
Using Object-Oriented Design Metrics to Predict
Software Defects1*

Marian JURECZKO2, Diomidis D. SPINELLIS3

1. INTRODUCTION

Many object-oriented design metrics have been developed [1,3,8,17,24] to help in
predict software defects or evaluate design quality. Since a defect prediction model may
give crucial clues about the distribution and location of defects and, thereby, test priori-
tization, accurate prediction can save costs in the testing process. Considerable research
has been performed on defect prediction methods; see the surveys by Purao and
Vaishnavi [22] and by Wahyudin et al. [25], unfortunately few results appear at statisti-
cally significant level. Therefore, further empirical validation is necessary to prove the
usefulness of the metrics and software prediction models in industrial practice.

Our study was made possible through the creation of a new metric calculation tool4.
There are many tools that calculate object-oriented metrics. What is the reason to create
another one? In fact the situation is not so perfect. The available programs are either ex-
tremely inefficient (sometimes they do not work with big software projects at all), not
available as open source and therefore difficult to reason about their results, or incom-
plete — the set of calculated metrics is not wide enough. It is extremely hard to find a
tool that calculates all metrics from the Chidamber and Kemerer (C&K) metrics suite
[3]. Having both, C&K and QMOOD metrics suites [1] in one tool is even rarer, and
according to the authors' knowledge there is no other tool, that calculates metrics sug-
gested by Tang et al. [24]. Ckjm calculates metrics that have been recommended as
good quality indicators. There are several works that investigate the C&K metric suite
and that have empirically proven their usability in quality or defect prediction [2, 10, 11,
20]. There are recommendations about QMOOD metrics suite [1, 20] and the quality
oriented extension of C&K [24] too. Ckjm does not offer a GUI and its focus is not on

1 In Models and Methodology of System Dependability. Proceedings of RELCOMEX 2010: Fifth In-

ternational Conference on Dependability of Computer Systems DepCoS, Monographs of System Depend-
ability, pages 69–81, Wrocław, Poland, 2010. Oficyna Wydawnicza Politechniki Wrocławskiej.

* Fellowship co-financed by European Union within European Social Fund
2 Institute of Computer Engineering, Control and Robotics, Wrocław University of Technology,

Wybrzeże Wyspiańskiego 27, 50-370, Wrocław - Poland, marian.jureczko@pwr.wroc.pl
3 Department of Management Science and Technology, Athens University of Economics and Busi-

ness, Patission 76, GR-104 34 Athens - Greece
4 http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm

elaborate diagrams but on efficient calculation of metrics. Ckjm is an open source pro-
ject, thus it is free of charge. Finally, Ckjm is a mature tool. This paper presents a new
version of the tool substantially expanding a previous version (v 1.85) which evaluated a
smaller set of metrics. The new version is a quality oriented extension and calculates
many additional metrics that have been recommended as good quality indicators.

The paper is organized as follows: In Section 2 the motivation and goals are pro-
vided. In Section 3 related works are described. Section 4 presents the suite of OO met-
rics that are calculated by ckjm. The experiment is shown in Section 5. This includes
description of investigated projects and methods of data acquiring in Section 5.1, con-
ducted statistical analysis in Section 5.2 and potential threats in Section 5.3. Section 6
contains results of the experiment. Conclusions and future research are in Section 7.

2. MOTIVATION AND GOALS

Testing of software systems is an activity that consumes time and resources. Apply-
ing the same testing effort to all modules of a system is not the optimal approach, be-
cause the distribution of bugs among individual parts of a software system is not uni-
form. Therefore, testers should be able to identify fault-prone classes. With such knowl-
edge they would be able to prioritize the tests and therefore, work more efficiently. The
availability of adequate software defect prediction models is, thus, vital. This task can
be performed by tools, like ckjm, which is designed to help in quality assurance by cal-
culating metrics that can be used to predict software defects.

The main goal of this research is to construct software defect prediction models. The
metrics calculated by ckjm are used as the model input. Therefore, the model construct-
ing process allows deciding whether the calculated metrics are usable as defect predic-
tors. The estimated number of defects for a Java class is the model output. The model
output may be used to select classes where the estimated number of defects is on high
level. According to Weyuker et al. [21,26,27,28] typically 20% of files contain upwards
of 80% of defects. Testers with a good defect predicator should be able to reduce their
test effort by testing only 20% of files (Java classes) and they still should be able to find
most of the defects (80%). Models constructed in this research are evaluated by counting
the percentage of Java classes that must be tested in order to find 80% of the defects.

