
Echoes from Space:
Grouping Commands with Large-Scale Telemetry Data

Alexander Lattas
Department of Computing
Imperial College London
London, United Kingdom

alexandros.lattas17@imperial.ac.uk

Diomidis Spinellis
Department of Management Science and Technology

Athens University of Economics and Business
Athens, Greece
dds@aueb.gr

ABSTRACT
Background: As evolving desktop applications continuously ac-
crue new features and grow more complex with denser user inter-
faces and deeply-nested commands, it becomes inefficient to use
simple heuristic processes for grouping gui commands in multi-
level menus. Existing search-based software engineering studies on
user performance prediction and command grouping optimization
lack evidence-based answers on choosing a systematic grouping
method.
ResearchQuestions: We investigate the scope of command group-
ing optimization methods to reduce a user’s average task comple-
tion time and improve their relative performance, as well as the
benefit of using detailed interaction logs compared to sampling.
Method: We introduce seven grouping methods and compare their
performance based on extensive telemetry data, collected from pro-
gram runs of a cad application.
Results: We find that methods using global frequencies, user-
specific frequencies, deterministic and stochastic optimization, and
clustering perform the best.
Conclusions: We reduce the average user task completion time
by more than 17%, by running a Knapsack Problem algorithm on
clustered users, training only on a small sample of the available data.
We show that with most methods using just a 1% sample of the data
is enough to obtain nearly the same results as those obtained from
all the data. Additionally, we map the methods to specific problems
and applications where they would perform better. Overall, we pro-
vide a guide on how practitioners can use search-based software
engineering techniques when grouping commands in menus and
interfaces, to maximize users’ task execution efficiency.

CCS CONCEPTS
•Human-centered computing→ Interaction design process
andmethods; • Software and its engineering→ Software evo-
lution; Search-based software engineering;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE-SEIP ’18, May 27-June 3 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5659-6/18/05. . . $15.00
https://doi.org/10.1145/3183519.3183545

KEYWORDS
Command grouping, menu layout, GUI optimization, telemetry,
sampling
ACM Reference Format:
Alexander Lattas and Diomidis Spinellis. 2018. Echoes from Space: Group-
ing Commands with Large-Scale Telemetry Data. In ICSE-SEIP ’18: 40th
International Conference on Software Engineering: Software Engineering in
Practice Track, May 27-June 3 2018, Gothenburg, Sweden. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3183519.3183545

1 INTRODUCTION
Computer applications aimed at professional users are deemed to
be at least as complex as the problem they aim to solve. Computer
aided design applications, image and video editors, simulators and
enterprise resource planners are just a few examples of programs
whose interfaces have become unyieldingly complex. As developers
struggle to publish frequent updates that introduce more and more
integrated commands, tools and extensions, their graphical user
interfaces (guis) become packed with icons impossible to memorize.
Moreover, new, modern but niche features are placed at the center of
a user’s attention in order to justify the increasing costs of an update,
while well-known and frequently used commands get buried in
multiple nested hierarchical menus.

In the meantime, parallel efforts to improve the user’s experience
often are in vain, as they focus on the aesthetic aspect, or derive
conclusions based on heuristics and small-scale experiments. Com-
mon user experience (ux) experiments, involving heuristics-based
testing tools focus on specific scenarios that the developers think
important. However, lacking a user-centric approach, the majority
of the users are likely to face mental overhead and require more
time when executing common tasks that involve deep-nested com-
mands. Moreover, new users that are introduced to such complex
applications will need much time to become comfortable in using
them resulting, for example, in longer profitless training sessions.

We propose, evaluate and compare seven methods that exploit
easily accessible program telemetry data to reorganize an appli-
cation’s command tree structure based on actual evidence. These
methods involve a combination of command frequencies, domain-
based heuristics, continuous training, and stochastic optimization.
To train the algorithms, as well as to evaluate them, we use a large
data set of telemetry data, created by real users of a fairly complex
professional application. Additionally, we use experimental data
we produced, to understand the data set and to eliminate the noise
from the data.

The application studied is a cad suite for architects and civil
engineers. The architectural design functionality (tekton) supports

https://doi.org/10.1145/3183519.3183545
https://doi.org/10.1145/3183519.3183545

ICSE-SEIP ’18, May 27-June 3 2018, Gothenburg, Sweden Alexander Lattas and Diomidis Spinellis

2d and 3d modeling, as well as photo-realistic rendering. On the
civil engineering front (fespa) the system supports the analysis
and design of steel, concrete, and masonry structures, and also the
evaluation, strenghtening and repair of existing buildings under a
variety of structural design standards, such as the Eurocodes and
the corresponding national annexes.

Figure 1 is a screen dump depicting the application’s salient
characteristics and features. The top two windows show an archi-
tectural drawing floor plan and its photo-realistic rendering, while
the bottom two windows show a civil engineering wood mould
plan and the corresponding beam and column model, which is used
for finite element analysis. The user interaction is based around
entities, such as walls, windows, beam, slabs, columns, text, hatches,
and stairs. Each entity has associated parameters (e.g. dimensions
and material) and commands (e.g. add new, delete, extend, change
properties). The current version of the application supports 13
general-purpose entities (e.g. spline or cross-section), 15 entities
supporting architects (e.g. balustrade or roof), and 18 entities sup-
porting civil engineers (e.g. column or footing). A few so-called
entities relate to groupings of related commands and properties,
without being associated with concrete elements appearing on a
plan. Examples of these are the groupings of commands used for
rendering and for global manipulations. In total, 48 entities are
associated with 627 commands and 3735 properties.

The large number of available commands and properties is man-
aged by having users interact with the application by first selecting
the entity they want to manipulate. The corresponding entity icons
appear in the top toolbars of Figure 1. Once an entity is selected, a
toolbar with the commands associated with it appears on the left,
while a separate dialog (not shown) provides access to the corre-
sponding properties. For example, the toolbar on the left side of the
window shown in Figure 1 contains the commands associated with
the beam entity.

