Advanced Topics in Software Engineering

Project Team – jLab

Φοιτητές:

- Παναγιώτης Αδαμόπουλος, Α.Μ. 8040000
- Γεωργία – Βίλμα Τόδρη, Α.Μ. 8040140
jLab

• The jLab project aims to provide a Matlab/Scilab environment
 • with a scripting interpreter implemented in Java
 • with the potential of linking dynamically Java numerical computing code.
• The system will perform very efficiently since the Java class code executes very fast.
• Moreover the potentiality for distributed execution can be explored.
Project Summary

Keywords: Programming Environments, Java, Scientific Software, Scripting, Interpreter, Reflection

License: GNU General Public License (GPL)

Project web site URL: https://jlab.dev.java.net/

Implementation language: java

Platform: totally platform independent- tested on Linux, Solaris and Windows XP and it runs in the same way, on all these different environments, without any change of the code.
The jLab project aims to provide a Matlab/Scilab environment with a scripting interpreter implemented in Java, and with the potential of linking dynamically Java numerical computing code. The system will perform very efficiently since the Java class code executes very fast. Moreover the potentiality for distributed execution can be explored.
• environment ~ Matlab/Scilab like scripting language that is executed by an interpreter implemented in the Java language.
• This language will support all the basic programming constructs and an extensive set of built in mathematical routines that cover all the basic numerical analysis tasks.
• Moreover, the toolboxes of jLab can be easily implemented in Java and the corresponding classes can be dynamically integrated to the system.
• The efficiency of the Java compiled code can be directly utilized for any computationally intensive operations.
• Since jLab will be coded in pure Java the build from source process is much cleaner, faster, platform independent and less error prone than similar C/C++/Fortran based open source environments (e.g. Scilab, Octave).
• Also the facilities of the Java language for distributed computation will be explored to speed up scientific computations.
User Interface
User Interface (2)
```matlab
x = 0:0.01:30; y = sin(1.14*x) + 0.2*cos(1.67*x); figure(1); plot(x, y); grid('on')
```
Classes...

Approximate source code size:
- Main project 500+ classes
- Toolbox 130+ classes
What we planned to add?

- Addition of toolboxes.
 - MathFunctions
 - atan2, IEEEremainder, max, min, pow, random, rint, toDegrees, toRadians
 - Equations
 - first, second (Degree Equations)
Version Control with Subversion – Breadth of changes

- Using this useful tool we can keep track of our changes and different versions of the project. We can see the differences between two versions and examine the summary of changes through time.
Our contribution...

Summary of the changes

• AboutGUIDialog
• jExecObject
• OperandToken
• MathFunction
• NumberToken
• FunctionManager
• Equations
• AddSubOperatorToken
• jExec\Tokens\Expression
• jExec\gui\Console
• jExec.Det.*
• svm_predict
• Errors
• svm_train
• load
• FunctionToken
• comments and documentation to \properties
In *gemini* (Red Hat linux 9 Server) we can list contents of directories in a tree-like format. In this way we can see how our project is organized. We execute the command `tree -dl jLabSrc` 60 directories in JLabSrc!
Consistency in Formatting

- Opening brace on separate line.
- Standard values often appear as editor commands.
- Consistent coding style
- Readable structure etc.
- To produce our changes we used various programs. For example, Netbeans IDE, Eclipse IDE and Textpad.
Screenshots of some changes

- jlab - Command Interface: Panos & Georgia - Vilma version: Advanced Topics in Software Engineering
- jlab Math Functions
 - atan2, IEEEremainder, max, min, pow, random, rint, toDegrees, toRadians
- Math Functions - IEEEremainder(double f1, double f2)
 - Computes the remainder operation on two arguments as prescribed by the IEEE 754 standard.
- About jlab
 - Stergios Papadimitriou
 - Developers: Panagiotis Adamopoulos, Georgia - Vilma Todri
 - Based on JMathLib of:
 - Mark Sparshatt, Stefan Mueller, Alejandro Torras
Detailed changes..