The collecting of data, that was required to construct the software defect prediction
models, gave an opportunity to investigate a hypothesis about factors that influence at
defect prediction mechanism. There are works [5,6,13,14,19] where class or module size
has been pointed as an important factor in defect prediction. 44 models, that ignore the
class size factor and 88 models that use the class size factor have been created in order
to test if the class size factor has statistically significant influence on defect prediction

5 http://www.spinellis.gr/sw/ckjm

accuracy. There are so many models and only 16 software projects because several ver-
sions of each project have been investigated.

3. RELATED WORK

Considerable research has been performed on software metrics; see Kan's monograph
[12], survey by Purao and Vaishnavi [22], and the references therein. Some of the met-
rics has been shown to be useful for predicting the fault-proneness of classes and for
building the software defect prediction models [1,2,4,9,10,11,15,19,20,21,23,24,26,27,
28,29]. There are also several papers where the Pareto analysis has been used to evaluate
the models ability of identifying the fault-prone classes, modules or files. Weyuker et al.
found 76-93% of the faults in 20% of the files that had been selected by defect predic-
tion model, by using the negative binomial regression [21] and 68-85% of the faults by
using the recursive partitioning [26]. Further, the models were simplified in order to
make them more generic, what resulted in founding 50-92% of the fault in 20% of the
files. Denaro and Pezze [4] used logistic regression models to identify fault-prone mod-
ules. They reported that their best model required about 50% of the modules to be inves-
tigated in order to find 80% of the software faults. They used data collected from
Apache v. 1.3 and they assessed the model on Apache v. 2.0. Succi et al. [23] used C&K
metrics suite as well as software size to find fault-prone classes. They have investigated
two software projects, both written in C++. They reported, that their required 43-48% of
classes to be analyzed in order to cover 80% of the defects.

According to the authors' knowledge, few works has been done on the use of class
size for defect prediction. Some interesting observations are the followings. Fenton and
Neil [6] described the phenomenon, that larger modules may have lower defect densi-
ties. Koru and Liu [13] discovered that the predictability was worse for subsets that in-
cluded many small components and they gave some practical hints that explain how the
defect prediction models should be constructed with respect to their findings [14]. Their
advice is that data sets are stratified according to the module size in order to facilitate
prediction of defects on these data subsets. Mende and Koschke [19] created defect pre-
diction models, that were based only on the module size measured in Line of Code
(LoC). The results were surprisingly well. The outputs of their models were strongly
correlated with the actually data. The Spearman's correlation coefficient varied between
0.41 and 0.9. El Emam et al. [5] investigated whether there is a confounding effect of
class size measured in Line of Code (LoC). They considered the C&K metrics, and a
subset of the Lorenz and Kidd [16] metrics. Their findings indicate that the class size
should be considered in the defect prediction models. However El Emam et al. investi-
gated only one software project.

4. THE METRICS

The set of metrics that ckjm is able to calculate are listed in Table 1 and have been
defined according to the metric importance in defect prediction. All metrics, except
McCabe's Cyclomatic Complexity (CC), are class size metrics.

Table 1. Metrics definitions.

Metric Name Definition Source

Weighted methods
per class (WMC)

The value of the WMC is equal to the number of methods in the class (assum-
ing unity weights for all methods).

C&K [3]

Depth of Inheri-
tance Tree (DIT)

The DIT metric provides for each class a measure of the inheritance levels
from the object hierarchy top.

C&K [3]

Number of Chil-
dren (NOC)

The NOC metric simply measures the number of immediate descendants of
the class.

C&K [3]

Coupling between
object classes
(CBO)

The CBO metric represents the number of classes coupled to a given class
(efferent couplings and afferent couplings). This couplings can occur through
method calls, field accesses, inheritance, method arguments, return types, and
exceptions.

C&K [3]

Response for a
Class (RFC)

The RFC metric measures the number of different methods that can be exe-
cuted when an object of that class receives a message. Ideally, we would want
to find for each method of the class, the methods that class will call, and re-
peat this for each called method, calculating what is called the transitive clo-
sure of the method call graph. This process can however be both expensive
and quite inaccurate. Ckjm calculates a rough approximation to the response
set by simply inspecting method calls within the class method bodies. The
value of RFC is the sum of number of methods called within the class method
bodies and the number of class methods. This simplification was also used in
the Chidamber and Kemerer's [3] description of the metric.

