Editor:

Warren Keuffel = wkeuffel@computer.org

course—and covers the crucial aspects of
learning in software production environments.

Adaptive Software Development: A Collab-
orative Approach to Managing Complex
Systems by James A. Highsmith 111, Dorset
House Publishing, New York, 2000, 0-932
633-40-4, 389 pp., US $44.95.

Highsmith begins by stating that his four
goals are to
f fast-paced, high requirements volatility,
and uncertainty characterize your devel- =
opment environment, and you can’t fig-
ure out how to succeed, then Adaptive
Software Development by James High- =
smith can help. It offers an innovative
approach grounded in the theory of complex
adaptive systems, and it’s both well researched =
and timely.
Its real attraction, however, is that it pro- =
vides a holistic approach to software devel-
opment and management—adaptively, of

provide an alternative to the popularly
held belief that optimization is the only so-
lution to increasingly complex problems;
offer an approach based on adaptive prin-
ciples and introduce associated frame-
works and models for implementation;
show the necessity and benefits of power
of collaboration to succeed; and
introduce adaptive management.

In the first two chapters, Highsmith in-

Today, developers struggle to cope with the conflicting demands of pro-
ducing quality software and delivering it in Internet time. As a result, that
body of knowledge commonly described as software development's “best
practices” is continually evolving to meet the needs of its users. The first two
reviewers discuss books whose authors, Jim Highsmith and Kent Beck, ad-
dress the conundrum of how to reconcile quality and speed. As with all
new development concepts, you'll find more enthusiasm and anecdotal
success stories than measurable supporting data, but if nothing else, these
books—and our reviewers’ evaluation of them—deserve your attention for
challenging the establishment.

Rounding out our trio of reviews is an evaluation of an important new
book from Ron Kenett and Emanuel Baker that will be of interest fo those
developing software quality programs.

And now a plea from your Bookshelf editor: if you have particular ex-
pertise in the area of usability and would like to contribute a review for
an upcoming issue focused on that topic, please contact me by 15 Au-
gust 2000.

—Warren Keuffel, Bookshelf Editor

112 1EEE SOFTWARE July/August 2000

troduces complex adaptive systems and the
various components and models of adaptive
software development. The next four chap-
ters explain the various components of adap-
tive development—speculating on direction,
adaptive cycle planning, collaboration, and
learning—and address various aspects of
adaptive project planning and execution.
The treatment in these chapters is powerful
and though-provoking, though readers fa-
miliar with methodologies such as the Dy-
namic System Development Methodology
(www.dsdm.org) will find some of the ideas
presented familiar to them; nevertheless,
certain sections are especially interesting
and hence noteworthy.

Chapter 3 presents the concept of a prod-
uct mission profile, which helps identify the
primary driver for the product’s success in the
market and set the project’s focus. The chap-
ter includes a product mission profile matrix
with four project variables (scope, resources,

0740-7459/00/$10.00 © 2000 IEEE

BOOKSHELF

quality, and schedule), which can help
readers establish priority in their own
projects. Similarly, Chapter 4’s de-
tailed explanation of adaptive cycles
and thorough guidance on adaptive
planning techniques is very useful. A
hypothetical cycle-planning example
is an added attraction. In addition, I
particularly liked the discussion in
Chapter 6 on customer focus group
reviews. Highsmith explains CFG re-
views, highlights their usefulness,
builds a strong case for conducting
them, and offers guidance on how to
successfully conduct them.

Chapters 7 through 11 focus on the
cultural infrastructure needed to per-
form adaptive development and de-
scribe in detail adaptive management
practices. Chapter 9 introduces yet an-
other important practice—workstate
life-cycle management. Highsmith con-
trasts this with the traditional work-
flow-based approach and explains why
the workstate-oriented mindset is suit-
able for fast-paced development.

A Few Glitches

Highsmith has produced an excel-
lent book that will surely help those

who peruse it seriously. It should help
software engineers, managers, train-
ers, and consultants alike. Experi-
enced software professionals will par-
ticularly be able to relate to High-
smith’s approach.

