
1 4 I E E E S o f t w a r e N o v e m b e r / D e c e m b e r 1 9 9 8 0 7 4 0 - 7 4 5 9 / 9 8 / $ 1 0 . 0 0 © 1 9 9 8

Diomidis Spinellis

The Loyal OppositionOpposition

oftware organizations began intro-
ducing the client–server system archi-
tecture in the late 1980s because CSS
offered a technology-driven applica-
tion design that genuinely addresses

corporate and user needs. Widely promoted by soft-
ware and hardware vendors who sought short-term
advantages in a competitive market, CSS has always
been a haphazard match of disparate, ad hoc tech-
nologies that lack the guidance of a unifying vision,
purpose, and theory.

Software professionals seldom admit that the
CSS architecture failed inevitably, or that technolo-
gies that claim to improve it are only addressing this
failure. Our industry would be better served if we
honestly appraised the situation, evaluated the
lessons learned, and undertook a fresh start.

SUMMON THE MAINFRAME’S TAILOR

Client–server systems resulted from the intro-

duction of networked PCs in the 1980s. Companies
layered this new desktop infrastructure atop existing
mainframe installations controlled by highly cen-
tralized Management Information System depart-
ments. PC purchases were initially motivated by the
lure of user-friendly personal productivity software
and freedom from MIS’s control. Powerful and re-
sponsive spreadsheets and word processors pro-
vided improved data analysis and report genera-
tion. Software systems such as Symphony and
Windows even attempted to assimilate individual
applications into an integrated working environ-
ment. Low-priced PC hardware and software al-
lowed decentralized purchasing decisions; the vi-
sion of a PC on every desktop became a reality.

Yet MIS retained control of the mission-critical
applications. These mature, legacy software systems,
running in a stable operating environment with
scheduled backup and maintenance procedures, en-
sured the longevity and reliability of the corpora-
tion’s most vital information. When users needed
access to MIS data from the desktop PC, a terminal

S

The Computer’s New
Clothes

.

N o v e m b e r / D e c e m b e r 1 9 9 8 I E E E S o f t w a r e 1 5

emulation package opened a window on the main-
frame host.

Seeking a new look…
Three major forces drove the move toward CSS.
♦ The costs of desktop PC hardware and soft-

ware acquisition and maintenance, and of software
development, often proved magnitudes lower than
traditional MIS computer spending. The move to-
ward PC-based computing seemed to make finan-
cial sense.

♦ Users spoiled by increasingly user-friendly
desktop applications began demanding that main-
frame applications offer similarly friendly interfaces.

♦ The need to integrate ac-
cess to mainframe data from PCs
increased: users wanted to use
PC spreadsheets to analyze and
graph mainframe data, and to in-
tegrate legacy system reports
into word-processed documents. Business process
reengineering efforts typically supported the in-
creased productivity, flexibility, and improved cus-
tomer service that such an environment fostered.

…tailored from new fabrics
In parallel to these driving forces, three enabling

technologies made the CSS transition possible.
♦ Standalone PCs became networked, initially

to gain access to large storage devices and printers.
As networking technology matured, network stacks
like TCP/IP and SNA over megabit LANs became
available on both mainframes and PCs. This devel-
opment allowed the efficient interconnection of
two disparate worlds.

♦ Relational database management systems
such as Oracle and the Microsoft SQL Server—ac-
cessible through a structured query language in-
terface and running on Unix machines or PC
servers—provided an open alternative to propri-
etary mainframe databases.

♦ Graphical user interfaces such as Microsoft
Windows provided a standardized, user-friendly de-
ployment environment. Rapid application develop-
ment tools and fourth-generation languages eased
application development for those platforms.

LOOK! THE CLIENT’S NAKED, TOO

The truth is that the introduction of CSS archi-
tectures has been a dismal failure. Several promises

that drove the move toward CSS have not been ful-
filled (Peter Duchessi and InduShobha Chengalur-
Smith, “Client/Server Benefits, Problems, Best
Practices,” Comm. ACM, May 1998, pp. 87-94).

Client–server systems are not significantly
cheaper than their mainframe-based ancestors; they
are neither notably more user friendly nor better in-
tegrated into the modern desktop environment. In
addition, client–server systems have introduced sev-
eral new problems—they are less robust, efficient,
and portable and, at the same time, are more diffi-
cult to implement and deploy than the mainframe-
based applications they replace.