C&K [3]

Lack of cohesion in
methods (LCOM)

The LCOM metric counts the sets of methods in a class that are not related
through the sharing of some of the class fields. The original definition of this
metric (which is the one used in ckjm) considers all pairs of class methods. In
some of these pairs both methods access at least one common field of the
class, while in other pairs the two methods do not share any common field
accesses. The lack of cohesion in methods is then calculated by subtracting
from the number of method pairs that do not share a field access the number
of method pairs that do.

C&K [3]

Lack of cohesion in
methods (LCOM3)

m - number of methods in a class
a - number of attributes in a class
µ(A) - number of methods that access the
attribute A

Henderson-
Sellers [8]

Metric Name Definition Source

Afferent couplings
(Ca)

The Ca metric represents the number of classes that depend upon the meas-
ured class.

Martin [17]

Efferent couplings
(Ce)

The Ca metric represents the number of classes that the measured class is
depended upon.

Martin [17]

Number of Public
Methods (NPM)

The NPM metric simply counts all the methods in a class that are declared as
public. The metric is known also as Class Interface Size (CIS)

QMOOD
[1]

Data Access Metric
(DAM)

This metric is the ratio of the number of private (protected) attributes to the
total number of attributes declared in the class.

QMOOD
[1]

Measure of Aggre-
gation (MOA)

This metric measures the extent of the part-whole relationship, realized by
using attributes. The metric is a count of the number of class fields whose
types are user defined classes.

QMOOD
[1]

Measure of Func-
tional Abstraction
(MFA)

This metric is the ratio of the number of methods inherited by a class to the
total number of methods accessible by the member methods of the class. The
constructors and the java.lang.Object (as parent) are ignored.

QMOOD
[1]

Cohesion Among
Methods of Class
(CAM)

This metric computes the relatedness among methods of a class based upon
the parameter list of the methods. The metric is computed using the summa-
tion of number of different types of method parameters in every method di-
vided by a multiplication of number of different method parameter types in
whole class and number of methods.

QMOOD
[1]

Inheritance Cou-
pling (IC)

This metric provides the number of parent classes to which a given class is
coupled. A class is coupled to its parent class if one of its inherited methods
functionally dependent on the new or redefined methods in the class. A class
is coupled to its parent class if one of the following conditions is satisfied:
• One of its inherited methods uses an attribute that is defined in a

new/redefined method.
• One of its inherited methods calls a redefined method.
• One of its inherited methods is called by a redefined method and uses a pa-

rameter that is defined in the redefined method.

Tang [24]

Coupling Between
Methods (CBM)

The metric measures the total number of new/redefined methods to which all
the inherited methods are coupled. There is a coupling when at least one of
the given in the IC metric definition conditions is held.

Tang [24]

Average Method
Complexity (AMC)

This metric measures the average method size for each class. Size of a
method is equal to the number of Java binary codes in the method.

Tang [24]

McCabe's cyclo-
matic complexity
(CC)

CC is equal to number of different paths in a method (function) plus one. The
cyclomatic complexity is defined as:

 CC = E – N + P

E - the number of edges of the graph
N - the number of nodes of the graph
P - the number of connected components

CC is the only method size metric. The constructed models make the class

McCabe
[18]

Metric Name Definition Source

size predictions. Therefore, the metric had to be converted to a class size
metric. Two metrics has been derived:
• Max(CC) - the greatest value of CC among methods of the investigated class.
• Avg(CC) - the arithmetic mean of the CC value in the investigated class.

Lines of Code
(LOC)

The LOC metric based on Java binary code. It is the sum of number of fields,
number of methods and number of instructions in every method of the inves-
tigated class.

5. STUDY DESIGN

There are many guidelines for constructing defect prediction models [6,7,25]. The
approach that has been used in this paper does not follow all the recommendations found
in the literature. Some simplifications have been made. According to Lessmann et al.
[15] simple algorithms are not significantly worse than the sophisticated data processing
techniques. Thus the models output may be not as accurate as it is possible but still us-
able and helpful in the testing process.