However, some details presented in
the book seem unnecessary, especially
those that are primarily built on the
contributions made by others. For ex-
ample, Chapter 7 spends too much
time on material already well-covered
in two seminal books, The Innovator’s
Dilemma (Clayton Christensen, Har-
vard Business School Press, 1997) and
Inside the Tornado (Geoffrey Moore,
HarperBusiness, 19935); references to
these would have sufficed. Also, many
chapters require a philosophical bent
of mind; readers must considerably
stretch their minds to comprehend and
digest the material.

In many chapters, the analogies to
mountaineering are extreme and, at
times, boring. In addition, many
paragraphs are accurate in their own
ways but do not connect well with
the following paragraphs or even the
book’s theme. Furthermore, High-
smith should have included success

Taking Gommon Sense to the Extreme

eXtreme Programming Explained: Embrace Change by Kent Beck, Addison
Wesley Longman, 2000, 0-201-61641-6, 190 pp., $29.95.

any software projects face
vague and changing re-
quirements: a pressing time
schedule, stringent quality
objectives, high staff turn-
over rates, and demands to
deliver value at a low cost. Extreme
programming, as described in eXtreme
Programming Explained, by Kent
Beck, challenges many conventional
software engineering doctrines and,
turning development on its head, of-
fers a lightweight methodology for ef-
fectively delivering software while

controlling time, cost, quality, and, re-
freshingly, the project’s scope.

The theoretical basis for XP is an
options-based pricing model of soft-
ware development. Because software
is developed in an environment where
technological, business, and human
risks abound, investing for the future
through careful architectural design,
elaborate code structures that sup-
port all possible future requirements,
and matching documentation can be

stories or data based on real projects
that have benefited from the adaptive
development approach.

Interestingly, Highsmith, like many
others, often attempts to wage a war
against the CMM. However, he ap-
pears to have his own understanding
of and assumptions about it. I found
his comparison to and argument
against the CMM unnecessary and
not well supported.

Overall, Adaptive Software
Development is a useful contribution
to the changing profession of software
engineering. It attempts to integrate
markets, organization, development,
and customers and offers a thought-
provoking framework of concepts,
practices, and guidelines to sail
through today’s volatile software
product development environment. I
am sure the software soldiers and their
commanders operating in turbulent
times stand to gain from this book.

Deependra Moitra is the General Manager of Quality at
Lucent Technologies, India Product Realization Center. Contact
him at d.moitra@computer.org.

a waste of effort. Changing require-
ments or technology might render
parts of the system obsolete.

Kent Beck’s insight lies in discount-
ing elaborate design for future needs in
favor of today’s simplicity. He suggests
deferring important design decisions
until a particular feature is needed. Ac-
cording to Beck, you should develop
the most important features first,
rapidly providing the customer with
the functionality required and mini-
mizing the risk of total project failure.
As code evolves, you can always refac-
tor it in response to new needs. Sur-
prisingly, Beck takes for granted that
current state-of-the-art technology and
programmer skills will support these
continuous design changes.

9
Beck’s XP

XP takes a holistic, value-driven
view of the development process, fo-
cusing on four key values: communica-

July/August 2000 1EEE SOFTWARE 113

BOOKSHELF

tion, simplicity, feedback, and courage.
It encourages communication by hav-
ing the developers collectively own all
the code and work in pairs on a single
machine. XP’s simple design evolves
through constant refactoring—guided
by a suitable metaphor and imple-
mented in accordance to common cod-
ing standards—and obviates the need
for extensive documentation. XP en-
courages programmers to develop only
the functionality needed and to plan on
changing the design to accommodate
new features.

To provide feedback during devel-
opment, XP programmers write unit
tests before coding activities and run
tests after design changes or integra-
tion. They also have a customer rep-
resentative on site who can write
function tests. Finally, courage com-
plements the other three values by
letting team members throw code
away or improve system-level design
and by encouraging managers to em-
brace change.

