
Type–safe Linkage for Variables and Functions

Diomidis Spinellis
Department of Computing

Imperial College of Science, Technology and Medicine
180 Queen’s Gate, London SW7 2BZ

e-mail: dds@doc.ic.ac.uk

March 1991

Abstract

In a separate compilation environment type checks across modules are difficult to implement,
because the natural place to perform them, the linker, is rarely under the control of the compiler
developer. A solution to this problem, presented in the C++ Reference Manual, does not cope
with global variables and function return types. It is asserted that lifting those limitations would
require modifying the linker or providing an environment for separate compilation. We present a
solution that lifts the limitations within the existing scheme.

1 Introduction

In many languages declarations and uses of language objects (e.g. variables and functions) must
adhere to type rules. Furthermore a number of programming environments provide the facility
of separate compilation. Languages that lend themselves to separate compilation usualy have a
distinction between the definition part of a module where exported types and objects are declared and
the implementation part of it where those and other objects are defined. Changes in the definiction
module only require recompilation of that module, whereas changes to the definition module require
recompilation of all modules that import it.

Separate compilation can either be implemented within a programming support environment
framework where a database acts as a central repository for the source and compiled versions of all
modules or it can be based on existing operating system functions with the file system acting as a
repository database and the file modification time stamps being used for consistency control.

A problem inherent to separate compilation, using the underlying operating system functionality,
is that of keeping the compiled objects consistent with each other. Using the file modification times
is not a reliable method for many reasons:

The programmer might change the modification times on purpose, using normal operating
system commands, in order to avoid supposedly unneeded recompilations.

The project could be developed on a network of different machines with unsynchronised clocks
using a common filesystem for storage.

Certain tools that operate on files can change the modification times.

SIGPLAN Notices, 26(8):74–79, August 1991.
Copyright c 1991 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part

or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

1



Finally some languages like C and C++ do not define a separation between definition modules
and implementation modules. Instead they provide facilities (e.g. the preprocessor) that a
disciplined developer can use to implement this separation. Thus there are no rules that define
which file depends on which.

For the reasons outlined above it is possible for type errors to remain undetected until the final
linking phase of the program. Thus an additional check for type consistency accross modules at the
time of the final link would increase the robustness of the development process.

Unfortunately adding type checking in a linker is difficult to implementent as usualy the linker
is not under the control of the language implementor, but part of the operating system. Furthermore
there are cases where parts of the linking are performed just before program execution by using
dynamic link or shared libraries thus complicating the task of type checking even more.

This paper is organised as follows: First we examine some representative examples on how the
problem arises and is dealt with, on various languages. Then we present the particularly elegant
scheme proposed by Strousrtup [ES90, p. 121] of encoding the type of variables into their names.
That scheme can not deal with global variables and function return types. We propose an extension to
the scheme using dummy variables that would enable it to cover type checking all language objects
at link time.

2 Representative Examples

2.1 Classic C

In traditional (pre ANSI) C, a separate program, lint [Joh77] handles the problem of type checking
across modules [KR78, p. 103] by examining the set of compilation units as a whole and — among
other things — verifying type correctness across them. Lint can ‘precompile’ crucial information
from a set of compilation units into a library which can then be used to verify that the library has
been used in a correct way by some other code obviating the need to work through the source text of
the library. The solution is not very efficient as typically lint needs to examine all modules in order
to determine if the functions exported are used in a consistent and type-safe way. It also depends on
cooperation from the programmer in order to keep the lint libraries up to date.

2.2 Modula-2

The proposal given to handle the problem of type checking across modules in Modula-2 is based
on the separation of compilation units into a definition and an implementation part [Wir85, p.
84]. The compiler can check the consistency of different modules by examining, the possibly
precompiled, definition parts of every module used by the implementation part of the module being
compiled. The solution depends on having the definition modules, the implementation modules
and the possibly compiled versions of the definition modules mutually consistent at all times of the
program development. A make [Fel79] utility can be used to ensure this, but depends on programmer
cooperation.

2.3 ANSI C and C++

In ANSI C the type correctness of entities used can be ensured by proper declarations (function
prototype declarations for function arguments) [KR88, p. 72] which can be placed in headers [KR88,
p. 82]. The compiler reads the header files before reading the program source and thus verifies
type correctness. Standard header files are provided for all library functions. A similar solution is
presented for C++ in [Str86, p. 104-113]. The problem with this approach is again the need to keep
the headers consistent with both the source they refer to and the compiled objects that depend on them.
Special tools such as mkdep [MSD90, mkdep(1)] can be used in conjunction with make to achieve



the desired effect. Their effectiveness depends on the cooperation, concentration and organizational
powers of the programmer.