5.1 DATA SOURCES

The data about software projects metrics and defects has been collected from source
code repositories. The ckjm tool has been used to calculate the metrics. Another tool,
called BugInfo, has been prepared to identify defects. BugInfo analyses the logs from
source code repositories (Subversion or CVS) and according to the log content decides if
a commit is a bugfix. Each of the projects had been investigated in order to identify bug-
fixes commenting guidelines that were used in the source code repository. The guide-
lines were formalized in regular expressions. Buginfo compares the regular expressions
with comments of the commits. When a comment fits to a regular expression, BugInfo
increments the defect count for all classes that have been modified in the commit.

The following projects have been investigated (project size is the average number of
classes):

Forrest (http://forrest.apache.org/). The Forrest software is a publishing framework
that transforms input from various sources into a unified presentation in one or more
output formats. Size = 34.

POI (http://poi.apache.org/). The POI project consists of APIs for manipulating vari-
ous file formats based upon Microsoft's OLE 2 Compound Document format, and Of-
fice OpenXML format, using pure Java. Size = 421.

Synapse (http://synapse.apache.org/). Synapse is a simple, lightweight and high per-
formance Enterprise Service Bus (ESB) from Apache. Synapse has support for HTTP,
SOAP, SMTP, JMS, FTP and file system transports, Financial Information eXchange

(FIX) and Hessian protocols for message exchange as well as first class support for
standards such as WS-Addressing, Web Services Security (WSS), Web Services Reli-
able Messaging (WSRM), efficient binary attachments (MTOM/XOP). Size = 220.

Xalan-Java (http://xml.apache.org/xalan-j/). Xalan is an XSLT processor for trans-
forming XML documents into HTML, text, or other XML document types. It imple-
ments XSL Transformations (XSLT) Version 1.0 and XML Path Language (XPath)
Version 1.0. Size = 1043.

PBeans (http://pbeans.sourceforge.net/). pBeans is a Java persistence layer and an
object/relational database mapping (ORM) framework. Size = 48.

Xerces (http://xerces.apache.org/xerces-j/). Xerces is a Parser that supports the XML
1.0 recommendation and contains advanced parser functionality, such as support for
XML Schema 1.0, DOM level 2 and SAX version 2. Size = 484.

Ant (http://ant.apache.org/). Ant is a well known Java-based, shell independent build
tool. Size = 488.

Ivy (http://ant.apache.org/ivy/). Ivy is a dependency manager focusing on flexibility
and simplicity. Size = 311.

Camel (http://camel.apache.org/). Apache Camel is a powerful open source integra-
tion framework based on known Enterprise Integration Patterns with powerful Bean In-
tegration. Size = 894.

Log4j (http://logging.apache.org/log4j/). Log4j is a well known logging framework.
Size = 187.

Lucene (http://lucene.apache.org/). Lucene provides Java-based indexing and search
technology, as well as spellchecking, hit highlighting and advanced analy-
sis/tokenization capabilities. Size = 402.

There are five proprietary software projects too. All of them are custom build solu-
tions and all of them were successfully installed in the customer environment. Their
sizes are as follows: prop-1 size = 3954; prop-2 size = 2138; prop3 size = 2218; prop-4
size = 2860; prop-5 size = 3574.

5.3 DATA ANALYSIS METHOD

The main goal of this study is to empirically validate metrics calculated by the ckjm
tool whether those metrics are useful for predicting fault-prone classes. A class is said to
be fault-prone if it has at least one defect. The defect is identifying according to the his-
tory from the source version control system. When a class has been changed and the
change has been marked as defect (bug) fix, the count of the defects for the class will be
incremented.

The second goal of this study is to investigate whether class size is a relevant factor
in the defect prediction models. This lead to the formulation of the following quantifi-
able hypothesis to be tested:

• H0 WMC – There is no difference in the accuracy of the defect prediction models be-
tween model using the WMC metric as the class size factor and model ignoring the
class size factor.

• HA WMC – There is a difference in the accuracy of the defect prediction models be-
tween model using the WMC metric as the class size factor and model ignoring the
class size factor.

• H0 LOC – There is no difference in the accuracy of the defect prediction models be-
tween model using the LOC metric as the class size factor and model ignoring the
class size factor.