While the organization of commands and properties around
entities provides a way to navigate through their large number,
it also imposes a switching overhead. For instance, an architect
wishing to design a house, might first employ the grid entity to
draw the lines along which the house’s elements will be aligned,
then switch between the wall and the opening entity to add walls
and windows, and then switch to the roof entity to add a tiled
covering. Further adjustments to the drawing’s elements (e.g. to
change a window’s size), would have the architect switch again to
the corresponding entity.

Recently, staff dealing with the application’s user experience (ux)
asked us to explore alternative command arrangements that might
enhance user productivity by reducing the cost of entity switching.
The main idea was to make some commonly-used commands al-
ways accessible on screen. The design of a new arrangement proved
to be controversial. Proposals based on the intuitive understanding
of users’ interactions were criticized as lacking empirical backing.
On the other hand, proposed arrangements based on command fre-
quency counts were considered unrealistic, because they ignored
the sequence in which commands were issued.

Thankfully, in order to help debugging and to improve the users’
experience, recent application versions can log the commands a
user issues in a centralized database. It was obvious that these

Figure 1: The CAD application in action.

data could be used to create realistic command grouping optimiza-
tion proposals, and also to evaluate the performance improvement
associated with these proposals.

Within this context we sought to answer the following research
questions.

(1) What is the scope for increasing the cad’s user productivity
through the optimization of command grouping?

(2) What is the relative performance of diverse command group-
ing optimization methods in terms of user productivity?

(3) What, if any, is the benefit of using comprehensive and de-
tailed interaction logs, instead of sampling a few users or
obtaining simple command invocation frequencies in terms
of achievable command grouping performance optimization?

The two main contributions of this study are 1) the evaluation
of seven command grouping optimization methods based on de-
tailed actual interaction data, and, 2) results regarding the effect
of data sampling as part of the evaluation. Our findings can guide
software developers and ux designers on how to use telemetry data
to optimize their applications. We therefore devise specific design
suggestions for cad applications that can be directly applied to
improve user performance.

We begin this study by analyzing the preexisting quantitative
and empirical approaches to command grouping optimization, as
well as the relevant literature on which we are building upon (Sec-
tion 2). Then, in Section 3, we outline how we obtained the data we
used and describe the command optimization methods we propose
in terms of their purpose and the algorithms used for training and
evaluation. In Section 4 we discuss our results, comparing the meth-
ods and mapping them to specific use cases, while also offering
advice regarding sampling and interface design techniques. Sec-
tion 5 concludes the paper with an overview of our findings and
pointers to future work.

Echoes from Space:
Grouping Commands with Large-Scale Telemetry Data ICSE-SEIP ’18, May 27-June 3 2018, Gothenburg, Sweden

2 COMMAND GROUPING OPTIMIZATION
With command grouping optimization, we aim to find evidence-
based answers on choosing a systematic method for grouping mul-
tiple commands into multi-level menus. The study belongs to the
general area of search-based software engineering [11], because it
utilizes search-based optimization algorithms to guide software
engineering decisions.

The usability of an application depends on the effectiveness
of the users’ actions, their efficiency and the satisfaction users
receive upon the completion of a task [8]. Usability inspection is the
method of evaluating interfaces and can be carried by automatically
computed measures, involving real users, models and formulas or
rules of thumb. A combination of these has been found to be the
most efficient [21].

The usability analysis method used in this study falls into the cat-
egory of action analysis, or keystroke-level analysis [14], which in-
volvesmonitoring user’s action sequences and timing. The Keystroke-
Level Model (klm) was introduced in 1980 [2], proposing that the
time TX needed to execute a task consists of the task acquisition
time and the task execution time. As shown in Equation 1, this
model takes six variables into account: the time, K , required for
pressing a key or a button; the time, P , required to point on a dis-
played item with a mouse; the time, H , required to move hands
between the mouse and the keyboard; the time, D, required to draw
(the task involved drawing straight lines); the time, M , required
for mental preparation, and the time, R, required by the system to
respond.

TX = TK +TP +TH +TM +TR (1)

A later study [15] found that keystroke entry (K) is relatively fast
compared to moving hands between keyboard and mouse (H) and
very fast compared to the mental preparation (M), visual searches
and mouse moves (P). A study on Autocad [3] calculated that
P = 1.10s ,M = 1.35s and 0.08 ≤ K ≤ 1.20, as it depends a lot on the
user’s expertise level. Additionally, it argued that task completion
time consisted of the task acquisition time, the task execution time
and the error time as well. Moreover, the study’s authors found
that as the model becomes more fine its predictive power weakens,
because it becomes more prone to errors.

There are numerous other studies in the literature using klm.
A study that showcased a klm for mobile phone applications [13]
highlighted the important difference in time between novices and
professionals. Another study on mobile phones, in common with
this research, deviated from the classical klm by using the K andM
factors to measure task of keyboard typing [20]. A third one [17]
found that on handheld devices, klm can predict task execution
time with less than 8% error.

Many studies find a trade-off betweenM and K . Lane et al. [16]
argued that when dealing with several menu choices for a task, a
user goes through a single rather than amultiple mental preparation
task (M). Its time varies by experience and by making menus deeper
and shorter or shallower and wider. However, researchers agree
that breadth is preferable to depth [1, 18, 19].

To address the menu depth issue we described, Microsoft intro-
duced in its Office products the Ribbon User Interface, a tabbed tool-
bar menu that promotes the work efficiency of document readers
and creators [5]. Also, as a more radical approach, experts suggest

CommandMaps [22], an interface technique that flattens command
hierarchies to exploit human spatial memory. It can achieve greater
performance, because spatially remembering a task is easier than
remembering its category[22]. Additionally, a similar approach to
CommandMaps, called Ephemeral Adaptation, lists all commands
and highlights those that are predicted as important [6].

Additionally, a more generalized model for multilevel menus
was suggested by Cockburn et al. [4]. This calculates the decision,
search (M) and pointing time (P), as well as the steering cost (sc)
of navigating between menu layers as shown in Equation 2. For a
total number of L hierarchical menus, TM , TP and sc are summed
for each level of the menus and only TM and TP for the final one.
With this model, they found that efficiency degrades as menus get
lengthier, linearly for novices and logarithmically for experts.