3 Type Safe Linking

From the examples given above it should be clear that the natural time to check for type consistency
across modules should be the link time. At link time type consistency can be effectively policed
without relying on extra-lingual tools and approaches, or to user cooperation.

3.1 Requirements for type correct linkage

The process of linking typically associates symbol references to symbol definitions [PW72]. In
general, for a set of modules to be linked together successfully, there should be exactly one definition
of an object for each set of references to it.

For linkage to be type correct across modules every usage of a symbol should be bound to its
definition if and only if the two are type compatible, as defined in the corresponding language.
Furthermore some objects should be defined exactly once. These static checks are the ones that are
relevant for checking across modules from the checks that are presented in [ASU85, p. 343].

1. Objects which are type compatible should have their references bound to their definition (if
property). Function overloading falls within the scope of this criterion.

2. Objects with matchingnames that are not type compatible should not be bound (only if property).

3. The linker should ensure that there is exactly one definition for each object in a given namespace
(uniqueness property).

Traditional systems perform checks 1, 2 and 3 at compile time (depending on programmer
cooperation) and enforce check 3 at link time (but for check 3 see also section 5).

3.2 Function Name Encoding

In [ES90, p. 122-127] an approach for type-safe linkage is presented. As a linker is typically not
under the control of a language implementor any such scheme must work within the limitations of the
linkers available. The scheme presented works within this constraint by encoding type information in
function names. It roughly works by appending the types of the arguments passed to a function after
the function name. Basic types are encoded as single characters, type modifiers and declarators are
encoded by prepending character codes to the basic type and user defined classes are encoded using
the name the user provided. For example the function:

double
a(double b, int c)
{

...
}

would be encoded as a Fdi where F stands for function, d for double and i for int.
The advantages of this approach, as given in [ES90, p. 122], are:

the absence of extra-linguistic mechanisms (such as the C preprocessor or the lint program
checker);

the ease of implementation as no other programs need to understand the program structure;



the avoidance of the need to keep the headers consistent with the program source. (Headers
are usually maintained by humans and thus can easily come out of sync with the actual
implementation.)

The scheme does not encode types of variables and return types of functions. This is done in
order to ensure that errors arising from declaring a variable or function in two different modules with
the same name, but different type or return type correspondingly, are caught by the linker. (Defining
the same function with different argument types in separate modules is allowed in order to provide
for function overloading.)

This scheme handles, in general, checks 1 and 3, and check 2 for function arguments. If the
scheme was naively extended to handle global variables and function return types it would perform
checks 1 and 2, but not check 3 thus altering the semantics of the language. For example the following
which is not a type correct program links without a problem:

/* File a */
int i;

/* File b */
double i;

The naively extended scheme would encode the variable in file a as i i and the variable in file
b as i d. The type clash could not be detected at link time as the two variables would end having
different names.

It is suggested [ES90, p. 123] that handling all inconsistencies would require either linker
support or a mechanism allowing the compiler to access information from separate compilations. In
the following paragraphs we will outline a simple addition to the scheme presented which lifts the
limitations without any need to change the linker.

4 Extension to Function Name Encoding

In order to be able to fully type check global variables and function return types at compile time we
encode the type of global variables and return types of functions into their names and, additionally,
create dummy variables with the original names. Thus the following two rules need to be added to
the scheme:

Every function has its return type encoded on its name by appending an uppercase R
followed by the return type to the function name. In addition for every function a dummy
variable definition named after the encoded function name without the return type is
inserted into the object file.

Every global variable has its type encoded into its name by appending an uppercase
V followed by the type encoding to the variable name. In addition for every global
variable a dummy variable definition with the same name as the variable, but without the
encodings is inserted into the object file.

This scheme is essentially the naive extension presented in section 3.2, with an additional check
in the form of dummy variables in order to handle the type check in case 3. Global variables
with conflicting definition and declaration/use will appear on the linker error output as unresolved
references of the encoded names; global variables with conflicting definitions will appear on the linker
output as multiple declarations of the unencoded names.