• HA LOC – There is a difference in the accuracy of the defect prediction models between
model using the LOC metric as the class size factor and model ignoring the class size
factor.

Model accuracy is the percentage of classes that have to be investigated in order to
find 80% of the defects. The classes are investigated in the order of decreasing estimated
number of defect. The estimation is made by the defect prediction model. Each of the
investigated software projects has at least two versions (external releases). The model
constructed on the project version i-1 is always assessed on the version i. The data about
version i-1 is always available during version i development. Therefore, the assessment
method suits very well to the software development practice.

The following steps are performed in order to construct a defect prediction model:
1. Correlation matrix with all metrics and the number of defects is created. The Pearson

correlation coefficient (ρ) is used.
2. Highly Correlated metrics are identified (ρ>0.8 and correlation statistically

significant with α=0.05). The highly correlated metrics that are lower correlated with
the number of defects are eliminated from further calculations. Example: ρRFC,CBO=0.9,
ρRFC,Defect=0.69, ρCBO,Defect=0.77 – the RFC metric will be eliminated.

3. Stepwise linear regression is used to construct the model. All no eliminated metrics
are used as independent variables. The number of defects is used as the dependent
variable.

For models using the class size factor, the input data is divided into two sets accord-
ing to the value of the class size factor. We assign small classes in the first set and big
classes in the second set. The above steps are performed for each set separately.

The hypotheses are evaluated by the parametric t-test. Following general assump-
tions should be checked in order to use a parametric test: level of measurement (the
variables must be measured at the interval or ratio level scale), independence of observa-
tions, homogeneity of variance and the normal distribution of the sample. The homoge-
neity of variance is checked by Levene's test. The assumption that the sample came from
a normally distributed population is tested by the Shapiro-Wilk and Kolmogorov-
Smirnov tests.

5.4 THREATS TO VALIDITY

A number of limitations that may compromise to some extent the quality of the re-
sults of this study are listed below.
• It is possible that there are mistakes in the defect identification. The comments in the

source code version control system are not always well written and, therefore, it was
sometimes very hard to decide whether a change is connected with a defect or not.

• Metrics from the revision r1 and defects fixed in revisions (r1;r2) are taken to build the
defect prediction model. Subsequently, the model takes (as input) metrics from the re-
vision r2 and the model is used to predict defects in (r2;r3). Therefore, all information
about the classes (and their defect), that have been created in the period (r1;r2) are ig-
nored during model creation because those classes did not exist in the r1 revision.

• The defects are assigned to versions according to the bugfix date. It could be probably
better to assign a defect to
the version, where the de-
fect has been found, but un-
fortunately, the source code
version control system does
not contain such informa-
tion.

• We were not able to track
operations like changing
class name or moving class
between packages. There-
fore, after such a change,
the class is interpreted as a
new class.

6. RESULTS

The details of creating the
defect prediction models would be impossible to present in the space provided. The re-
sults of applying models are described on Figure 1. 8.57-62.27% of classes (mean (μ) =
39.216; standard deviation (σ) = 11.568) have to be investigate in order to find 80% of
defects when the simple models (Ms) are used. For the models with the class size factor

the results are as follows: 7.57-
58.93% (μ=37.433; σ=10.258)
of classes have to be investi-
gated according to the WMC
based models (MWMC), and
10,56%-54,93% (μ=36.086;

 Median
 25%-75%
 Non-outlier range
 OutliersQ(MS)

Q(MWMC)
Q(MLOC)

0

10

20

30

40

50

60

70

Fig. 1. Accuracy of the defect prediction models.

Tab. 3. T-test statistics

Hypothesis t Degrees of freedom Probability level

H0 WMC 1.071 86 0.287

H0 LOC 1.654 86 0.102

σ=10,435) according to the LOC based models (MLOC). Please notice that the Forrest
project has been investigated only with the simple model and the result, which has been
obtained for this project, is below the mean value. The project was too small to be inves-
tigated with more sophisticated models. The Forrest project has been removed from the
sample before hypotheses testing.