Beck devotes separate chapters to
management, planning, development,
design, and testing; however, he fails to
discuss in depth several practical imple-
mentation aspects. A complete case
study might have helped readers un-
derstand how to plan a large project
and the pragmatics of pair program-
ming. More importantly, a case study

could teach readers how unit and func-
tional tests evolve in a large or GUI-
based system. Beck takes for granted
the use of object-oriented technology
(including object-oriented databases)
when discussing design refactoring and
thus fails to give this important imple-
mentation constraint and its implica-
tions the attention it deserves.

On a more positive note, Beck of-
fers advice on how to adopt XP (by
gradually implementing XP practices)
and retrofit it into existing projects
(which is difficult but not impossi-
ble). He also outlines the life cycle of
an XP project and discusses various,
roles, problems, limitations, and ex-
ploitation issues. He frankly admits
XP’ limitations, and I recommend
that skeptical readers read the respec-
tive chapter first to avoid distracting
themselves by trying to apply XP to
areas for which it is not suited.

Beck advises against using XP in
an environment whose culture would
not tolerate it: in large teams (a 10-
person team is probably the upper
limit), applications where changes in-
cur large overheads, systems with
long compile or test cycles, applica-
tions that do not allow easy testing,
and physical environments that sepa-
rate people (XP teams are encour-
aged to work cooperatively in a sin-
gle room; it is unclear how constant
interruptions and pair working allow
deliberate concentration). Again, I ad-

Software Process Quality: Flying Goach

Robert Bruce Kelsey

Software Process Quality: Management and Control by Ron S. Kenett and
Emanuel R. Baker, Marcel Dekker, New York, 1999, 0-8247-1733-3, 241

pp., $150.

hen you book an economy
coach flight across the coun-
try for $150, you know
what to expect. You’ll cover
a lot of ground but your
sightseeing will be restricted

114 1EEE SOFTWARE July/August 2000

to what can be seen from 30,000 feet.
And, if you’re lucky, you’ll get a snack
that will stave off hypoglycemia until
you land. But if you plunk down $150
for a book, even at the inflated prices
in airport bookstores, you expect to

vise skeptical readers to read the penul-
timate chapter early on—it describes
how to apply XP to existing contrac-
tual work practices, albeit not for
open source development.

Although not always entirely con-
vincing, Beck proposes how to adapt
fixed price, outsourcing, and time
and materials contracts for XP (not
the other way around). An eclectic
annotated bibliography (which will
doubtlessly provide incentives for
more reading), a glossary, and an in-
dex (with too many second-level en-
tries and too few first-level ones)
complement a generally well-struc-
tured and well-written book.

Overall, A Beneficial Read

XP is clearly not for everyone. How-
ever, most projects currently being de-
veloped under the pressures of Inter-
net time can surely benefit from its
approach, and they are not the only
candidates. I have often found myself
following parts of the XP approach
while programming—I'm glad that
Beck formalized it into one coherent
methodology encompassing the com-
plete software lifecycle. T will cer-
tainly try to experiment with XP in a
team development context, and I am
sure I will not be alone.

Diomidis Spinellis is an assistant professor in the Department
of Information and Communication Systems at the University of
the Aegean. Contact him at dspin@aegean.gr

walk away with an indispensable, per-
haps even seminal work in the field,
not an in-flight magazine. Caveat
emptor—Software Process Quality
falls somewhere in between.

The View from 30,000 Feet

The authors derive their material
from graduate courses Ron Kenett
delivered at Tel Aviv University. As a
primary text in a survey course, it has
much to recommend it. It describes
the components of a software quality
program, discusses the various stan-
dards that you can use in developing
such a program, and at least touches
on all aspects of development from

BOOKSHELF

requirements management to config-
uration management to metrication
for continuous improvement. What
sets this work apart from the typical
“how to” texts available is the au-
thors’ commitment to present their
practical techniques in the context of
a quality management program.