In the following two examples I present sample programs with the corresponding encodings for
the two cases:



4.0.1 Type Conflicting Declaration and Use

The following source files contain an error of type conflicting declaration and use:

/* File a (unencoded) */
int a;

/* File b (unencoded) */
extern double a;
main()
{

a = 3.14;
}

These files can be transformed into an equivalent source form with type encoding as follows:1

/* File a (encoded) */
int a_Vi;
char a = 1; /* Dummy variable */

/* File b (encoded) */
extern double a_Vd;

main()
{

a_Vd = 3.14;
}

The linkage of the two files produces the following error on our system:

b.o: Undefined symbol _a_Vd referenced from text segment
b.o: Undefined symbol _a_Vd referenced from text segment

4.0.2 Type Conflicting Definition

The following two files contain a type conflicting definition:

/* File a (unencoded) */
int a;

/* File b (unencoded) */
double a;

main() {}

These files can be transformed into an equivalent source form with type encoding as follows:

/* File a (encoded) */
int a_Vi;
char a = 1; /* Dummy variable */

/* File b (encoded) */
double a_Vd;
char a = 1; /* Dummy variable */

main() {}
1The function main is a special function needed by the system library and is not encoded.



The linkage of the two files produces the following error on our system:

a.o: Definition of symbol _a (multiply defined)
b.o: Definition of symbol _a (multiply defined)

The scheme may use up some data space on the final executable, depending on the compiler and
linker technology used. This space is used up by the dummy variables. The easy way is to declare
them as simple character variables. This is straightforward to implement as it can be implemented
as a source to source transformation. A more elegant solution that uses no space is to define the
variables as global constants at the linker level. This could be implemented in a source to source
transformation if the compiler supports constants via the linker.

5 Implementation Issues

A capability often found in linkers is that of having more than a single definition for a set of references.
This can be used to implement the FORTRAN common blocks [Ros84, 5.8]. It is also used by some
C implementations which relax the single definition rule by allowing a number of tentative definitions
in different modules [KR88, p. 227]. The system proposed in this article depends on the single
definition rule. This can be enforced on some systems by supplying an initializer to all definitions
used in the proposed scheme thus removing their tentative quality. Some other systems silently ignore
multiple definitions of the same variable. No solution has been found for those systems.

Some languages (e.g. Modula-2[Wir85], Ada[ea83]) implement a tree model of entities where
an entity is associated with a specific module. This implies that there can be several entities with
the same name. As user defined entities are encoded using the user name the scheme needs another
extension to handle this case. The obvious extension is to prepend the name of the module to the type
name.

6 Conclusions

We have presented a complete scheme to handle type checking across modules at link time. Variables
and function return types are handled with the help of additional dummy global variables. The scheme
can be used in separate compilation systems without modifying the linker.

Acknowledgements

I would like to thank Sophia Drossopoulou and Susan Eisenbach for their helpful comments on early
drafts of this paper.

Support from the British Science and Engineering Research Council is gratefully acknowledged.

References

[ASU85] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers, Principles, Techniques, and
Tools. Addison-Wesley, 1985.

[ea83] Jean D. Ichbiah et al. Reference Manual for the Ada Programming Language, ANSI/MIL-
STD-1815 A-1983. Castle House Publication Ltd., 1983.

[ES90] Margaret A. Ellis and Bjarne Stroustrup. The Annotated C++ Reference Manual. Addison-
Wesley, 1990.

[Fel79] Stuart I. Feldman. Make — a program for maintaining computer programs. Software:
Practice & Experience, 9(4):255–265, 1979.



[Joh77] Stephen C. Johnson. Lint, a C program checker. Computer Science Technical Report 65,
Bell Laboratories, Murray Hill, NJ, USA, December 1977.

[KR78] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice-Hall,
first edition, 1978.

[KR88] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language. Prentice-Hall,
second edition, 1988.

[MSD90] Mt Xinu Inc., Berkeley, CA. UNIX User’s Reference Manual, 2.6 MSD edition, January
1990.

[PW72] Leon Presser and John R. White. Linkers and loaders. ACM Computing Surveys, 4(3):149–
167, September 1972.

[Ros84] L. Rosler. The evolution of C — past and future. Bell System Technical Journal, 63(8),
October 1984.

[Str86] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 1986.

[Wir85] Niklaus Wirth. Programming in Modula-2. Springer Verlag, third edition, 1985.