TX =
l−1,l ∈L∑
j=1

(TMj +TPj + sc j) +TMl +TPl (2)

Addressing the menu optimization problem from a different per-
spective, numerous research studies employ stochastic algorithms
to find the optimal menu structure. Matsui and Yamada introduced
a genetic algorithm [18, 19] and a simulated annealing algorithm
[19] that minimized average selection time of menu items by con-
sidering movement (P) and decision time (M). A different approach
by Troiano et al. [23, 24] optimized menu structures by applying
genetic algorithms on user accessibility and preference and sug-
gested similar approaches for the optimization of other gui aspects
[23].

This study examines a broad command optimization toolset us-
ing actual data. In contrast to this research, the majority of the
aforementioned studies used experiments where novice or profes-
sional users were given prespecified tasks to complete. We build a
cost function based on the Keystroke-Level Model, which is used
to assess several gui optimization techniques, that have or have
not been connected with klm before. These cover stochastic op-
timization, spatially wide options, such as CommandMaps, and
user-optimized solution, such as the Microsoft Ribbon, but also
add naive optimization on frequency, continuously adjusted user
optimization, clustering on user types and heuristic groupings. In
the end, these provide an insight into which menu optimization
methods can be the most effective, as well as which experimental
techniques provide the best results.

3 MODELS AND EVALUATION
Our study involved obtaining command usage patterns from teleme-
try data, performing a controlled experiment to obtain the users’
navigation overhead, and examining seven command grouping
optimization approaches.

3.1 Telemetry Data
We created and evaluated models of user interactions based on a
sample of telemetry data associated with actual program executions.
These data contain the name of each executed command, which pro-
vides an accurate picture regarding the precise order of command
invocations. We sampled program runs over three years, selected a
14 gb subset comprising 182 thousand anonymized program runs

ICSE-SEIP ’18, May 27-June 3 2018, Gothenburg, Sweden Alexander Lattas and Diomidis Spinellis

that contained sequences of 32 million command invocations. Dur-
ing that period, the gui changes were limited and we can safely
assume these do not affect the cohesion of our data. To protect
the users’ privacy, these were used in an anonymized format that
included the command initiation time, and opaque identifiers of
the session, the user, the entity, the command, and the command’s
class (e.g. move or delete). From these we extracted a number of
program runs and their executed commands, as well as the required
execution time.

Table 1: Data Overview

Telemetry Experiment
Users 1,784 11
Sessions 182,273 11
Commands executed 32,514,217 534
Distinct commands 627 35
Distinct entities 44 16
Commands per session (avg) 178 48
Session execution time (avg; s) 6213 342
Command execution time (avg; s) 34.8 9.0

Each one of the 627 commands was associated with one of the
program’s 48 entities. This allowed us to identify all points in the
command sequences where a different entity would have to be
selected under the current command grouping scheme. Moreover,
each one of 162 commands was associated with one of seven groups
of commands with common functionality. We used this association
to investigate functional command grouping as an optimization
option. A description of the data is shown on Table 1.

The series of executed commands were used to obtain command
use scenarios, which we then used to train and evaluate the opti-
mization methods described in Section 3.4.

3.2 Navigation Overhead
We conducted a controlled experiment in order to calculate the aver-
age decision and pointing time (M + P) for novice and expert users.
The novice users were experiencing the application for the first time
and the expert users had years of professional experience with it.
We measured the overhead associated with switching between enti-
ties by having users execute a sequence of commands from diverse
entities. In order to obtain data from realistic transitions from one
command to another, we selected the commands among digrams
(pairs) of commands actually executed. Specifically, we obtained
from the command log data 32 million digrams (27 thousand unique
ones) and ordered them by the frequency of their execution. We
then selected one set of digrams coming from commands associated
with the same entity (e.g. move wall, delete wall), and one set of
digrams coming from commands associated with different entities
(e.g. add line, edit hatch). We then selected for each of the two
sets, four commands from the most frequently executed digrams,
four commands from the digrams executed with median frequency,
and four commands from the least frequently executed digrams.
This gave us in total 48 commands. We also selected another ten
commands at random as a training set for users to try out before
the experiment. The metrics associated with the experiment are
also listed in the Table 1.

1 2

3

4 5

6 7

8

9 10

11 12

13 14

15 16

17 18

19 20

21 22

23 24

25

26 27

28

Figure 2: Part of the interaction scenario.

Figure 2 illustrates part of the scenario given to the users. The
(blue) top-right numbers in each box indicate the sequence of the
scenario’s steps. (The numbers were not given to the users, but
users were instructed on the process to execute commands.) Note
that commands applied to the same entity (e.g. 2, 3) can be executed
in sequence without requiring the specification of another entity,
whereas those coming from different entities (e.g. 5, 7) require in
between the selection of the another entity or command group (e.g.
4 — Edit).

We also instrumented the cad program to record the time of
each command invocation with millisecond accuracy. In addition
we displayed after each command execution a prompt, which the
user had to acknowledge by pressing ok. This forced the mouse
cursor to move away from the command selection area and into the
drawing area, as is also the case when the commands are executed
in practice.

A graphical summary of the results we obtained is provided in
Figure 3. As can be seen, the variation in execution times between
commands of the same type was relatively small. As expected,
switching commands (left in the Figure) requires more time than
using commands of the same entity (right in the Figure). Further-
more, results varied depending on the users’ expertise. Expert users
could execute commands 32% faster than novices.

Echoes from Space:
Grouping Commands with Large-Scale Telemetry Data ICSE-SEIP ’18, May 27-June 3 2018, Gothenburg, Sweden

Novices,
Different

Experts,
Different

Novices,
Same

Experts,
Same

0

5

10

15

20

25

30

35

40

Ti
m

e
(s

ec
on

ds
) t

o
cli

ck
 o

n
co

m
m

an
d

Figure 3: Command execution time of novice and expert
users, executing commands from different or same entities

Table 2: Command Navigation Overhead (s)

Novices Experts
Same Entity (TS) 6.1 4.7
Different Entity (TD) 12.1 8.0

Based on the experimental data, we derived the average klm’s
pointing and mental preparation time, P +M , for the two types of
commands and two types of users listed in Table 2.

3.3 Assumptions
In order to evaluate the different command group optimization
methods, we make the following assumptions for our implementa-
tion of klm.

