
Documented Unix Facilities Over 48 Years
Diomidis Spinellis

Department of Management Science and Technology

Athens University of Economics and Business

Athens, Greece

dds@aueb.gr

ABSTRACT
The documented Unix facilities data set provides the details regard-

ing the evolution of 15 596 unique facilities through 93 versions of

Unix over a period of 48 years. It is based on the manual transcrip-

tion of early scanned documents, on the curation of text obtained

through optical character recognition, and on the automatic extrac-

tion of data from code available on the Unix History Repository. The

data are categorized into user commands, system calls, C library

functions, devices and special files, file formats and conventions,

games et. al., miscellanea, systemmaintenance procedures and com-

mands, and system kernel interfaces. A timeline view allows the

visualization of the evolution across releases. The data can be used

for empirical research regarding API evolution, system design, as

well as technology adoption and trends.

CCS CONCEPTS
• Software and its engineering→ Software evolution;

ACM Reference Format:
Diomidis Spinellis. 2018. Documented Unix Facilities Over 48 Years. In MSR
’18: 15th International Conference on Mining Software Repositories, May 28–
29, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 4 pages. https:

//doi.org/10.1145/3196398.3196476

1 INTRODUCTION
The Unix operating system is being continuously developed from

the same code base for almost over half a century. It stands out as a

major engineering artefact due to its exemplary design, its numer-

ous technical contributions, its impact, its development model, and

its widespread use [2, pp. 27–29], [9]. The design of the Unix pro-

gramming environment, which nowadays offers thousands of tools

and libraries, has been characterized as offering unusual simplicity,

power, and elegance [5, 7]. Consequently, empirical data regarding

how the facilities Unix provides grew and changed over time can

be used for empirical research on api evolution, system design, as

well as technology adoption and trends.

Although one can study a system’s evolution through its source

code [1, 10], the very large size of modern systems can hinder the

recognition of the relevant parts. Fortunately, another avenue is

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MSR ’18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5716-6/18/05. . . $15.00

https://doi.org/10.1145/3196398.3196476

available for studying Unix systems, namely their documentation.

From the first version of the Unix system until today, every release

is accompanied by a complete reference manual, where all provided

facilities (commands, apis, file formats, and device drivers) are

neatly organized into several corresponding sections (see Table 1).

The central role of the reference manual in the Unix system is

evidenced by the fact that early Unix versions coming out of AT&T

Bell Labs were named after the edition of the accompanying manual.

Some early editions of the manuals have not survived in a machine-

readable format, but most are available in text markup that can be

processed through scripts to extract relevant data.

The data set presented here is based on the printed and machine-

readable Unix reference manuals released over a period of 48 years.

It documents the evolution of 15 596 facilities through 93 versions of

Unix. Section 2 outlines the provided data, Section 3 describes how

the data were produced, and Section 4 sketches two examples of

how the data can be used for quantitative and qualitative empirical

studies.

2 UNIX RELEASES AND THEIR FACILITIES
The primary data are made available in the form of 93 text files

containing 405 726 records. The files are named after the associated

Unix release, following the tags and branches nomenclature estab-

lished in the Unix History Repository [9]. A record is a text line

with tab-separated fields. Each record contains the number of the

Unix manual section associated with a facility (1–9; see Table 1)

followed by the facility’s name, optionally followed by a uri identi-

fying the facility’s documentation in troff markup [6]. In total, the

set contains data about 15 596 facilities pointing to 193 781 unique

uris, identifying 48 250 distinct manual page instances.

As an example, the following lines show the documentation files

associated with the label command (:), the archiver (ar), and the

assembler (as), as documented in Section I of the 1973 Third Edition

Unix manual.

1 : Research-V3/man/man1/:.1
1 ar Research-V3/man/man1/ar.1
1 as Research-V3/man/man1/as.1

By prepending the Unix History Repository GitHub permalink

base url “https://github.com/dspinellis/unix-history-repo/blob” to

an entry’s uri, one can obtain a url for viewing the documentation

markup source code for the corresponding entry.

A separate text file, named timeline associates each of the data

files with the year, month, and day of the corresponding release.

