
How to Analyze Git Repositories with Command Line Tools:
We’re not in Kansas Anymore

Diomidis Spinellis

Department of Management Science and Technology

Athens University of Economics and Business

Athens, Greece

dds@aueb.gr

Georgios Gousios

Department of Software Technology

Delft University of Technology

Delft, The Netherlands

g.gousios@tudelft.nl

ABSTRACT
Git repositories are an important source of empirical software engi-

neering product and process data. Running the Git command-line

tool and processing its output with other Unix tools allows the incre-

mental construction of sophisticated data processing pipelines. Git

data analytics on the command-line can be systematically presented

through a pattern that involves fetching, selection, processing, sum-

marization, and reporting. For each part of the processing pipeline,

we examine the tools and techniques that can be most effectively

used to perform the task at hand. The presented techniques can be

easily applied, first to get a feeling of version control repository

data at hand and then also for extracting empirical results.

CCS CONCEPTS
• Software and its engineering→ Software configurationman-
agement and version control systems; Command and control
languages;

KEYWORDS
Git; data analytics; command-line tools; pipes and filters; empirical

software engineering

ACM Reference Format:
Diomidis Spinellis and Georgios Gousios. 2018. How to Analyze Git Reposi-

tories with Command Line Tools: We’re not in Kansas Anymore. In ICSE
’18 Companion: 40th International Conference on Software Engineering , May
27-June 3, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, ?? pages.
https://doi.org/10.1145/3183440.3183469

1 INTRODUCTION
Git repositories are an important source of empirical software en-

gineering product and process data [?]. Git’s native user interface
is the corresponding command-line tool, so knowing how to use

the tool and process its output in an effective way is a key skill for

front-line researchers. Applying Unix command-line tools to the

output of the git command allows the incremental construction of

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5663-3/18/05. . . $15.00

https://doi.org/10.1145/3183440.3183469

sophisticated data processing pipelines. This method can be prof-

itably employed for the rapid prototyping of software engineering

data analytics tasks [? ?]. Under this approach, the shell’s read-eval-
print loop (repl) and its editing facilities are used to construct the

processing pipeline incrementally by combining Git with diverse

Unix built-in and add-on command-line tools.

The use of Unix command tools to analyze Git repositories offers

interactivity, readability, performance, scalability, and portability.

A processing pipeline is typically built interactively and verified

bit by bit, until it molds into the exactly required form. This al-

lows each step to be individually verified and fine-tuned on the

actual data. In addition, powerful individual commands, such as

sort and awk, and their combination as filters into pipelines [?] or
directed acyclic processing graphs [?] raise the level of abstraction,
thus resulting in a concise and readable expression of the intended

processing. Pipelined filters also aid scalability and performance.

In many cases the data flows are not constrained by the (limited)

main memory size, the intermediate results need not be saved in

(slow) secondary storage, and filters of multiple processing stages

can be executing in parallel (on many cpu cores). Moreover, the

command-line processing approach benefits from the portability of

Unix, which allows the tools to run on individual workstations, on

(often cloud-based) servers, and on supercomputers.

We introduce Git’s storage model, because it is important for

aspiring repository miners to understand the underlying snapshot

graph structure and the limitations it imposes to the analysis. Git

stores its data as a graph. Each node represents a revision, with

edges marking the revision’s parents. The contents of each node are

the commit’s metadata and a complete snapshot of the development

tree. This means that differences between revisions and the revi-

sion log are not stored in the repository, but can be reconstructed

by analyzing the graph. Tags and branches are simply names for

specific nodes; branches advance to point to each new revision,

while tags are permanently attached to the revision they were first

associated with.

2 TOOLS AND PIPELINES
Data analytics with pipelines of Unix tools can be systematically

presented through a pattern that involves fetching, selection, pro-

cessing, summarization, and reporting. For example, finding the

day of the week in which a system’s developers perform the highest

number of bug-fix commits involves fetching a log of commits from

the Git log, selecting the day from commits that fix bugs, processing
the result to group the records by day, summarizing the records

into a count for each day, and reporting the counts as a chart.

https://doi.org/10.1145/3183440.3183469
https://doi.org/10.1145/3183440.3183469

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Diomidis Spinellis and Georgios Gousios

As typical in repository mining tasks, we first need to select the

repositories to work with based on a set of criteria [?]. For this,
we use GHTorrent’s [?] ssh-based MySQL access service and sql

queries to obtain repositories with the required characteristics [?
]. The selected repositories are then cloned (in a so-called bare
configuration) in parallel (using xargs -P) to a local disk.

The git command-line tool has a notoriously complex command-

line interface. However, using just a few key commands allows

researchers to access source code across revisions without requiring

expensive copies to disk. Specifically, combinations of git ls-tree, git
grep and git show allows us to stream contents from selected files

and revisions to a pipe for further processing. In addition, the git
log and git blame commands offer access to software development

process data, regarding revisions and code authorship.

An alternative way for accessing revisions involves making them

available on the filesystem namespace. This can be easily performed

by checking out a particular version with git checkout. However,
the checkout operation can require considerable processing time

and secondary storage space, which can be a problem for large

repositories and for analyzing time series data. Tools such as GitFS

and RepoFS address this problem by allowing one to mount a Git

repository as a virtual filesystem. This approach makes all revisions

visible without requiring an explicit checkout operation.

After extracting the data with git commands, we can apply tradi-

tional Unix tools to perform relational algebra operations, without

needing to store the data in an intermediate sql database. The Unix

grep command allows us to filter out records from further process-

ing, while join can merge two streams on common key columns. We

can simulate a grouping operation with awk, while sort and uniq
allow us to efficiently create ordered and counted lists. Moreover,

we can use sed, cut or any custom tool that accepts and returns text

input to modify the stream in place, which is analogous to applying

a user-defined function in an sql query.