(1) The time needed to point and click a command (P) and the
time spent on cognitive processes before clicking a com-
mand (M) are equal for all commands, regardless of their
characteristics.

(2) The only variables that affect the time P +M are the user’s
expertise and whether the command belongs to the same
entity as the preceding one, or not.

(3) A given scenario of commands will always require the same
time to be executed, when the expertise of users and the
groups of commands remain the same.

(4) Commands that are always displayed on the screen require
P+M time for their execution, which is the same as executing
a command without switching between entities.

(5) Normally, the complexity of the executed commands affects
the execution time. However, in our experiments we use
a modified version of the cad application where calling a
command only tracks the time it was called. Therefore, the
complexity of the commands does not need to be considered
when comparing the methods.

3.4 Training and Evaluation
To test the optimization methods under consideration, we first
implement each method’s algorithm, then train it with command
execution scenarios, and finally evaluate its performance based
on other execution scenarios. In order to determine the effects of
sampling, we train the algorithms both with a large and a small
data sample. To avoid over-fitting, for the training we use 50% of
the scenarios when training the algorithm with extensive data, and
only 1% of the scenarios when training on a sample of the data.
For the evaluation of the algorithms, we use the other 50% of the
telemetry data. In this way, we can also investigate the extend to
which a small sample can produce results equivalent to those that
can be obtained by using the whole dataset and thus allow resources
to be conserved.

We grade the performance of each algorithm based on the total
task execution time, TT , required to execute a series of commands
whose grouping has been optimized with it using klm [2] We calcu-
lateTT as follows. LetTS be the time required to click a command in
the same (current) entity, TD the time required to click a command
in a different entity, NS the number of commands executed while
in the same entity, and ND the number of commands executed
when switching entities, and NA the number of commands always
available. Then the total task execution time TT used to evaluate a
command grouping algorithm’s performance is given by:

TT = TS × (NS + NA) +TD × ND (3)

Based on previous work, on our own experience, and on the
needs of our study we propose seven optimization approaches,
which are described in the following sections. For each command
grouping optimizationmethodwe describe its underlying algorithm
and the specific way or parameters we used to evaluate TT .

3.4.1 Method: CURRENT.

Algorithm. current is introduced as our baseline and not as an
optimization method. It reflects the application’s current command
grouping.

Evaluation. We evaluate the current grouping with the Equa-
tion 3, counting those commands that are executed after changing
an entity as ND and the rest as NS . No commands are always avail-
able in the current version, so we set NA = 0.

3.4.2 Method: ALL.

Algorithm. all establishes the theoretical optimum that we will
attempt to achieve with the following grouping algorithms. We
minimize command group switching time by simulating a gui setup
where all the commands are available on an (unrealistically large)
screen. Approximating this might be possible in workstations with
an extra wide monitor used by expert users who can move rapidly
their mouse from command to command, without having to decide
in which entity the desired command is nested.

Evaluation. If every command is directly available on the screen,
then the time needed for each one will be the same and equal toTS .
Therefore, we are using the Equation 3, assigning all commands
C to be always available (NA = |C |). Moreover, all involves no
training time and therefore the relevant field in table 3 is omitted.

ICSE-SEIP ’18, May 27-June 3 2018, Gothenburg, Sweden Alexander Lattas and Diomidis Spinellis

3.4.3 Method: NAIVE.

Algorithm. naive makes the most frequently executed com-
mands across all users always available to the user, in the form
of an additional toolbar. To do this, we simply calculate command
frequencies, once with the sample and once with the whole data set.
We assume that the cad’s executed command frequency remains
stable across time, Therefore, recalculating using new data should
not improve the method’s efficiency.

Evaluation. naive is also evaluated with Equation 3. However,
in this case we assign the N most frequently executed commands to
be always available (NA = N). Additionally, we run the algorithm
with a variable number of commands, N , to investigate the point
where adding commands does not lower significantly the execution
time.

3.4.4 Method: GROUP.

Algorithm. group, which was initially proposed by the applica-
tion’s designers, brings together most commonly used commands
(e.g. delete or move) under a single command button. This could be
applied on any object on the cad’s screen, automatically recognize
the object’s entity, and then call the actual command.

This method requires no training on data. The groups were
determined heuristically and decided jointly by the authors and
expert users. The groups decided were seven in total and 22% of
the commands executed belonged to these groups.

Evaluation. For the evaluation we use Equation 3, while assign-
ing all the grouped commands G to be always available (NA = G).

3.4.5 Method: MRU-B.

Algorithm. Given the wide variety of users that use complex
applications, we improve naive with mru-b, which stands for Most
Recently Used — Batch. To train this grouping algorithm, we cal-
culate the command frequencies for every user participating in a
training period, and through these we determine the frequently
used commands to always display in a personalized separate tool-
bar.

Evaluation. For the evaluation of mru-b we used Equation 3, as-
signing for each user, their N most frequently executed commands,
to be always available (NA = N). Again, we evaluate the algorithm
on various numbers of always available commands to find at which
number the benefit becomes insignificant and whether this number
is the same as the one found by naive.

Algorithm 1 MRU-O

TT = 0
for every user session and command do

if not same entity or command in mru set then
T ′
T = TT +TD

else
T ′
T = TT +TS

end if
update displayed mru set

end for

3.4.6 Method: MRU-O. Algorithm mru-o stands for Most Re-
cently Used — Online, and differs from mru-b in that there is no
prior training period. Instead, the most frequently used commands
are calculated on the fly and updated continuously. We assume that
the cost of not having a well-established set of frequent commands
in the beginning is less than the benefit of continuously adjusting
the set according to the user behavior. Additionally, this approach
does not require a training set.

Evaluation. For the algorithm’s evaluationwe use amixed training-
evaluation approach shown in Algorithm 1. mru-o differs from
mru-b in that the training happens incrementally. Therefore, we
do not differentiate between a sample and the whole dataset and
use only the evaluation dataset of 50%.