For instance, the following entries of the timeline file list the dates
associated with the Sixth and Seventh Research Editions and the

first Berkeley Software Distribution.

Research-V6 1975 07 18
BSD-1 1978 02 01
Research-V7 1979 08 26

https://doi.org/10.1145/3196398.3196476
https://doi.org/10.1145/3196398.3196476
https://doi.org/10.1145/3196398.3196476
https://github.com/dspinellis/unix-history-repo/blob

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Diomidis Spinellis

Figure 1: Timeline view of system call evolution in ResearchUnix Editions and early BSD distributions (top) and early FreeBSD
releases (bottom)

Table 1: Manual Sections and Documented Facilities

Section Number and Title Elements URIs

1 User commands 1 494 34 836

2 System calls 457 12 472

3 C library functions 8 643 70 931

4 Devices and special files 1 224 25 111

5 File formats and conventions 315 9 208

6 Games et. al. 187 2 322

7 Miscellanea 106 1 779

8 System maintenance procedures

and commands 995 26 990

9 System kernel interfaces 2 173 14 621

As a tool for performing qualitative studies (see Section 4.2), a

web site
1
provides a timeline view of each manual section. The

horizontal axis of the view lists all tracked releases ordered by the

date of their appearance. The vertical axis lists all facilities (e.g.

commands or system calls) ordered by the release in which they

first appeared and then alphabetically. The timeline view can be

scrolled horizontally to move along releases and vertically to move

across facilities. Facilities can be ordered alphabetically or by their

release’s date. The names of facilities and releases, and the release

where a facility first appeared do not scroll so as to provide the

1
https://dspinellis.github.io/unix-history-man/

required context. Where possible, the timeline is hyperlinked to the

corresponding manual pages, which are displayed using manview2

and jroff.3 Two examples, depicting system call evolution in the

Research Unix Editions and early bsd and Freebsd releases can be

seen in Figure 1.

Where many facilities share the same prefix, they are grouped

together and can be expanded and collapsed through a correspond-

ing icon. This can be seen in some Freebsd 3.0 system calls listed in

the bottom part of Figure 1. The calls prefixed with clock_ appear

collapsed, while those prefixed with i386_ are expanded. In total,

542 parent nodes house 7 597 collapsed entries.

3 DATA GENERATION
The data set was generated by processing data available in diverse

formats through manual labour and custom scripts.

3.1 Data Provenance
The data sources used are the printed versions of Unix manuals

available on the Unix Heritage Society archive [11, 12] and the Unix

History Repository [9]. The repository makes available the history

and evolution of the Unix on GitHub,
4
covering the period from its

inception in 1970 as a 13 thousand line unnamed prototype written

2
https://github.com/dspinellis/manview

3
https://github.com/roperzh/jroff

4
https://github.com/dspinellis/unix-history-repo

https://dspinellis.github.io/unix-history-man/
https://github.com/dspinellis/manview
https://github.com/roperzh/jroff
https://github.com/dspinellis/unix-history-repo

Documented Unix Facilities Over 48 Years MSR ’18, May 28–29, 2018, Gothenburg, Sweden

Figure 2: Scanned page from the Second Edition Unix Man-
ual

in pdp-7 assembly language, to 2018 as a widely-used 32 million

line production-quality operating system. It has been created by

synthesizing with custom software 24 snapshots of systems devel-

oped at Bell Labs, the University of California at Berkeley, and the

386bsd team, two legacy repositories, and the modern repository

of the open source Freebsd system.

The data’s timeline starts with the so-called “Research” editions

that came out of Bell Labs, continues with the Berkeley Software

Distributions, and finishes with versions of the Freebsd operating

system distribution that continues its development until today. We

cannot study Unix versions that derive from the Research editions

via AT&T System V, such as Solaris, aix, and hpux, because most

of the corresponding code remains proprietary. Also, the evolution

of Research editions into Plan 9 [8] was not examined, due to the

system’s limited adoption. Other systems deriving from the bsd

source code base are Netbsd, which focuses on widespread architec-

ture portability, especially among embedded devices, and Openbsd,

which focuses on security. Although Freebsd, Netbsd, and Openbsd

differ in terms of vision and technologies, all frequently exchange

among them code and ideas. The provided data concern the evolu-

tion in the popular Freebsd line, to capitalize on the author’s inside

knowledge of Freebsd.