The assumptions that variables are measured at the interval or ratio level and that the
observations are independent of one another are met. The assumption of homogeneity of
variance has been tested using Levelene's test. The test was not significant in both cases
(pS,WMC=0.768, pS,LOC=0.952), so we accept the null hypothesis, that the population
variances are equal. The assumption of normality has been tested using the
Kolmogorov-Smirnov and the Shapiro-Wilk tests. The assumption of normality has not
been violated: MS - S-W (W=0.983, p=0.767), K-S (d=0.094, p=0.2); MWMC - S-W
(W=0.981, p=0.693), K-S (d=0.081, p=0.2); MLOC - S-W (W=0.976, p=0.482), K-S
(d=0.097, p=0.2).

 Since p>0.05 (probability level in tab. 3), there are no reasons to reject the H0

WMC or the H0 LOC hypothesis. So we can conclude that the size factor did not significantly
affect the defect prediction model accuracy. According to fig. 1 models with the size
factor give better predictions, but the size factor based improvements are not statistically
significant.

7. CONCLUSIONS AND FUTURE RESEARCH

An analysis of the calculated metrics has been used to construct defect prediction
models. The models have been assessed on five proprietary and eleven open source pro-
jects. Each time, a model constructed according to the data from version i of a project
has been assessed by predicting the defects in version i+1 of the project. The analysis
showed that by applying simple regression models with the class size factor we were
able to find 80% of defects in 10.56% to 54.93% (μ=36.086; σ=10.435) of the classes.
Therefore, one could be able to save considerable costs in the testing process by testing
only 36% of the classes (the mean value) and still finding most of the defects (80%).
Using more sophisticated regression models may lead to even better results; see Weyu-
ker et al. [26,27,28] and the negative binomial model. This is the primary contribution of
the research. Another contribution of the paper is an empirical study of usefulness of the
class size factor in the defect prediction models. Two metrics have been considered as
the class size factors: WMC (Weighted Methods per Class) and LOC (Lines of Code).
The WMC based models were slightly and the LOC based models were clearly better as
the simple models (without class size factor), but the difference was statistically signifi-
cant neither in the case of WMC based models, nor in the case of LOC based models.

There are a number of factors (except the class size) that may be relevant in defect
prediction. The collected metrics will be used in further researches, where we would like
to try to identify the factors and investigate whether they have statistically significant
influence on defect prediction. The number of investigated projects may be to small to
perform some of the analyses, especially increasing the sample size may show statisti-
cally significance of the class size factor. Therefore data about further software projects
will be collected.

A simple regression model has been used in the presented research. Using more so-
phisticated regression models, like the negative binomial regression model, may be a
better alternative. There are plans to evaluate more sophisticated models to see how they
will work, especially in comparison wit the simple models.

We finish by noting the importance of conducting reproducible empirical research
studies. The researchers typically make many decisions in order to study the software
metrics. Therefore, the main way to make research on software metrics reproducible is
to make the collected metrics publicly accessible. Therefore, we are going to place the
collected metrics online at http://purl.org/MarianJureczko/MetricsRepo.

ACKNOWLEDGEMENTS

The authors are very grateful to the Capgemini Polska Company that allowed
analyzing five of their proprietary projects. Thus, the research has been better validated -
authors could use not only open source, but also industrial projects.

REFERENCES

[1] BANSIYA J., and DAVIS C. G., A Hierarchical Model for Object-Oriented Design Quality Assess-
ment. IEEE Trans. on Software Engineering, 28(1), 2002, 4-17.

[2] CATAL C., DIRI B. and OZUMUT B., An Artificial Immune System Approach for Fault Prediction
in Object-Oriented Software. Proc. of Dependability of Computer Systems, 2007, 238-245.

[3] CHIDAMBER S. R. and KEMERER C. F., A metrics suite for object oriented design. IEEE Trans. on
Software Engineering, 20(6), 476–493, 1994.

[4] DENARO G. and PEZZE M., An Empirical Evaluation of Fault-Proneness Models. Proc. of Interna-
tional Conference on Software Engineering (ICSE), 2002.

[5] EL ELMAM K., BENLARBI S. and GOEL N., The Confounding Effect of Class Size on The Validity
of Object-Oriented Metrics. IEEE Trans. on Software Engineering, 27(7), 2001, 630-650.

[6] FENTON N. E. and NEIL M., A Critique of Software Defect Prediction Models. IEEE Trans. on
Software Engineering, 25(5), 1999, 675-689.

[7] FENTON N. E., Software Measurement: A Necessary Scientific Basis. IEEE Trans. on Software En-
gineering 20(3), 199-206, 1994.