3.4.7 Method: OPT(KS).

Algorithm. With opt(ks) we use an optimization algorithm to
select the commands to be made always available. This differs from
naive in that the selection of these commands takes into account
the command execution order and the overhead of switching be-
tween entities. To do this in a deterministic way, we implement
an algorithm, which is based on the infamous Knapsack Problem.
For every command we evaluate the task execution time using
Equation 3, as if this command was the only one always available
on screen. Based on this we obtain the set of commands that are the
highest contributors to the task execution time as the ones to be
made always available on the screen. This training part is computed
with the sample and whole data sets.

Evaluation. The evaluation follows the Equation 3, having theV
most valuable commands always available (NA = V).

Algorithm 2 OPT(GA)

population = Generate_random_population
for every iteration do

fitness = evaluate(population)
roulette_wheel = get_roulette_wheel(fitness)
new_population = crossover(population, roulette_wheel)
new_population = mutate(population)
population = new_population + get_elites(population)

end for
Evaluate with get_elites(population)

3.4.8 Method: OPT(GA).

Algorithm. opt(ga) is a stochastic optimization method that uses
a genetic algorithm [7, 9, 12] to find the optimal set of commands
to be always available to users. To do so, as seen in Algorithm 2 we
create a population of random commands sets, and iterate using a
process of keeping the best, generating new sets with a crossover
function, while mutating the sets. The above are governed by a
fitness function that evaluates each member of the population, as if
it was the optimal solution of the naive algorithm.

We chose not to train this method on the whole data set, but
only on the sample, as we have already seen that the sample and
the whole produce very similar results and because this is our most
resource-intensive method.

Echoes from Space:
Grouping Commands with Large-Scale Telemetry Data ICSE-SEIP ’18, May 27-June 3 2018, Gothenburg, Sweden

As the algorithm’s parameters, based on existing literature [10],
we used a population of 50 members, a crossover rate, CR, of 0.6, a
generation gap of 1, no scaling window, an elitist selection strat-
egy that retains 1 −CR organisms, and a mutation probability of
0.001. We stop the algorithm after 1500 iterations, because through
consecutive runs we found that at after about 1000 iterations the
population stopped improving.

Evaluation. The evaluation uses Equation 3 on the organismwith
the best fitness, having its F commands to be always available (NA =

F). The algorithm’s execution time was considerable. Specifically, it
runs in O(д ·n ·m) time, where д denotes the number of generations
(1500), n the population size (50), andm the size of each member
(7). It required nine times more execution time than all the other
methods combined. Consequently, due to resource constraints, we
only evaluated opt(ga) with the sample data.

3.4.9 Method: CLUSTER.

Algorithm. The cluster algorithms attempts to improve the
optimizationmethods by first clustering the users and then applying
the optimization separately. It is based on the insight that the cad
application is used by three types of users:

• architects, who mainly deal with architectural entities, such
as walls, floors, and openings,

• civil engineers, who mainly deal with structural entities,
such as pillars, beams, and slabs, and

• professionals who combine both roles in their work.
First, users are clustered with a common K-means algorithm and

those whowere not present in the training data are integrated in the
most populous cluster. Then, we apply to each cluster the Knapsack
Problem optimization algorithm, which we found be dramatically
more efficient than the genetic algorithm. For the clustering, as
well as for the training part of the optimization, we used both the
small sample and the whole (50%) data set.

Evaluation. The evaluation of every cluster takes place sepa-
rately. We evaluate every cluster using Equation 3, having the clus-
ter’s optimal set of commands C to be always available (NA = |C |).
Then the sub-scores of the clusters are added together to produce
the overall score.

3.5 Threats to Validity
The model we used raises internal validity threats, while the single-
sourced telemetry data limits our study’s generalizability and thus
its external validity.

3.5.1 Internal Validity. Given our restricted access to informa-
tion regarding klm’s variables, our simplification of it may have
produced results that will not match fully the data of actual applica-
tions. Our telemetry data comes from years of user interaction logs
in a production context with limited details, thus restricting our
ability to obtain from it all klm variables. To address this problem
we ran the controlled experiment described in Section 3.2. During
the experiment, we assumed that our changes in the gui affect the
decision and pointing timeM + P together, and that the keystroke
or clicking time K , the homing time H , and the drawing time D
remain constant. We controlled H and D by having the controlled
experiment’s subjects focused on the task and by eliminating the

drawing time factor, simulating it with a uniform gui dialog confir-
mation action. However, we could not isolate P and therefore we
combine it withM .

This is a departure from what happens in practice. For example,
we assume that putting all the commands on the screen (all) is
the theoretical optimum, because it minimizesM , but at the same
time it is likely to substantially raise P . We address this issue by not
considering all as a suggested method, and by making the number
of commands available on the screen the same for all the other
methods.

We also examined the trustworthiness of our model and method
as follows. Using the telemetry data we acquired, we extracted
real-life scenarios and their real execution time. We then calculated
the current time, using the controlled experiment score, as if it
was another method. We found that the actual times were 6.4 times
longer and had a mean with an additional 10.75 seconds. Moreover,
the variance score was bellow 0.01.

This is explained mostly by the fact that in real-life users had
to manipulate drawing elements on the cad screen, while in the
controlled experiment they only had to acknowledge a dialog box.
In addition, numerous distractions and setbacks that happen during
a user’s session, are not taken into account in our model. These
include talking with colleagues, answering the telephone, thinking,
browsing the internet, and leaving the computer while a session is
running. This justifies our choice to use a lab-controlled experiment
to acquire the data that predict the employed timings and using the
telemetry data only to obtain the command execution scenarios.

3.5.2 External Validity. Implementing our methods, in diverse
environments, or using variations of the algorithms we propose,
may produce task execution time optimization levels different from
the ones we report. Our results give an overview and an estimation
of the methods, as we aim to recommend the optimization tech-
niques that are better for different application types. Therefore, we
have not tried to optimize the execution of each specific method,
as this is beyond the scope of our work. Consequently, tuning each
algorithm we used can result in additional improvements. However,
since we used sound and efficient versions of these algorithms, we
assume that such changes will not materially affect our conclusions.

3.5.3 Data Availability. Moreover, generalizing to applications
other than cad may alter the degree of achievable optimization, due
to the varying nature of the available data. The described methods
rely heavily on the given dataset, which is derived from a single
application. Some programs may log users and their actions and
others may lack the logging details we used, providing only ag-
gregate command and session logs. Furthermore, some may use
specific roles for users, which the algorithms can readily utilize.