3.2 Data Processing
The data set was generated using three methods: manual typing

and editing, bespoke scripts, and a general-purpose script.

Some early editions of the Unix manual are only available as

scanned documents (see Figure 2 containing the famous “the num-

ber of unix installation has grown to 10, withmore expected” quote).

The corresponding data for those were created from the text made

available through optical character recognition and then hand-

edited to correct errors, such as the replacement of the letter l (el)

for the digit 1 (one). Given the small number of facilities in the

early editions of Unix, some of the data sets were used as a base to

R
es

ea
rc

h
V

1
R

es
ea

rc
h

V
2

R
es

ea
rc

h
V

3
R

es
ea

rc
h

V
4

R
es

ea
rc

h
V

5
R

es
ea

rc
h

V
6

B
S

D
 1

R
es

ea
rc

h
V

7
B

S
D

 2
B

el
l 3

2V
B

S
D

 3
B

S
D

 4
B

S
D

 4
.1

/s
na

p
B

S
D

 4
.2

B
S

D
 4

.3
B

S
D

 4
.3

/T
ah

oe
B

S
D

 4
.3

/R
en

o
B

S
D

 4
.3

/N
et

-2
38

6B
S

D
 0

.0
38

6B
S

D
 0

.1
B

S
D

 4
.1

c/
2

38
6B

S
D

 0
.1

-p
at

ch
ki

t
Fr

ee
B

S
D

 1
.0

Fr
ee

B
S

D
 2

.0
Fr

ee
B

S
D

 2
.0

.5
B

S
D

 4
.4

B
S

D
 4

.4
/L

ite
2

B
S

D
 4

.4
/L

ite
1

Fr
ee

B
S

D
 3

.0
.0

Fr
ee

B
S

D
 4

.0
.0

Fr
ee

B
S

D
 5

.0
.0

Fr
ee

B
S

D
 6

.0
.0

Fr
ee

B
S

D
 7

.0
.0

Fr
ee

B
S

D
 8

.0
.0

Fr
ee

B
S

D
 9

.0
.0

Fr
ee

B
S

D
 1

0.
0.

0
Fr

ee
B

S
D

 1
1.

0.
0

0

50

100

150

200

250

300

350

400

S
ys

te
m

 c
al

ls

Figure 3: Evolution in the number of system calls across key
releases

manually type-in and edit data corresponding to a previous or next

edition.

In releases of Unix where the source code is available, the sup-

ported facilities can be obtained by processing the source code tree.

However, in the first 30 years of the system’s lifetime the manual

pages tended to move from one place of the source code tree to

another. For this reason, around thirty custom shell scripts were

written to generate and verify the list of facilities for 17 such re-

leases. In some cases the results needed further cleaning by hand.

The data set’s generation steps and commands are documented

in the form of Git commit comments in the data files for these re-

leases. For modern (mainly Freebsd) versions the data are obtained

through a 130-line shell script that lists the available facilities for

each major Freebsd release.

A separate 57-line shell script is used to create the timeline of

releases based on the most recent Unix History Repository commit

for each release. The timeline view is created through a 506-line

Perl script, 121 lines of hand-written JavaScript, and 926 thousand

lines of auto-generated JavaScript utilising the SlickGrid control.
5

4 USING THE DATA AND ITS VISUALIZATION
The Unix facilities evolution data can be used both in their raw

format for quantitative analysis, and through their timeline visu-

alization to obtain qualitative insights. Possible application areas

include empirical research regarding api evolution, system design,

as well as technology adoption and trends.

4.1 The Evolution of System Calls and File
Formats

As two examples of how the provided data set can be used to

perform quantitative studies, consider the evolution in the number

of system calls and of documented file formats across key system

releases.