Matrix

- **exp**: Calculates the exponent of a complex number and takes as arguments the value as an array of double. The result is also an array of double.
- **floor**: Rounds the value of the first operand down to the nearest integer. Takes as argument a double array and return the result as an operand token.
- **ln**: Returns the natural logarithm of value. Takes as argument an array of double and return the result as an array of double too.
Detailed changes.. (2)

- **log**: Returns the logarithm of value to the base. Takes as argument an array of double and return the result as an array of double too.
- **round**: Rounds a value to the nearest integer. Takes as argument an array of double and returns the result as an OperandToken.
- **sqrt**: Calculates the sqrt of a complex number. Takes as argument an array of double and return the result as an array of double too.
- **sum**: Returns the sum of all the elements of a matrix per column. Takes as argument the matrix to sum as an operand.
Math

- **atan2**: Converts rectangular coordinates \((x, y)\) to polar \((r, \theta)\)
- **IEEEremainder**: Computes the remainder operation on two arguments as prescribed by the IEEE 754 standard.
- **Max**: Returns the greater of two double values.
- **Min**: Returns the smaller of two double values.
- **Pow**: Returns the value of the first argument raised to the power of the second argument.
Detailed changes.. (4)

- Random : Returns a double value with a positive sign, greater than or equal to 0.0 and less than 1.0.
- Rint : Returns the double value that is closest in value to the argument and is equal to a mathematical integer.
- toDegrees: Converts an angle measured in radians to an approximately equivalent angle measured in degrees.
- toRadians : Converts an angle measured in degrees to an approximately equivalent angle measured in radians.
Detailed changes.. (5)

- We added many classes and packages that we found in the web...
 For example some financial packages that can be loaded by using the corresponding option.
- We added a midi player so as “welcome” and “error” sounds to be played.
- We changed the user interface (UI).
- Many small changes more...
/**Executes the equation - the code run is based on the index number
@parm operands - the array of parameters
@return the result of the function as an OperandToken*/
public OperandToken evaluate(Token[] operands)
{
 OperandToken result = null;
 String input = operands.toString();
 OperandToken result1 = new NumberToken(0);
 //execute the equation depending on the index
 switch(index)
 {
 case FIRST:
 double a = ((NumberToken)operands[0]).getValue();
 double b = ((NumberToken)operands[3]).getValue();
 double g = ((NumberToken)operands[6]).getValue();
 g = b - g;
 if (a!=0) {
 double temp_result = -b / a;
 result = new NumberToken(temp_result);
 } else {

 }
 }
public class sqrt extends ExternalElementWiseFunction {

 public sqrt() {
 name = "sqrt";
 }

 public double[] evaluateValue(double[] arg) {
 double[] result = new double[2];
 double re = arg[REAL];
 double im = arg[IMAG];
 double temp = Math.pow(re, 2) + Math.pow(im, 2);
 double mag = Math.sqrt(temp);
 if (mag > 0.0) {
 if (re > 0.0) {
 temp = Math.sqrt(0.5 * (mag + re));
 re = temp;
 im = 0.5 * im / temp;
 }
 } else {

 }
 result[REAL] = re;
 result[IMAG] = im;
/** Calculates the arctangent of a complex number
 * @param arg = the value as an array of double
 * @return the result as an array of double*/

public OperandToken rint() {
 double[][][] results = new double[sizeY][sizeX][2];
 for (int yy=0; yy<sizeY; yy++) {
 for (int xx=0; xx<sizeX; xx++) {
 results[yy][xx][REAL] = java.lang.Math.rint(values[yy][xx][REAL]);
 results[yy][xx][IMAGINARY] = java.lang.Math.rint(values[yy][xx][IMAGINARY]);
 }
 }
 return new NumberToken(results);
}
Fix code

• Before
Container box = Box.createHorizontalBox();
box.add(bones);box.add(bzeros);box.add(beye);box.add(binv);
box.add(butriag);box.add(breshape);
box.add(bany);box.add(bfind);box.add(bisNotEmpty);

• After
// A (AWT) container object that contains boxes (other AWT components).