4 PRACTICAL APPLICATION
Our research demonstrates that practitioners should use search-
based techniques to improve users’ task execution efficiency of
gui applications. We demonstrate the effectiveness of small sam-
ples of telemetry data, when used with the described optimization
algorithms.

ICSE-SEIP ’18, May 27-June 3 2018, Gothenburg, Sweden Alexander Lattas and Diomidis Spinellis

Table 3: Execution Time Improvement and Runtime of Command Grouping Algorithms

182,273 scenarios 1822 scenarios Normalized
Method Novices Experts Time (s) Novices Experts Time (s) Time
ALL 18.56% 13.31% — 18.56% 13.31% — —
NAIVE 13.22% 9.48% 7.79 13.22% 9.48% 0.15 0.00
GROUP 0.56% 0.48% 0.00 0.56% 0.48% 0.00 0.00
MRUB 10.37% 7.43% 74.21 6.72% 4.81% 51.9 0.24
MRUO 13.50% 9.63% 1.24 13.50% 9.63% 1.24 0.01
OPT(KS) 17.43% 12.52% 1946.63 17.38% 12.52% 49.81 0.23
OPT(GA) — — — 17.40% 12.48% 19749.88 91.19
CLUSTER 17.43% 12.52% 2035.29 17.43% 12.52% 1804.87 8.33

4.1 Suggested Grouping Methods
Table 3 aggregates the results for all the discussed methods, for the
whole and the sample training data, for novices and experts, as well
as their absolute and normalized training times. The execution time
percentages compared to the current situation show an improve-
ment for both novices and experts, being between 0.00 and the
theoretical optimum. The time columns show the time, in seconds,
that is needed for training each algorithm. Finally, each algorithm’s,
rm , normalized time is the proportion of time it requires for its
execution, tm , relative to that of all others:

rm =
tm∑7
n=1 tn

(4)

CLUSTER. We find cluster to be the most efficient method, as it
achieved the highest proximity to the theoretical optimum, while it
had a medium-size execution time. It is relatively easy to implement,
as there are various clustering libraries available and the Knapsack
Problem algorithm is extensively discussed in the literature.

GROUP. On the contrary, the group method, despite its promis-
ing idea and the careful preparation, proved to be useless in the
examined dataset. The failure resulted from a simple fact: 22% of the
commands belong in one of the seven groups, but 98% of them were
executed right after a command from the same entity. In that way
the time-reduction effect of group was small. The success of such a
method to optimize command groups depends on the groups made,
as well as the type of the commands. In an application where the
grouped commands are usually used after commands that belong
to the same entities, this method will not be useful. However, in ap-
plications where the opposite is true and where the commands can
be grouped intuitively, group may result in a cheap and effective
optimization.

NAIVE. It is a fact that naive lacks in efficiency compared with
the other methods. However, it is the cheapest one to implement
and easiest one to train. It run very fast, in linear time. Additionally,
it works regardless of the sample size. Training with 1% and 50% of
the data, produced exactly the same improvement, rendering the use
of the sample a clearly more efficient practice. It should therefore
be a good candidate for applications that are still in development
mode or developed and tested in an agile fashion. It can offer a
quick deployment for optimization, in cases where few data and
resources are available.

MRU-B. Batch training for every user, mru-b, failed to satisfy our
expectations. Intuitively, we expected mru-b to be an improvement
of naive. It finds the most frequent commands, not globally, but
for each user and therefore it should fit the data better. However,
we found it to be about 3% worse than naive, when training on the
whole data set and a surprising 6% worse, when training on the sam-
ple. With further examination the cause is apparent. Our dataset
spans years of program runs and new users are introduced through-
out its span. New users have no command frequencies associated
with them. Therefore, initially, they cannot benefit from the toolbar
personalized with their most frequently executed commands, thus
decreasing significantly the method’s performance.

However, there are environments where users are fixed for a
specific timespan. There, mru-b can be more efficient and almost
as cheap as naive. Furthermore, given an organization whose em-
ployers carry specific tasks repetitively and work for specific roles,
a successful mru-b can be applied to the roles instead of the indi-
viduals.

For example, an enterprise resource planning (erp) application
which has numerous fixed roles, that are well documented, can
benefit from such a method. erp applications usually list hundreds
of commands or transactions in multiple nested menus. Their users
often struggle to find the desired transactions in the command
tree or try to memorize alphanumerical commands that call the
transactions. In such cases we’ve seen supervisors compose a set of
“favorite” commands, with a heuristically determined combination
and order, which their provide to their reports. Using an mru-b
method on their roles, could produce easily and with a low com-
putational cost the most frequently used commands for each role,
without relying on heuristics and personal judgment.

MRU-O. Unlike mru-b, mru-o ran excellently on our dataset and
produced very satisfying results. Exhibiting seven times lower train-
ing time than naive, it resulted in a small increase in performance
compared to it. Our calculations show that it exhibits the lowest
training time. This however is not fully representative, as, in con-
trast with the other algorithms, it does not only need training, but
is continuously recalculating the command invocation frequencies,
work that is not included as a training time. Additionally, it man-
ages to capture trends in command frequency, adapts to individual
preferences, and adapts according to the users’ habits. mru-o would
therefore be the preferable solution to applications with commonly

Echoes from Space:
Grouping Commands with Large-Scale Telemetry Data ICSE-SEIP ’18, May 27-June 3 2018, Gothenburg, Sweden

shifting modes of use, as well as those that invite new users fre-
quently and on a continuous basis. It would be even more useful in
cases where users are a mix of professionals and novices, do not
follow specific roles, experiment with diverse commands, and apply
the software to many fields and for multiple purposes. These are
cases where little is known about the users, and the application is
learning from them.

A typical example of such an application could be an image ed-
itor, such as Adobe Photoshop. Its users include novices, portrait
picture editors photo-manipulation artists, 3d content creators, and
professional animation creators. Currently, the Photoshop gui of-
fers a toolbar with more than 20 basic nested menus with icons, and
more than 10 multiply nested menus that open additional command
and control panels. Only the 3d and the animation environments
offer an optimized gui. The command structure complexity makes
it difficult for novice users and for any user of multiple tools to
learn the application and to recall the place of each tool. Given the
application’s vaguely defined users and the overly complicated gui,
such an application could benefit a lot by providing users a toolbar
with their most frequently used commands.