In the evolution in the number of system calls (Figure 3) three

periods can be readily discerned. While the system was developed

5
https://github.com/andrewr88/SlickGrid

https://github.com/andrewr88/SlickGrid

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Diomidis Spinellis

R
es

ea
rc

h
V

1
R

es
ea

rc
h

V
2

R
es

ea
rc

h
V

3
R

es
ea

rc
h

V
4

R
es

ea
rc

h
V

5
R

es
ea

rc
h

V
6

B
S

D
 1

R
es

ea
rc

h
V

7
B

S
D

 2
B

el
l 3

2V
B

S
D

 3
B

S
D

 4
B

S
D

 4
.1

/s
na

p
B

S
D

 4
.2

B
S

D
 4

.3
B

S
D

 4
.3

/T
ah

oe
B

S
D

 4
.3

/R
en

o
B

S
D

 4
.3

/N
et

-2
38

6B
S

D
 0

.0
38

6B
S

D
 0

.1
B

S
D

 4
.1

c/
2

38
6B

S
D

 0
.1

-p
at

ch
ki

t
Fr

ee
B

S
D

 1
.0

Fr
ee

B
S

D
 2

.0
Fr

ee
B

S
D

 2
.0

.5
B

S
D

 4
.4

B
S

D
 4

.4
/L

ite
2

B
S

D
 4

.4
/L

ite
1

Fr
ee

B
S

D
 3

.0
.0

Fr
ee

B
S

D
 4

.0
.0

Fr
ee

B
S

D
 5

.0
.0

Fr
ee

B
S

D
 6

.0
.0

Fr
ee

B
S

D
 7

.0
.0

Fr
ee

B
S

D
 8

.0
.0

Fr
ee

B
S

D
 9

.0
.0

Fr
ee

B
S

D
 1

0.
0.

0
Fr

ee
B

S
D

 1
1.

0.
0

0

50

100

150

200

Fi
le

 fo
rm

at
s

Figure 4: Evolution in the number of file formats across key
releases

at Bell Labs and over the early Berkeley Editions (which did not

include a modified kernel) the number of system calls remained rel-

atively stable. This number swelled substantially with the support

of local and remote inteprocess communication and the Internet

protocol family (arp, ip, tcp, udp, and icmp) in 4.2 bsd. Then an-

other period stability followed, until the Freebsd releases which, as

one can see, began to introduce more system calls in each release.

The reasons and effects associated with this increase require further

qualitative examination, but could be correlated with the pressure

for increased performance, portability requirements, a wider user

base, or competition from similar Linux facilities.

The evolution of documented file formats (Figure 4) paints a

very different picture. Files with a documented format, such as the

password file or the domain name system resolver configuration,

are often used in Unix as a way to provide facilities with minimal

api support. The files can be processed by a variety of text tools [3]

and modified using any programmer editor. Although their number

appears to be increasing for decades, this increase appears to have

almost stopped from Freebsd 5.0 and onwards. Explanations for this

trend could be that this particular method can no longer support the

requirements of modern complex, large, and sophisticated systems

or that data size issues and associated performance requirements

lead to the use of other data storage mechanisms, such as relational

databases.

4.2 API Evolution
As an example of qualitative insights that can be obtained using the

data set’s timeline view, consider the examination of deprecated

system calls. System call deprecation can break backward compati-

bility, but can help keeping the system’s api clean and orthogonal.

It would therefore be interesting to see these forces in action.

Deprecated calls can be seen in the tabular view as lines that

stop extending to the right, as is e.g. the case with the tell system
call at the top part of Figure 1. By scrolling through the system

call evolution table it becomes evident that when the Fifth Edition

Unix got released, a number of system calls became deprecated.

These included cemt, fpe, ilgins, intr, quit, and rele, By reading the

Third Edition manual, it becomes evident that all these calls deal

with interrupts. Three catch traps stemming from the execution of

emulated (cemt) and illegal (ilgins) instructions as well as floating
point exceptions (fpe). Others, control how interrupts are handled:

they catch or inhibit keyboard-generated interrupts (intr) or quit
(quit) signals and they implement timer-runout swaps (rele).