[8] HENDERSON-SELLERS B., Object-Oriented Metrics, measures of Complexity. Prentice Hall, 1996.

[9] JIANG Y., CUKIC B. and MA Y., Techniques for evaluating fault prediction models. Empirical
Software Engineering, 13(5), 2008, 561-595.

[10] JURECZKO M., Use of software metrics for finding weak points of object oriented projects. Proc. of
Metody i narzędzia wytwarzania oprogramowania 133-144, 2007 (in Polish).

[11] JURECZKO M., Ocena jakości obiektowo zorientowanego projektu programistycznego na pod-
stawie metryk oprogramowania. In: Inżynieria oprogramowania - metody wytwarzania i wybrane
zastosowania, PWN, 364-377, 2008 (in Polish).

[12] KAN S. H., Metrics and Models in Software Quality Engineering. Addison-Wesley, Boston MA,
second edition, 2002.

[13] KORU A. G., and LIU H., An Investigation of the Effect of Module Size on Defect Prediction Using
Static Measures. Proc. of PROMISE, 2005.

[14] KORU A. G. and LIU H., Building Effective Defect-Prediction Models in Practice. IEEE Software
33(6), 2005, 23-28.

[15] LESSMANN S., BAESENS B., MUES C. and PIETSCH S., Benchmarking Classification Models
for Software Defect Prediction: A Proposed Framework and Novel Findings. IEEE Trans. on Soft-
ware Engineering 34(4), 2008, 485-496.

[16] LORENZ M. and KIDD J., Object-Oriented Software Metrics. Prentice-Hall, 1994.
[17] MARTIN R., OO Design Quality Metrics - An Analysis of Dependencies. Proc. of Workshop Prag-

matic and Theoretical Directions in Object-Oriented Software Metrics, OOPSLA’94, 1994.
[18] McCABE T. J., A complexity measure. IEEE Trans. on Software Engineering, 2(4), 1976, 308-320.
[19] MENDE T., KOSCHKE R., Revisiting the Evaluation of Defect Prediction Models. Proc. of PROM-

ISE, 2009.
[20] OLAGUE H. M., ETZKORN L. H., GHOLSTON S. and QUATTLEBAUM S., Empirical Valida-

tion of Three Software Metrics Suites to Predict Fault-Proneness of Object-Oriented Class Devel-
oped Using Highly Iterative or Agile Software Development Processes. IEEE Trans. on Software
Engineering, 33(6), 2007, 402-419.

[21] OSTRAND T. J., WEYUKER E. J. and BELL R. M., Predicting the Location and Number of Faults
in Large Software Systems. IEEE Trans. on Software Engineering, 31(4), 2005, 340-356.

[22] PURAO S. and VAISHNAVI V. K., Product metrics for object-oriented systems. ACM Computing
Surveys, 35(2): 191-221, 2003.

[23] SUCCI G., PEDRYCZ W., STEFANOVIC M. and MILLER J., Practical assessment of the models
for identification of defect-prone classes in object-oriented commercial systems using design met-
rics. Journal of Systems and Software 65(1), 2003, 1-12.

[24] TANG M-H., KAO M-H. and CHEN M-H, An Empirical Study on Object-Oriented Metrics. Proc. of
The Software Metrics Symposium, 1999, 242-249.

[25] WAHYUDIN D., RAMLER R. and BIFFL S., A framework for Defect Prediction in Specific Soft-
ware Project Contexts. Proc. of the 3rd IFIP CEE-SET, 2008, 295-308.

[26] WEYUKER E. J., OSTRAND T. J. and BELL R. M., Comparing Negative Binomial and Recursive
Partitioning Models for Fault Prediction. Proc. of PROMISE, 2008.

[27] WEYUKER E. J., OSTRAND T. J. and BELL R. M., Adapting a Fault Prediction Model to Allow
Widespread Usage. Proc. of PROMISE, 2006.

[28] WEYUKER E. J., OSTRAND T. J. and BELL R. M., Do too many cooks spoil the broth? Using the
number of developers to enhance defect prediction models. Empirical Software Engineering, 13(5),
2008, 539-559.

[29] ZHOU Y. and LEUNG H., Empirical Analysis of Object-Oriented Design Metrics for Predicting
High and Low Severity Faults. IEEE Trans. on Software Engineering, 32(10), 2006, 771-789.