The first third of the book is de-
voted to describing the tenets of qual-
ity management and the benefits of
using continuous improvement mod-
els such as the CMM. Echoes of Wal-
ter Shewhart, J.M. Juran, Kaoru
Ishikawa, and W. Edwards Demming
abound, and some of the material
reads like a synopsis of the study
guides for the Certified Quality Man-
ager exam from the American Society
of Quality (in which Kenett is a senior
member). The authors begin with an
explanation of the Quality Journey
and why quality councils, strategic
quality planning, and process man-
agement are crucial to its success.
Next, they describe and compare ISO
9000/9000-3, CMM 1.1, and SPICE
as continuous improvement models.
With the rationale and models in
place, the authors turn their attention
to the requirements for process con-
trol: quality measurements, quality
attributes for software and support
for documentation, software reliabil-
ity, and reviews and inspections.

An In-flight Snack, Not a Meal

Software Process Quality is the
latest release in the Computer-Aided
Engineering series from Marcel
Dekker, Inc. The intended audience
for the series, according to series edi-
tor Mark Coticchia, includes stu-
dents, educators, and practitioners.
Unfortunately, a book that meets the
needs of students usually falls short
of meeting the needs of practitioners.
Kenett and Baker’s effort is no excep-
tion. Their stated goal is to provide a
“methodology for establishing the
current status of a software develop-
ment process and laying out a rea-
soned plan for process improve-
ment” (p. xi). The program they pre-
sent contains nothing new or terribly
controversial, and in that respect a
neophyte software quality manager

could pick up this book and use it to
build a tolerable quality system. The
problem isn’t what the authors pre-
sent; it’s what they chose to ignore.

Omissions and inconsistencies are
particularly troublesome in the chap-
ters on software measurement, soft-
ware quality, and software reliability.
For example, the authors present only
raw incidence measures and ignore
the various diagnostic measures avail-
able. They use lines of code in their
defect density measure without ex-
plaining how different product types
and development platforms can affect
the measure. They present four relia-
bility models but never mention the
caveats throughout the literature
about the conditions under which reli-
ability estimations lose their validity.
They spend several pages on how
to perform a CMM-based assessment,
but give both test methodologies and
configuration management short shrift
and devote no space to reuse.

Still, the Service is Good

Nevertheless, the topics that Kenett
and Baker do cover are presented
clearly and concisely, making this
book a handy introduction to assess-
ments, inspections, reviews, and re-
quirements analysis. If you want to
learn how to set up the infrastructure
to support a continuous improvement
program, Software Process Quality
makes an excellent travel guide for
your Quality Journey. Educators
should consider this book a viable can-
didate for a software quality course as
long as they are prepared to make up
for some of the text’s deficiencies ei-
ther in lectures or through additional
assigned readings. And as a handbook
for practitioners, it presents a practi-
cable—but not thoroughly defended
or explained—methodology for im-
plementing a cohesive software qual-
ity program. P

Robert Bruce Kelsey is a member of the IEEE and
the American Society for Quality. Contact him af robertbrucek@
netscape.net.

Soltware

Howsto

T T
Reach Us

Writers
For detailed information on submitting articles,
write for our Editorial Guidelines (sofiware@
computer.org), or access computer.org/
software/author.htm.

Letters to the Editor
Send letters to

Letters Editor

IEEE Software

10662 Los Vagueros Circle
Los Alamitos, CA 90720
chaltes@computer.org

Please provide an e-mail address or
daytime phone number with your letter.

On the Web
Access computer.org/software for information
about IEEE Software.

Subscription Change of Address
Send change-of-address requests for magazine
subscriptions fo address.change@ieee.org.
Be sure to specify IEEE Software.

Membership Change of Address
Send change-of-address requests for the mem-
bership directory to directory.updates@
computer.org.

Missing or Damaged Copies
If you are missing an issue or you received
a damaged copy, contact membership@
computer.org.

Reprints of Articles
For price information or to order reprints, send
e-mail fo software@computer.org or fax +1
714821 4010.

Reprint Permission
To obtain permission fo reprint an article, con-
tact William Hagen, IEEE Copyrights and Trade-
marks Manager, at whagen@ieee.org.

July/August 2000 1EEE SOFTWARE 115