OPT(KS). Exceptional results were found using combinatorial
optimization algorithms. opt(ks) along with cluster achieved
results closest to the optimal when trained on the whole dataset.
When trained on the sample, opt(ks)’s results were inferior to
cluster’s by 0.05%.

Our solution runs in linear time, with the input being the product
of the number of commands available and the length of scenarios.
Therefore it takes about 300 times more time to finish than naive
but is more efficient than the other effective methods. The Knapsack
Algorithm relies on heavy training for its operation. Therefore it
needs many data to produce the same results, and these may not be
available. In comparison with the combinatorial method, clustering
on the users requires an additional a priorimetric on them. This may
be easily acquirable using the frequency of executed commands.

An example where cluster is preferable is the aforementioned
erp system. Deploying it in a big organization easily provides a vast
amount of structured data about users that can be used to cluster
them. An example where opt(ks) is preferable is Photoshop, as
there is no information on users, but very specific task categories,
such as photo retouch, 3d object rendering, animation creation, and
photo collage creation. There the Knapsack Algorithm could find
to display heavily used commands that are deeply nested in menus.
The first example is user-centric and learns from the user while the
second one is task-centric and optimizes for the task.

OPT(GA). The stochastic genetic optimization algorithm resulted
in similar results as with the deterministic optimization of the Knap-
sack Problem. Clustering on frequencies results in a cluster with
about 90% of users and two more with the rest. Optimizing them
separately, results in small improvement over OPT(KS). Addition-
ally, cluster resulted in exactly the same improvement for the
sample and the whole dataset, proving again our hypothesis that
the sample is enough to improve the application.

However its execution time was 400 times higher than opt(ks)
and 10 times higher than cluster. Its design and parameters make it
more complicated. Specifically, it had the largest code size, and five
parameters needed to be chosen: the population size, the crossover

rate, the number of generations, the elitist selection strategy, and
the mutation probability. These bring an unnecessary overhead
to those who will implement it. Additionally, its execution time
made it impossible for our resources to train on the whole dataset.
Therefore, it is generally not suggested to be used for optimizing
command groups.

Table 4: Method Guide

Easy and Cheap Optimal Solutions
Specific tasks naive opt(ks)
Specific users/roles mru-o cluster
No prior knowledge naive opt(ga)
Large dataset naive mru-b, mru-o

Table 4 contains an overview of the most efficient methods
for each scenario. naive dominates those that provide an easy
and cheap solution for its simplicity and speed. The Knapsack
Problem–inspired optimization works better for applications with
task-centric available data, such as an image editor. Moreover, clus-
tering the users and then applying the optimization is recommended
when there is adequate information for the users to be clustered.
When there is not such information, a stochastic approach, such
as a genetic algorithm, can be more successful. However, because
of the algorithm’s complexity, developers should choose a fitness
function that executes quickly. In the end, user and command fre-
quency mappings may not be as potent as the previous in reducing
task execution time, but can be much quicker when the required
dataset is very large in size.

4.2 Sample vs Whole Training Set
A second major conclusion we make in this study is that our hy-
pothesis on the necessity of using a large dataset of program runs
to compute the above methods failed.

Our large training dataset (50% of all data) has about seven mil-
lion executed commands, during 90, 000 sessions, involving more
than a 1500 unique users. The 1% sample we acquired from it has
about 140, 000 executed commands, during 18, 000 sessions, involv-
ing about 700 users.

Based on the results listed in Table 3, we conclude that the sample
set is enough to achieve an almost-perfect command group opti-
mization by any of the methods that we deemed efficient. opt(ks)
exhibited only a 0.05% improvement when computed with the
whole dataset. Even more, naive and the most efficient, cluster,
resulted in exactly the same level of optimization for both datasets,
rendering the use of a much bigger dataset expensive and useless.
The only method that contradicts this finding was mru-b, as it ex-
hibited a significant improvement when ran with the large dataset.
It relied heavily on user data and the large dataset contained in-
formation for two times more users than the sample. On the other
hand, we did not find mru-o to depend on the dataset’s size.

In conclusion, using a sample dataset of the above size is ad-
visable and should be enough, except it there is a reason for an
algorithm to fit the needs of a small subset of specific users.

ICSE-SEIP ’18, May 27-June 3 2018, Gothenburg, Sweden Alexander Lattas and Diomidis Spinellis

0 5 10 15 20
Number of always-available commands

10

12

14

16

18

20

Ex
ec
ut
io
n
tim

e
(m

in
ut
es
 p
er
 sc

en
ar
io
)

NAIVE execution times for novices and experts

Figure 4: The effect of increasing the number of always-
available commands provided by the NAIVE algorithm.

4.3 Optimal Number of Commands on Screen
Another conclusion regards the optimal number of commands that
a toolbar displaying frequently used commands should have. Here,
we do not take into account the visual and aesthetic aspect of this
choice, looking instead at the empirical quantitative derivation of
this number.

Figure 4 shows that after displaying 15 commands, the benefit
of having more commands on the screen, regardless of the aesthet-
ics and the pointing time P , becomes insignificant. From 15 to 20
commands, for mru-b the benefit of adding 33% more commands is
bellow 0.1%. Moreover, for naive it is less than 0.001%. However,
the benefit is more than 0.5% for both algorithms when moving
from 10 to 15 commands. Consequently, we consider a number
between 15 and 20 to be the optimal.

5 CONCLUSIONS
Our study demonstrates how the problem of efficiently organiz-
ing the commands of a complex application’s gui can be solved
using evidence and not intuition. By exploiting a large amount of
telemetry data, obtained during years of program runs of a cad
application, we showed that diverse methods can reduce task execu-
tion times by up to 17.5%. Such an optimization, applied in practice,
can easily reduce the mental effort, running time and therefore the
cost of executing common scenarios in commercial applications.

Additionally, we find that using a large dataset is not important,
because a sequence of about a hundred thousand commands can
produce exactly the same results as a few millions.

