
An Exploratory Study on the Evolution of
C Programming in the Unix Operating System

Diomidis Spinellis, Panagiotis Louridas, and Maria Kechagia
Department of Management Science and Technology

Athens University of Economics and Business
Patision 76, GR-104 34 Athens, Greece

Email: {dds,louridas,mkechagia}@aueb.gr

Abstract—Context: Numerous factors drive long term progress
in programming practices. Goal: We study the evolution of
C programming in the Unix operating system. Method: We
extract, aggregate, and synthesize metrics from 66 snapshots
obtained from an artificial software configuration management
repository tracking the evolution of the Unix operating system
over four decades. Results: C language programming practices
appear to evolve over long term periods; our study identified
some continuous trends with highly significant coefficients of
determination. Many trends point toward increasing code qual-
ity through adherence to numerous programming guidelines,
while some others indicate adoption that has reached maturity.
In the area of commenting progress appears to have stalled.
Conclusions: Studying the long term evolution of programming
practices identifies areas where progress has been achieved along
an expected path, as well as cases where there is room for
improvement.

I. INTRODUCTION

Tracking long-term progress in engineering allows us to
take stock of things we have achieved, appreciate the factors
that led to them, and set realistic goals for where we want to
go. Specific factors that drive long term progress in program-
ming practices include the affordances and requirements of
computer architecture, programming languages, development
frameworks, and compiler technology, the ergonomics of inter-
facing devices, programming guidelines, processing memory
and speed, and social conventions. These might allow, among
other things, the more liberal use of memory, the improved use
of types, the avoidance of micro-optimizations, the writing of
more descriptive code, the choice of appropriate encapsulation
mechanisms, and the convergence toward a common coding
style. The objective of this work is to study, in view of these
factors, the evolution of programming practice in the context
of the Unix operating system.

Many of the practices we outlined can be automatically
measured by examining instances of the code over time. By
looking at the long term evolution of specific metrics we can
determine whether they indeed change over time, as well as
the direction and rate of change.

ESEM ’15: 9th International Symposium on Empirical Software Engineer-
ing and Measurement, Beijing, China.

Copyright c©2015 IEEE. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of
this work in other works must be obtained from the IEEE.

The results of the study on long term evolution of pro-
gramming practices can be used to allocate the investment of
additional effort in areas where progress has been efficiently
achieved, and to look for new ways to tackle problems in
areas showing a lack of significant progress. Also, given the
hypothesis that the structure and internal quality attributes of
a working, non-trivial software artifact will represent first and
foremost the engineering requirements of its construction [1],
the results can also indicate areas where developers rationally
allocated improvement effort and areas where developers did
not see a reason to invest.

II. METHODS

Our study is based on a synthetic software configuration
management repository tracking the long term evolution of the
Unix operating system. At successive time points of significant
releases we process the source code with a custom-developed
tool to extract a variety of metrics for each file. We then
synthesize these metrics into values that are related to the
internal code quality of the whole system, and analyze the
results over time using established statistical techniques.

The primary sources of the material include source code
snapshots of early released versions, which were obtained
from the Unix Heritage Society archive, the CD-ROM images
containing the full source archives of Berkeley’s Computer
Science Research Group (CSRG), the OldLinux site, and the
FreeBSD archive. These snapshots were merged with the CSRG
SCCS repository, the FreeBSD 1 CVS repository, and the Git
mirror of modern FreeBSD development. This material formed
the basis for constructing a synthetic Git repository, which
allows the efficient retrieval and processing of the Unix source
code covering a period of 44 years [2].

We addressed the difficulty of parsing C source code without
access to the original compilation environment by extending
and using our cmcalc1 open source tool, which efficiently
calculates a variety of C code quality metrics, without requir-
ing full access to the compilation environment’s parameters.
The tool’s operation is based on state machine logic [3],
and will therefore produce reasonably accurate results without
requiring access to header files and the like. The cmcalc tool
calculates size, language feature, code style, and commenting

1https://github.com/dspinellis/cqmetrics



Fig. 1. Mean file date of C source code files in the examined Unix releases

metrics; see the tool’s documentation and reference [4] for
more details.

