rfid_file_data *my_file;
}_rfid_tag_data;

The rfid_tag_data structure holds information about the actual RFID tag
data. The data and its length are stored in the data and data_len fields.
A hash value for the tag’s data is stored in the data_hash field. The hash
value is used to prevent tag collisions when multiple readers are used. The
tag’s capacity (in bits) depends on the tag type (tag_type field) and is stored
in the capacity field. Typical capacity values are 64bits for RO tags, 80bits
for R/W tags and 1360bits for multi-page tags. If the tag supports selective
addressing (SAMPT type), the address field contains a special address code
which may be used to selectively read or program the tag. Finally, the my_file
field contains a pointer to the associated file data.

2.2.3 Inode data

typedef struct rfid_inode_data

{
struct rfid_file_data my_file;

struct rfid_tag_data *my_tag;

/* Child inodes */
struct rfid_file_list *children;

}_rfid_inode_data;

This structure defines the private filesystem data which is stored in the
generic_ip pointer of the kernel’s i-node structure. Each i-node contains file
data (stored in the my_file field) and for files of type TYPE_TAG, the relevant
tag data in the appropriate my_tag structure. If the file is a directory, the
children structure contains a linked list of all the files which are stored inside
this directory.

2.2.4 Reader

typedef struct rfid_reader
{
/*
* Must be unique. This is the folder name under which read tags
* are stored.
*/

char *name;

/* Driver specific data */
void *private_data;

/* Driver interface */
char *init(struct rfid_reader *reader);
char *shutdown(struct rfid_reader *reader);

void *update_folder_tags(struct rfid_reader *reader,
struct rfid_file_list *list);
void *refresh_tag(struct rfid_reader *reader,
struct rfid_tag_data *tag);
void *sync_tag(struct rfid_reader *reader,
struct rfid_tag_data *tag);

}_rfid_reader;

Each reader structure contains a private_data field for storing reader specific
data. In addition, each reader driver should fill in the supplied function
pointers. If a driver does not implement a specific function, it should pass
NULL to the function pointer.

e init. Once all supported readers are autodetected, RFID-fs will call
each reader’s init function. The role of this callback is to allow the
reader driver to initialize the device hardware and set-up any internal
structures.

e shutdown. RFID-fs will call each reader’s shutdown function when
the filesystem is unmounted. The role of this callback is to allow the
reader driver to perform any required cleanup (free private data).

e update_folder_tags. RFID-fs will call this function each time it needs
to update the status of all tags in a specific folder.

e refresh _tag. RFID-fs will call this function each time it needs to rescan
(i.e read again) a specific tag. This function will only be invoked for
SMPT tags.

e sync_tag. RFID-fs will call this function each time it needs to
synchronize a tag’s content to the data stored in memory. This
function will only be invoked for SMPT tags as we need selective
adressing for writing a specific tag.

2.3 Detecting RF-ID tags in range
2.3.1 When is the tag status updated?

My initial thought was to poll all readers at fixed intervals. However, after
an fruitful discussion with Diomidis Spinellis, I figured out that there was no
need to constantly poll the readers. We only need to update the tag status
when a user application attempts to enumerate the tags in a specific folder
(i.e using “Is” or system calls like opendir, readdir). RFID-fs will invoke the
reader supplied update_folder_tags function to update the tag state. However,
it’s up to the reader driver’s implementation to select the most appropriate
way for performing the actual update (interrupt handlers or polling).

2.3.2 Handling Multiple Threads

The RFID-fs filesystem was designed with SMP architectures in mind.
Even if the host system does not support “true” SMP (like Intel’s
hyper-threading technology) we should take all necessary steps to ensure
that only one thread may access a reader at any given time. RFID-fs
handles this by using spinlocks to protect all internal structures. Therefore,
if two threads simultaneously try to enumerate the same folder, one will
block (or sleep) while the other accesses each reader.

2.4 Tag Collision Handling

Since many readers may be connected to the same computer, it is possible
that the same tag is successfully read by two or more readers. This produces
a collision and makes it difficult to update the tag’s content. In order to avoid
tag collisions we maintain a global linked list containing all read tags. When
a tag is first read, a hashing function is used to calculate a hash value from
the tag’s data. When a reader successfully scans a new tag, it calculates a
hash value and compares it with all the already scanned tags. If another tag
with the same hash value exists, the reader driver will assume that this is a
collision and ignore this tag. By employing this collision handling mechanism,
we ensure that each tag is managed by only one reader.

3 Putting It All Together

3.1 Adding rf-id fs to the 2.6 kernel tree
3.1.1 Using the kernel build system

The RFID-fs module has been fully integrated into the kernel build system.
By applying some minor patches (available in the rfid-fs source distribution)

you can configure and compile RFID-fs as any other aspect of the linux kernel
(figure 2).

3.1.2 Compiling

To compile RFID-fs you just have to follow the normal kernel build rules:

make bzImage && make modules
make modules install

Eile Option Help

g I E
Option [+] |Opti0n | [+]
- ALSA USB devices [System V/Xenix/V7/Coherent file system support
- PCMCIA devices - BIUFS file system support (read only)
-Open Sound System -UFS file system write support (DANGEROUS)
USB support [ERadio Frequency |dentification File System (RFID-fs) su
~~USB Serial Converter suppa -MTexas Instruments S2000 microreader support -
- UUSB Gadget Support
--File systems Radio Frequency Identification File System (RFID-fs)
i-CD-ROM/DVD Filesystems support (RFID_FS)
DOS/FAT/NT Filesystems -
F’eudo filesysms RFID-fs provides a unified interface for supporing RFID tag
Miscellaneous filesystems readers/writers. It maps RFID tags as system files which may
Network File Systems be then read/writen
Partition Types Further information available at <http://...>.
- Mative Language Support
[«1 [E‘E

Figure 2: Configuring the RFID-fs module using the kernel build system.
3.1.3 Testing the module

If you compiled RFID-fs as a loadable module you can load it by typing (as
root):

/sbin/insmod rfid-fs OR /sbin/modprobe rfid-fs
You can mount the RFID filesystem to a folder (say rfid_pool) by typing:

mount -t rfidfs none /mnt/rfid_pool

3.2 Example applications of RFID-fs
3.2.1 Digital Canvas / Personalized MP3 playlists

Digital canvas is a very interesting concept. A liquid crystal or gas plasma
display, usually mounted on the living room wall, is directly connected to
a computer. High quality multimedia content is stored and categorized in
the host computer. Each user of the system carries an RFID card which
contain a unique ID number. When the user enters the system’s range, the
computer randomly selects content based on the user’s profile and displays

it on screen. We could easily expand the idea to cover all kinds of media like
for instance, mp3 files and music visualizations. Of course, this is just the
tip of the iceberg. The system could also superimpose important information
such as received emails or system alerts onto the displayable content.

3.2.2 Smart fridge

It is expected that by 2008 all retail products will have embedded RFID tags.
A smart fridge could use RFID-fs to monitor its contents and alert the user
when some products expire or automatically re-order items over the Internet.

3.3 Further Suggestions

e Maintaining state information. The current implementation of RFID-fs
should be considered a RAM based filesystem. When the filesystem
is unmounted, all user changes (user folders, symlinks etc) are lost.
However, it is possible to generate a snapshot of the filesystem and
dump it to a file residing in another filesystem. This snapshot could
then be reloaded when the filesystem is remounted thus allowing for
persistency.

10