Our findings suggest the following two avenues for further re-
search. First, experiments on end users performing production work
can demonstrate that our suggestions hold in practice, and that our
assumptions do not significantly affect the outcome. Second, our
methods can be applied to other applications in order to verify their
generalizability.

Acknowledgements
We thank LH Logismiki for providing us access to the system’s
source code and the anonymized data used in the study. The project

associated with this work has received funding from the European
Union’s Horizon 2020 research and innovation programme under
grant agreement No 732223. The first author is a recipient of the
Hellenic Petroleum Group scholarship.

REFERENCES
[1] Evgeniy Abdulin. 2011. Using the keystroke-level model for designing user

interface on middle-sized touch screens. In CHI’11 Extended Abstracts on Human
Factors in Computing Systems. ACM, 673–686.

[2] Stuart K. Card, Thomas P. Moran, and Allen Newell. 1980. The keystroke-level
model for user performance time with interactive systems. Commun. ACM 23, 7
(1980), 396–410.

[3] Chia-Fen Chi and Ku-Lun Chung. 1996. Task analysis for computer-aided design
(CAD) at a keystroke level. Applied ergonomics 27, 4 (1996), 255–265.

[4] Andy Cockburn, Carl Gutwin, and Saul Greenberg. 2007. A predictive model of
menu performance. In Proceedings of the SIGCHI conference on Human factors in
computing systems. ACM, 627–636.

[5] Martin Dostal. 2010. User Acceptance of the Microsoft Ribbon User Interface. Ad-
vances in Data Newtworks, Communications, Computers (2010). OCLC: 751522773.

[6] Leah Findlater, Karyn Moffatt, Joanna McGrenere, and Jessica Dawson. 2009.
Ephemeral adaptation: The use of gradual onset to improve menu selection per-
formance. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, 1655–1664.

[7] Stephanie Forrest. 1996. Genetic Algorithms. Comput. Surveys 28, 1 (March 1996),
77–83.

[8] Erik Frokjar, Morten Hertzum, and Kasper Hornb\a ek. 2000. Measuring usability:
are effectiveness, efficiency, and satisfaction really correlated?. In Proceedings of
the SIGCHI conference on Human Factors in Computing Systems. ACM, 345–352.

[9] David E. Goldberg. 1989. Genetic Algorithms: In Search of Optimization & Machine
Learning. Addison-Wesley.

[10] John J. Grefenstette. 1986. Optimization of Control Parameters for Genetic
Algorithms. IEEE Transactions on Systems, Man, and Cybernetics 16, 1 (1986),
122–128.

[11] Mark Harman, S Afshin Mansouri, and Yuanyuan Zhang. 2012. Search-based
software engineering: Trends, techniques and applications. Comput. Surveys 45,
1 (2012), 11.

[12] J. H. Holland. 1975. Adaptation in Natural and Artificial Systems. University of
Michigan Press, Ann Arbor, Michigan.

[13] Paul Holleis, Friederike Otto, Heinrich Hussmann, and Albrecht Schmidt. 2007.
Keystroke-level model for advanced mobile phone interaction. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. ACM, 1505–1514.

[14] Andreas Holzinger. 2005. Usability EngineeringMethods for Software Developers.
Commun. ACM 48, 1 (Jan. 2005), 71–74. https://doi.org/10.1145/1039539.1039541

[15] David Kieras. 2001. Using the keystroke-level model to estimate execution times.
University of Michigan 555 (2001).

[16] David M. Lane, H. Albert Napier, Richard R. Batsell, and John L. Naman. 1993.
Predicting the Skilled Use of Hierarchical Menus with the Keystroke-level
Model. Hum.-Comput. Interact. 8, 2 (June 1993), 185–192. https://doi.org/10.1207/
s15327051hci0802_4

[17] Lu Luo and Bonnie E. John. 2005. Predicting Task Execution Time on Handheld
Devices Using the Keystroke-level Model. In CHI ’05 Extended Abstracts on Human
Factors in Computing Systems (CHI EA ’05). ACM, New York, NY, USA, 1605–1608.
https://doi.org/10.1145/1056808.1056977

[18] Shouichi Matsui and Seiji Yamada. 2008. Genetic algorithm can optimize hi-
erarchical menus. In Proceedings of the SIGCHI conference on Human factors in
computing systems. ACM, 1385–1388.

[19] Shouichi Matsui and Seiji Yamada. 2008. Optimizing hierarchical menus by
genetic algorithm and simulated annealing. In Proceedings of the 10th annual
conference on Genetic and evolutionary computation. ACM, 1587–1594.

[20] Rohae Myung. 2004. Keystroke-level analysis of Korean text entry methods on
mobile phones. International Journal of Human-Computer Studies 60, 5-6 (May
2004), 545–563. https://doi.org/10.1016/j.ijhcs.2003.10.002

[21] Jakob Nielsen. 1994. Usability inspection methods. In Conference companion on
Human factors in computing systems. ACM, 413–414.

[22] Joey Scarr, Andy Cockburn, Carl Gutwin, and Andrea Bunt. 2012. Improving
command selection with CommandMaps. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. ACM, 257–266.

[23] Luigi Troiano and Cosimo Birtolo. 2014. Genetic algorithms supporting gener-
ative design of user interfaces: Examples. Information Sciences 259 (Feb. 2014),
433–451. https://doi.org/10.1016/j.ins.2012.01.006

[24] Luigi Troiano, Cosimo Birtolo, Roberto Armenise, and Gennaro Cirillo. 2008.
Optimization of Menu Layouts by Means of Genetic Algorithms. In Evolutionary
Computation in Combinatorial Optimization, Jano van Hemert and Carlos Cotta
(Eds.), Vol. 4972. 242–253. DOI: 10.1007/978-3-540-78604-7_21.

https://doi.org/10.1145/1039539.1039541
https://doi.org/10.1207/s15327051hci0802_4
https://doi.org/10.1207/s15327051hci0802_4
https://doi.org/10.1145/1056808.1056977
https://doi.org/10.1016/j.ijhcs.2003.10.002
https://doi.org/10.1016/j.ins.2012.01.006