We collected the metrics by iterating through 66 Unix
releases (see Figure 1), starting from the Third Research
Edition (1973) and ending with FreeBSD 10.0.0 (2014). For
each release we checked out the code and run cmcalc on all
its C files. Through this process we collected 490 thousand
records containing in total 50 million values.

We aggregated the raw metrics at the level of each release
and calculated derivative values needed to track the long term
evolution of programming practices. The derived aggregate
metrics are listed in Table I, roughly clustered into those
affected by programming language evolution (L), ergonomics
(workstation technology and screen resolution—E), program-
ming guidelines (G), processing capacity (P), conventions (C),
and tools (T).

To make metrics comparable across releases, we replaced
the absolute numbers in the primary collected metrics with
corresponding density figures in the derived ones. The denom-
inator for calculating each density depends on the numerator
unit, and can be the corresponding number of files, lines, char-
acters, statements, or identifiers. For example, the comment
character density is the ratio of comment characters to all
characters across all source code files.

The following paragraphs outline how metrics are associated
with the factors that may influence them. The analysis follows
roughly the order in which the metrics are listed in Table I.

The length of files (M1) and the corresponding functionality
they provide (M2) can be decided to promote proper encap-
sulation and modularity. However, on resource constrained
computers—think of a 128kB PDP-11, large files could take
overly long to compile, forcing developers to split them in or-
der to minimize the impact on build performance on changes.
As an example, the 7th Research Edition implementation of
the refer program seems to be arbitrarily split into nine files
named refer0.c . . . refer8.c.

Programming guidelines also typically dictate line length
(M3—lines should not exceed the number of characters that
can fit in a display row), function length (M4—functions
should fit on a screen), identifier length (M5—these should
be descriptive rather than cryptically short), and statement
nesting (M6—deep nesting should be avoided). On the other
hand, all these are also affected by ergonomics. Higher res-
olution screens can display more characters per row, more
rows on a screen, and allow for deeper nesting, while fast
workstations make it easy to type and display long identifiers.
However, long functions and corresponding deep nesting may
be required on slower CPUs in order to avoid the overhead
of function calls. The level of nesting and available screen

real estate can also affect the number of spaces used for
indentation. Also, IDEs with code completion can help writing
long identifiers, while optimizing compilers can avoid the
function call cost through inlining.

The declaration of identifiers that are only internally visible
within the compilation unit (static—M8), depends on the
existence of the corresponding language feature. The use of
such declarations to limit the identifiers’ global visibility is
prescribed in guidelines and can be assisted by tools that
identify such problems.

The use of several keywords (const—M9, enum—
M10, unsigned—M11, signed—M12, register—
M13, void—M14, volatile—M15) is made possible
through their introduction as language features. In addition,
the use of some (const, enum, unsigned) can clarify
the programmer’s intent and avoid some errors. Furthermore,
when these three keywords are used, compilers can use static
analysis to identify common error cases. On the other hand,
the register and volatile keywords are there to ad-
dress deficiencies in the way compilers allocate registers and
detect aliasing, so their use should become less common as
technology advances.

The formatting style (M16) and the number of spaces
used for indentation (M7, M17) are a matter of convention.
Consistency in both areas can also be aided through tools,
such as code formatters, editors, and IDEs.

The size and density of comments (M20, M19, M21) and the
density of statements (M18) are also a matter of guidelines and
ergonomics. Comments should be long and plentiful, while
white space among statements should be used to separate code
into logical blocks. Fast high-resolution workstations make it
easy to type in and display such code.