Uncovering hidden costs
Discussing the total cost of ownership has rightly

become fashionable. TCO covers, apart from the ini-
tial purchasing costs, other incidental costs such as
money spent on software and hardware upgrades,
training, system administration, and user support.
Initial CSS cost studies optimistically assumed that,
for example, adopting OO methodologies would
decrease software maintenance costs as much as 25
percent (Alok Sinha, “Client–Server Computing,”
Comm. ACM, July 1992, pp. 77-98).

These studies compared the low acquisition, ad-
ministration, and maintenance costs of PC-based
autonomous end-user computing with the corre-
spondingly higher costs of the MIS departments.
However, they failed to account for many hidden
costs, or to discuss the costs of managing thousands
of PCs—often under the full control of their indi-
vidual owners—to provide a functional, integrated,
enterprise-level computing platform.

Contrary to common MIS practice, PC software
maintenance is seldom budgeted, often described
instead as “software upgrades.” Similarly, the ap-
parently low cost of system administration often
translates into the loss of PC owners’productive time
as they install new applications or juggle program
patches to obtain a stable configuration.

CSS applications cannot match the user-friendli-
ness of the typical PC spreadsheet. First, the com-
plexities and constraints involved in CSS application
development are significantly more intricate than
those faced by PC application developers. CSS

PC software maintenance is seldom
budgeted, described instead as “upgrades.”

.

1 6 I E E E S o f t w a r e N o v e m b e r / D e c e m b e r 1 9 9 8

developers must engineer access methods and user
interfaces for potentially huge data sets over limited
bandwidth, deal with table cursor schemes, enable
multi-user access, and use a fixed number of data-
base handles.

In addition, commercial application vendors can
use economies of scale and must, to compete, pol-
ish their products to a level of versatility beyond the
reach of a typical CSS vertical or custom application
developer. The executable program sizes of mod-
ern packages reveal that versatility and user friend-
liness result from accumulated raw effort and are

not free by-products of the PC operating system or
the application development process.

Revealing shortcomings
The integration of CSS applications and modern

GUI environments is usually only skin-deep and, at
best, consists of similar user interface elements. CSS
applications often lack support for common shrink-
wrap features such as drag-and-drop, the clipboard,
and application scripting.

Further, this mostly visual integration of CSS ap-
plications with the GUI desktop has been achieved
at great cost. The multivendor nature of CSS has be-
come a curse for system integrators, administrators,
developers, and end users. A CSS typically consists
of the client and server platforms and their respec-
tive (often different) operating systems, a database
server, database connectivity software, the client
application, the application environment support
libraries, and, sometimes, additional middleware
and networking software components. Each of
these may be supplied by a different vendor.
Obtaining a functioning and stable combination of
all components and keeping it working through a
barrage of new releases and bug fixes is a sisyphean
task.

Client–server systems force an unnatural division
of application functionality that results in unneeded
complexity and duplication. According to the CSS
philosophy, many data validation checks can be per-
formed on the client side. To guarantee the appli-
cation reliability against malfunctioning or out-of-
date client software and raw-data uploads, similar
checks are often incorporated as constraints on the

server side. Apart from the duplication of effort, this
strategy increases application complexity because
clients must also handle constraint validation errors
arising from the database server. To organize this
mess and provide scalable solutions for many clients
and multiple servers, even more complicated multi-
tier and transaction-processing-monitor architec-
tures have been proposed and implemented.

Exposing a flawed design
The malfeasant design decision to use a data de-

finition and manipulation language, SQL, as the
standard client–server inter-
process-communication protocol
has resulted in many architec-
tural and implementation prob-
lems. The desktop metaphor’s
most common operation—the

ability to scroll up and down over a large data set—
cannot be efficiently implemented on most CSSs
despite the deployment of increasingly sophisti-
cated cursor management schemes. The tabular na-
ture of an SQL query’s results necessitates an unre-
warding juggling act of balancing the inefficiencies
of redundant column fetches, the execution of mul-
tiple SQL queries, and the fetching of large result
sets for processing on the client side.

Further technical and management difficulties
stem from the distributed deployment and support
of client software. A typical client installation pack-
age consists of not just an executable program but
also runtime libraries, database connectivity pack-
ages, component objects, and, in many cases,
changes to some operating system modules.