A further look at the timeline depiction of system call evolution

also indicates that the Fourth Unix Edition introduced the signal
system call. This is a more general facility, which in that edition

could handle twelve different signals, including the ones that were

previously handled by dedicated system calls. Significantly, the

signal system call unifies the handling of hardware-triggered traps

(cemt, ilgins, fpe, emt), with that of software-generated ones (intr,
quit). Consequently, one can reason that the introduction of signal
is a case of system call refactoring, where the handling of several

special cases was subsumed by amore abstract facility. Interestingly,

the table also shows that signal co-existed with the less general

system calls in the Fourth Edition; an early example of gradual

deprecation to avoid the instability caused by the changes’ ripple
effects [4].

Data Availability. The data set and its generation scripts are avail-
able on GitHub: https://github.com/dspinellis/unix-history-man/.

Acknowledgements. The project associated with this work has

received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement No 732223.

REFERENCES
[1] Vaggelis Atlidakis, Jeremy Andrus, Roxana Geambasu, Dimitris Mitropoulos, and

Jason Nieh. 2016. POSIX Abstractions in Modern Operating Systems: The Old,

the New, and the Missing. In Proceedings of the Eleventh European Conference on
Computer Systems. ACM, 19.

[2] Narain Gehani. 2003. Bell Labs: Life in the Crown Jewel. Silicon Press, Summit,

NJ.

[3] Brian W. Kernighan and Rob Pike. 1984. The UNIX Programming Environment.
Prentice Hall, Englewood Cliffs, NJ.

[4] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. 2013. An Empirical Study of

API Stability and Adoption in the Adroid Ecosystem. In Proceedings of the 2013
IEEE International Conference on Software Maintenance (ICSM ’13). IEEE Computer

Society, Washington, DC, USA, 70–79. https://doi.org/10.1109/ICSM.2013.18

[5] M. D. McIlroy, E. N. Pinson, and B. A. Tague. 1978. UNIX Time-Sharing System:

Foreword. The Bell System Technical Journal 57, 6 (July-August 1978), 1899–1904.
[6] J. F. Ossanna. 1979. NROFF/TROFF User’s Manual. In UNIX Programmer’s Manual.

Volume 2—Supplementary Documents (seventh ed.). Bell Telephone Laboratories,

Murray Hill, NJ.

[7] R. Pike and Brian W. Kernighan. 1984. Program Design in the UNIX System

Environment. AT&T Bell Laboratories Technical Journal 63, 8 (Oct. 1984), 1595–
1606.

[8] Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thompson, Howard

Trickey, and Phil Winterbottom. 1995. Plan 9 from Bell Labs. Computing Systems
8, 2 (1995), 221–254.

[9] Diomidis Spinellis. 2017. A Repository of Unix History and Evolution. Em-
pirical Software Engineering 22, 3 (2017), 1372–1404. https://doi.org/10.1007/

s10664-016-9445-5

[10] Diomidis Spinellis, Panos Louridas, and Maria Kechagia. 2016. The Evolution of

C Programming Practices: A Study of the Unix Operating System 1973–2015. In

ICSE ’16: Proceedings of the 38th International Conference on Software Engineering,
Willem Visser and Laurie Williams (Eds.). Association for Computing Machinery,

New York, 748–759. https://doi.org/10.1145/2884781.2884799

[11] Warren Toomey. 2009. The Restoration of Early UNIX Artifacts. In Proceedings of
the 2009 USENIX Annual Technical Conference (USENIX’09). USENIX Association,

Berkeley, CA, USA, 20–26.

[12] Warren Toomey. 2010. First Edition Unix: Its Creation and Restoration. IEEE
Annals of the History of Computing 32, 3 (July/Sept. 2010), 74–82. https://doi.

org/10.1109/MAHC.2009.55

https://github.com/dspinellis/unix-history-man/
https://doi.org/10.1109/ICSM.2013.18
https://doi.org/10.1007/s10664-016-9445-5
https://doi.org/10.1007/s10664-016-9445-5
https://doi.org/10.1145/2884781.2884799
https://doi.org/10.1109/MAHC.2009.55
https://doi.org/10.1109/MAHC.2009.55