The problems associated with the use of the C preprocessor
are well known [5], [6], and most guidelines advocate the
avoidance of macro definitions (M24) and conditional compi-
lation (M22). Conversely, guidelines also advocate the use of
header files (and the #include directive—M23) in order to
promote code modularity and portability.

C preprocessor macros can be often be replaced by exploit-
ing newer language features, such as enumerations and inlined
functions. However, these features and header file inclusion
require additional processing power and more sophisticated
compiler support.

We end the description of the factors associated with the
metrics we tracked by noting that the goto statement (M25)
has been considered harmful for almost half a century [7].

We subjected the derived aggregate metrics to statistical
analysis in order to discern longitudinal trends. As all the met-
rics we collected were ordered by date, we performed linear



TABLE I
DERIVED AGGREGATE METRICS, FACTORS AFFECTING THEM, COEFFICIENT OF DETERMINATION, AND OBSERVED TREND

Metric identifier and description L E G P C T R2 Scatterplot Trend

M1 Mean file length (lines) X X 0.954 ↗
M2 Mean file functionality (statements) X X 0.930 ↗
M3 Mean line length (characters) X X 0.853 ↗
M4 Mean function length (lines) X X 0.396 ↗↘
M5 Mean identifier length X X X 0.964 ↗
M6 Mean statement nesting X X X X 0.186 ↗↘
M7 Mean indentation spaces X 0.511 ↘↗
M8 internally visible declaration density X X X 0.942 ↗
M9 const keyword density X X X 0.874 ↗
M10 enum keyword density X X X 0.740 ↗↘↗↘
M11 unsigned keyword density X X 0.873 ↗↘
M12 signed keyword density X 0.029 ↗→
M13 register keyword density X X 0.850 ↘→
M14 void keyword density X 0.833 ↗→
M15 volatile keyword density X X 0.754 ↗→
M16 Formatting inconsistency X X 0.689 ↘→
M17 Indentation spaces standard deviation X X 0.615 ↘→
M18 Statement density X X X 0.517 ↘→
M19 Comment character density X X 0.404 ↗↘
M20 Mean comment size X X 0.618 ↗→
M21 Comment density X X 0.122 ↗↘
M22 C preprocessor conditional statement density X 0.369 ↗↘
M23 C preprocessor include statement density X X X 0.252 ↗↘
M24 C preprocessor non-include statement density X X X X 0.000 ↗↘
M25 goto keyword density X 0.408 ↘↗

regression analysis with the days elapsed since the first release
as the independent variable and each metric as the dependent
variable. We chose to use the Ordinary Least Squares method
as we are treating each variable independently of the others.
Our statistical model is a linear one y = a + bx, trying to
capture straightforward, upwards or downwards trends in the
evolution of the metrics.

The internal validity of this study’s findings would be
threatened by inferring causal relationships without actually
demonstrating the mechanism through which the cause drives
the effect. In our study we have identified some factors that
could affect long term programming practices. However, we
have been careful not to draw any conclusions regarding
causality, using the factors merely as a starting point for
determining and arranging the metrics to examine.

The external validity of any findings is limited by the fact
that only a single large system (Unix) has been studied. Given
the system’s continued prevalence and importance, the lack of
generalizability is not a showstopper.

III. RESULTS AND DISCUSSION

The results of the statistical analysis are summarized in the
rightmost columns of Table I.

In sum, exploratory data analysis showed some continuous
trends with highly significant coefficients of determination,
as well as trends that after some period of time level off,
and others that have a segmented structure. The last two

categories obviously have considerably lower linear regression
coefficients of determination, but are nevertheless interesting.
Analysing them with segmented regression methods could
provide additional weight to the significance of their shape.

The evolution of many programming practices seems to
be correspondingly aligned over time with the factors we
outlined in Section II. Specifically, increasing identifier (M5),
line (M3), function (M4), and file lengths (M1, M2) match
improved programming facilities, the increasing density of
most examined keywords (M9, M10, M11, M12, M14, M15)
indicates that language facilities are adopted, and the fall in
the use of the register keyword (M13) matches improved
compiler technology.