 Container box = Box.createHorizontalBox();

// Appends the specified component to the end of this container.
 box.add(bones);
 box.add(bzeros);
 box.add(beye);
The IDE automatically formats your code. But in some cases the output wasn't satisfactory. So, we had to do it manually until we produced an efficient output.
Batch files

SET CLASSDIR=..uild\classes
SET SOURCEDIR=jLabSrc
SET JAVAC_OPTS=-classpath
 %classpath%;dist\jLab.jar; -d %classdir%

javac %javac_opts% jLab*.java
javac %javac_opts% jLab\Graph*.java
javac %javac_opts% jLab\wavelets*.java
javac %javac_opts% jLab\weka*.java ...

cd classes
java -classpath dist\jLab.jar;
Integration

In order to make our changes and add functionality to jLab project we had to integrate our source code into the rest of the project.

Specifically, as far as matrix functions are concerned, for example, we created and extended the class `ExternalElementWiseFunction.java` which extends `ExternalFunction.java` that is a class that already existed and is considered base class for all external function classes.

Moreover, in many cases we added source code in already existing classes without disturbing the legacy project!
Testing

Scenarios

- As far as testing is concerned, we conducted test cases and implement examples of actual use.

- In this way we have tested the changes and confirm that they work in the way they are supposed to do so.

Debug
Findbugs

- It looks for instances of "bug patterns" --- code instances that are likely to be errors.
The program *ckjm* calculates Chidamber and Kemerer object-oriented metrics by processing the bytecode of compiled Java files.

C:\>java -jar ckjm-1.7.jar
C:\build\classes\jExec\Functions\Matrix*.class

<table>
<thead>
<tr>
<th>Class</th>
<th>WM</th>
<th>DI</th>
<th>NO</th>
<th>CB</th>
<th>RF</th>
<th>LCOM</th>
<th>C ∈</th>
<th>NP</th>
</tr>
</thead>
<tbody>
<tr>
<td>jExec.Functions.Matrix.xor</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>jExec.Functions.Matrix.max</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>jExec.Functions.Matrix.inf</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>jExec.Functions.Matrix.magic</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>jExec.Functions.Matrix.min</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>9</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>jExec.Functions.Matrix.cumsum</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>jExec.Functions.Matrix.flipr</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>jExec.Functions.Matrix.ltriag</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>6</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>jExec.Functions.Matrix.zeros</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>jExec.Functions.Matrix.prod</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>
Coordination with the development team – Mails

- Από: "root" <sterg@philippos.teikav.edu.gr>

Μπράβο για τιν γριγορί προσαρμογι σας στον κώδικα!!
> Φυσικά είναι να χαθίσετε στον κώδικα γιατί είναι πολυπλοκό και χρειάζεται προσεκτικό διάβασμα.

Stergios
We used Java /** comments that are read by javadoc.

For example:

/** Calculates the logarithm of a complex number
@param arg = the value as an array of double
@return the result as an array of double */
public double[] evaluateValue(double[] arg)
{
We used a doclet to generate the documentation. The standard doclet generates HTML and is built into the Javadoc tool.

Hopefully, we didn’t reached any XXX (means something is probably wrong here) TODO (marks areas of further work) or FIXME (marks areas of further enhancement) comments.
We tried to keep our blog up-to-date. So, we did many posts which explain our contribution in jLab project. Our blog is written mostly in Greek. The post that is included below is our first post in our blog.

“Αυτό το Blog δημιουργήθηκε με σκοπό να κρατάει αναφορές για την εργασία στο μάθημα «Ειδικά Θέματα Τεχνολογίας Λογισμικού». Η εργασία αφορά στην συνεισφορά μας σε ένα project ανοιχτού κώδικα. Θα προσπαθήσουμε να το ανανεώνουμε συνεχώς!”

URL: http://project-jlab.blogspot.com/
Ευχαριστούμε...