Installation difficulty is compounded by the in-
ability of most desktop OSs to be remotely man-
aged: most installation procedures require an oper-
ator’s presence during installation. The installation
process is complicated by the interference between
installed components that other user-installed ap-
plication packages share. The primitive version-
checking and reference-usage-counting installation
protocols, coupled with bugs in the often minimally
tested installation procedures, result in shared com-
ponents that can be removed without warning,
regress to older versions, or be replaced with newer
but incompatible versions when an application is
installed. All these problems are multiplied by the
number of clients that must be installed. In addition,
because clients perform local processing, client up-
dates must be performed in a single step on all desk-
tops, and be synchronized with updates to the data-

The move toward CSS has negatively affected
many end users, MIS, and developers.

.

N o v e m b e r / D e c e m b e r 1 9 9 8 I E E E S o f t w a r e 1 7

base structure on the server.
Further, the adoption of CSS architectures has re-

sulted in an unfortunate loss of program portabil-
ity. Popular CSS application-development environ-
ments such as Powerbuilder and Visual Basic use
proprietary languages or language extensions.
Version by version, the suppliers of these environ-
ments reinvent mainstream language features such
as strong typing, modules, exception handling,
structured data types, and OO programming. This
proliferation of languages has resulted in the balka-
nization of training, software reuse, tool support,
documentation, coding standards, and revision con-
trol. Such development environments mainly target
the Microsoft Windows OS and Intel hardware ar-
chitecture, resulting in a dramatic backslide in ap-
plication portability. Even though we resolved these
important language and software engineering is-
sues in the middle 1970s, they are resurfacing with
a vengeance 20 years later.

APPLYING A POLITICALLY CORRECT
FIG LEAF

Overhyped and oversold, CSS architectures have
been used to implement many mission-critical ap-
plications. Consequently, every day both large and
small enterprises face the problems I’ve described.

Industry analysts now propose several new al-
ternatives that ostensibly improve on the CSS para-
digm. A leading example, Cyrix’s thin-client tech-
nology, is apparently endorsed by Microsoft. Joel
Kanter (Understanding Thin-Client/Server Computing,
Microsoft Press, 1998) defines a thin-client applica-
tion as one in which all application processing is per-
formed on the server; the client only transmits key-
board and mouse-movement events to the server.
This approach, similar in structure to the X Windows
system, departs radically from the traditional CSS
architecture by moving toward systems based on
terminal emulators.

Web solutions based on HTML data exchanges
stem from a similar concept, so labeling them
client–server systems is misleading. Network com-
puters that run Java clients are, however, closer in
spirit to the CSS architecture. They appear to solve
the problems of application deployment, imple-
mentation language functionality and portability,
and installation difficulties. However, their integra-
tion with popular applications, the client–server
communication protocol, and the client’s user

friendliness have not been satisfactorily addressed.
In summary, these new approaches try to address
the CSS architecture’s fundamental problems in a
politically correct way: they silently retreat and cover
up the problem by using fashionable words and
technologies.

The move toward CSS has been a large and ex-
pensive technological mistake. It has negatively af-
fected many end users, MIS departments, balance
sheets, and developers. If we view the industry’s re-
sponse in terms of Elisabeth Kubler-Ross’s stages-
of-grief model, we are currently past the denial and
anger phases. As we recognize the problems with
CSS, we experience the bargaining phase in which
the architecture’s stakeholders strive to re-establish
their position with minimal loss, or gain strategic
advantages from the impending changes. However,
after the inevitable depression about the costs and
lost opportunities of the move to CSS architectures,
we can now accept the situation and work toward
the design of robust, user-friendly, practical, effi-
cient, portable, cost-effective, and scalable archi-
tectures for developing MIS applications. ❖

Diomidis Spinellis is a senior software engineer at SENA S.A. He
also lectures at the Department of Information and
Communication Systems at the University of the Aegean.
Contact Spinellis at SENA S.A., Byzantiou 2, 142 34 Nea Ionia,
Greece; dds@senanet.com.

CALL FOR ARTICLES
AND REVIEWERS

Process DiversityProcess Diversity

The phrase “process diversity”means different things—all in-
teresting!—to different people. IEEE Software seeks articles on:

♦ Processes that work
♦ Processes that fail
♦ RAD processes
♦ Processes for high-reliability software
♦ Internet processes
♦ Formal vs. informal processes
♦ Large-project vs. small-project processes
♦ Modifications and customizations of CMM, ISO,...

To submit an article or to become a reviewer, contact Angie Su
at asu@computer.org. Articles must not exceed 5,400 words in-
cluding tables and figures, which count for 200 words each.

.