Happily, many trends point toward increasing code quality
through adherence to the following guidelines: longer iden-
tifiers (M5), more declarations with internal visibility (M8),
increased inclusion of header files (M23), falling statement
nesting (M6—from the mid 1990s onward), the reduction of
non-include preprocessor directives (M24—in the past couple
of decades), reduced formatting inconsistency (M16), and
increased use of enumerations and constants (M10, M9).
These trends may also indicate that there could be underlying
pressure forces, such as increased code complexity and more
strictly enforced coding standards, that drive the changes.

On the other hand, some plateaus and reverse trends are
worrisome. These include the stagnant size of comments
(M20), the falling comment density (M21, M19), and the



slightly rising use of the goto statement (M25). Reverse
trends may be examples of over-enthusiasm regressing to
the mean, while plateaus could indicate entering a phase of
diminishing returns. Similarly problematic is the lack of a
clear downward trend in the (ab)use of the C preprocessor
(M22, M24). It seems that this particular tool is simply too
valuable to let go. On the other hand some plateaus are simply
a sign that the corresponding area has reached a steady state
associated with maturity. These include: the use of some C
keywords (M14, M15), formatting inconsistencies (M16), the
standard deviation of indentation spaces (M17), and statement
density (M18).

IV. RELATED WORK

The evolution of software has been the subject of decades
of research [8]. A central theoretical underpinning regarding
software’s evolution are Lehman’s eponymous laws [9]. We
will not expand on the topic, because a recent extensive
survey of it [10] provides an excellent historical overview and
discusses the current state of the art. Along similar lines, a
number of important studies focus on the stages of software
growth [11], as well as software aging [12], or decay [13].

One study particularly relevant to our work [14] examined
how the vocabulary used in two software projects evolved over
five and eight software versions respectively. The researchers
found that identifiers faced the same evolution pressures as
code. A related study [15] examined the changes in code
convention violations in four open source projects. The authors
report that code size and associated violations appear to grow
together in a 100-commit window. A third study [16] looked
at commenting practices in ProsgreSQL from 1996 to 2005
and found that the percentage of functions with comments
remained roughly constant over time. Compared to these
studies, our work examines a wider variety of metrics over
a significantly longer time scale.

V. CONCLUSIONS AND FURTHER WORK

Programming practices appear to evolve over long term
periods: our study identified some continuous trends with
highly significant coefficients of determination. The evolution
of many programming practices seems to be aligned over time
with language features, ergonomics, programming guidelines,
processing capacity, conventions, and tools. Many trends point
toward increasing code quality through adherence to numer-
ous guidelines, while some others indicate that adoption has
reached maturity. On the other hand in the area of commenting
progress appears to have stalled or reversed.

In general, the results show that language-related features
are easily adopted and quick to pay off. They also demonstrate
that it is difficult to affect change through preaching on,
say, the value of comments, or the risks of C preprocessor
abuse. These two findings taken together suggest that gradually
deprecating language features, as is done for example by the
Java community, may be a powerful way to drive progress.

Work in the area of long term programming practice evolu-
tion can be expanded on a number of fronts. An important task

would be to examine and establish causality regarding the fac-
tors affecting the trends. This could be helped by performing
regression with the underlying factor (e.g. screen resolution)
rather than time as the independent variable. Moreover, the
accuracy of the analysis can be improved by studying a
period’s specific code changes, rather than complete snapshots,
which also incorporate legacy code. Also, the segmented
trends can be formally examined using segmented analysis.
Furthermore, in addition to code, it would also be valuable
to perform a quantitative examination of other process-related
inputs, such as configuration management entries, the issue
lifecycle, and team collaborations. Finally, many more systems
should be studied in order to validate the generalizability of
the results.