At times, using generic Unix tools to process Git data and combin-

ing themwith other data sources may be cumbersome or downright

impossible. Fortunately, we have several other options. Initially,

we should pick the right programming language; if performance

is important, or if the plan is to analyze hundreds of thousands of

repositories, we should go for C++ or a modern equivalent, such

as Rust or Go. In the majority of cases however, Python or Ruby

offer adequate performance. All modern languages offer bindings

to libgit2, which provides fast access to the Git object graph, inde-

pendently of the git tools. When developing tools, we should strive

to make them work in the Unix way: each of our tools should do

one thing right, accept text at its input and return easily parsable

text at its output. Operation modes and options, such as database

connection strings, should be provided as command-line arguments.

Finally, we should make sure that our tools work; for that, unit test-

ing is our friend, while continuous integration provides us a safety

net for accepting code contributions if our tools become successful.

3 EXPLORING AND REPORTING
A big part of empirical work in software engineering is exploratory.

At this stage, researchers try to understand the data, perform basic

hypothesis testing, or draw simple plots of raw data. While the

time-honoured recipe of taking notes on physical notebooks is still

valuable, fortunately we have better tools in our hands. Jupyter
notebooks allow us to perform, document and share exploratory

analysis tasks in a literate programming style. Jupyter allows us
to seamlessly combine Unix pipelines with Python libraries for

plotting or statistical analysis.

The final step of all research efforts is reporting the results.

Here we advocate the adoption of a notebook-like style [?], where
commands are embedded within a research paper’s markup. This

practice records the provenance of the provided figures, promotes

repeatability, and avoids embarrassing mistakes.

4 CONCLUSION
The use of Git desktop gui applications may be sufficient for begin-

ner students and developers, but it deprives researchers the affor-

dances required for many exploratory software engineering data

analytics tasks. Although the outlined techniques are not widely

known, they can be easily applied, first to get a feeling of the Git

data at hand and then also for extracting empirical results. This

allows a broad section of the software engineering community to

benefit from them. Specifically, software engineering researchers

applying the presented techniques will profit from the flexibility,

versatility, scalability, power, robustness, and efficiency offered by

Git and other command-line tools and data processing pipelines.

Acknowledgements
The project associated with this work has received funding from

the European Union’s Horizon 2020 research and innovation pro-

gramme under grant agreement No 732223. This work has been

partially funded by the gsrt Research Support programme 2016–

2017.

REFERENCES
[] Christian Bird, Peter C. Rigby, Earl T. Barr, David J. Hamilton, Daniel M. German,

and Prem Devanbu. 2009. The Promises and Perils of Mining Git. In MSR’09: 6th
IEEE International Working Conference on Mining Software Repositories. IEEE, IEEE
Computer Society, Washington, DC, USA, 1–10. https://doi.org/10.1109/MSR.

2009.5069475

[] Georgios Gousios and Diomidis Spinellis. 2012. GHTorrent: Github’s Data from a

Firehose. In 9th IEEE Working Conference on Mining Software Repositories (MSR),
Michele Lanza, Massimiliano Di Penta, and Tao Xie (Eds.). IEEE, 12–21. https:

//doi.org/10.1109/MSR.2012.6224294

[] Georgios Gousios and Diomidis Spinellis. 2017. Mining Software Engineering

Data from GitHub. In Proceedings of the 39th International Conference on Software
Engineering Companion (ICSE-C ’17). IEEE Press, Piscataway, NJ, USA, 501–502.

https://doi.org/10.1109/ICSE-C.2017.164 Technical Briefing.

[] Brian W.. Kernighan. 2008. Sometimes the Old Ways Are Best. IEEE Software 25, 6
(Nov 2008), 18–19. https://doi.org/10.1109/MS.2008.161

[] Regine Meunier. 1995. The Pipes and Filters Architecture. In Pattern Languages of
Program Design, James O. Coplien and Douglas C. Schmidt (Eds.). Addison-Wesley,

Reading, MA, Chapter 22, 427–440.

[] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. 2017.

Curating GitHub for Engineered Software Projects. Empirical Software Engineering
22, 6 (01 Dec 2017), 3219–3253. https://doi.org/10.1007/s10664-017-9512-6

[] Helen Shen. 2014. Interactive Notebooks: Sharing the Code. Nature 515, 7525
(2014), 151–152. https://doi.org/10.1038/515151a

[] Diomidis Spinellis. 2015. Tools and Techniques for Analyzing Product and Process

Data. In The Art and Science of Analyzing Software Data, Tim Menzies, Christian

Bird, and Thomas Zimmermann (Eds.). Morgan-Kaufmann, 161–212. https://doi.

org/10.1016/B978-0-12-411519-4.00007-0

[] Diomidis Spinellis and Marios Fragkoulis. 2017. Extending Unix Pipelines to DAGs.

IEEE Trans. Comput. 66, 9 (Sept. 2017), 1547–1561. https://doi.org/10.1109/TC.

2017.2695447

https://doi.org/10.1109/MSR.2009.5069475
https://doi.org/10.1109/MSR.2009.5069475
https://doi.org/10.1109/MSR.2012.6224294
https://doi.org/10.1109/MSR.2012.6224294
https://doi.org/10.1109/ICSE-C.2017.164
https://doi.org/10.1109/MS.2008.161
https://doi.org/10.1007/s10664-017-9512-6
https://doi.org/10.1038/515151a
https://doi.org/10.1016/B978-0-12-411519-4.00007-0
https://doi.org/10.1016/B978-0-12-411519-4.00007-0
https://doi.org/10.1109/TC.2017.2695447
https://doi.org/10.1109/TC.2017.2695447