Acknowledgements
This research has been co-financed by the European Union (Eu-

ropean Social Fund — ESF) and Greek national funds through the
Operational Program “Education and Lifelong Learning” of the Na-
tional Strategic Reference Framework (NSRF) — Research Funding
Program: Thalis — Athens University of Economics and Business
— Software Engineering Research Platform.

REFERENCES

[1] D. Spinellis, “A tale of four kernels,” in ICSE ’08: Proceedings of the
30th International Conference on Software Engineering, W. Schäfer,
M. B. Dwyer, and V. Gruhn, Eds. New York: Association for Computing
Machinery, May 2008, pp. 381–390.

[2] ——, “A repository with 44 years of Unix evolution,” in MSR ’15:
Proceedings of the 12th Working Conference on Mining Software
Repositories. IEEE, 2015, pp. 13–16.

[3] ——, “Tools and techniques for analyzing product and process data,” in
The Art and Science of Analyzing Software Data, T. Menzies, C. Bird,
and T. Zimmermann, Eds. Morgan-Kaufmann, 2015, to appear.

[4] S. H. Kan, Metrics and Models in Software Quality Engineering, 2nd ed.
Boston, MA: Addison-Wesley, 2002.

[5] H. Spencer and G. Collyer, “#ifdef considered harmful or portability
experience with C news,” in Proceedings of the Summer 1992 USENIX
Conference, R. Adams, Ed. Berkeley, CA: USENIX Association, Jun.
1992, pp. 185–198.

[6] M. D. Ernst, G. J. Badros, and D. Notkin, “An empirical analysis of C
preprocessor use,” IEEE Transactions on Software Engineering, vol. 28,
no. 12, pp. 1146–1170, Dec. 2002.

[7] E. W. Dijkstra, “Go to statement considered harmful,” Communications
of the ACM, vol. 11, no. 3, pp. 147–148, Mar. 1968.

[8] A. Capiluppi, “Models for the evolution of OS projects,” in ICSM ’03:
International Conference on Software Maintenance, 2003, pp. 65–74.

[9] M. Lehman, “On understanding laws, evolution, and conservation in the
large-program life cycle,” Journal of Systems and Software, vol. 1, pp.
213–221, 1979.

[10] I. Herraiz, D. Rodriguez, G. Robles, and J. M. González-Barahona, “The
evolution of the laws of software evolution: A discussion based on a
systematic literature review,” ACM Computing Surveys, vol. 46, no. 2,
Nov. 2013.

[11] K. H. Bennett and V. T. Rajlich, “Software maintenance and evolution: A
roadmap,” in Proceedings of the Conference on The Future of Software
Engineering, ser. ICSE ’00. New York, NY, USA: ACM, 2000, pp.
73–87.

[12] D. L. Parnas, “Software aging,” in ICSE ’94: 16th International Con-
ference on Software Engineering. Washington, DC: IEEE Computer
Society, May 1994, pp. 279–287.

[13] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and A. Mockus,
“Does code decay? assessing the evidence from change management
data,” IEEE Trans. Softw. Eng., vol. 27, no. 1, pp. 1–12, Jan. 2001.

[14] S. Abebe, S. Haiduc, A. Marcus, P. Tonella, and G. Antoniol, “Analyzing
the evolution of the source code vocabulary,” in CSMR ’09: 13th
European Conference on Software Maintenance and Reengineering,
March 2009, pp. 189–198.



[15] M. Smit, B. Gergel, H. Hoover, and E. Stroulia, “Code convention
adherence in evolving software,” in ICSM ’11: 27th IEEE International
Conference on Software Maintenance, Sept 2011, pp. 504–507.

[16] Z. M. Jiang and A. E. Hassan, “Examining the evolution of code
comments in PostgreSQL,” in MSR ’06: Proceedings of the 2006
International Workshop on Mining Software Repositories, ser. MSR ’06.
New York, NY, USA: ACM, 2006, pp. 179–180.


