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Abstract

The realisation of domain-speci®c languages (DSLDSLs) di�ers in fundamental ways from that of traditional programming languages.

We describe eight recurring patterns that we have identi®ed as being used for DSLDSL design and implementation. Existing languages

can be extended, restricted, partially used, or become hosts for DSLDSLs. Simple DSLDSLs can be implemented by lexical processing. In

addition, DSLDSLs can be used to create front-ends to existing systems or to express complicated data structures. Finally, DSLDSLs can be

combined using process pipelines. The patterns described form a pattern language that can be used as a building block for a sys-

tematic view of the software development process involving DSLDSLs. Ó 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

The realisation of domain-speci®c languages (DSLDSLs)
di�ers in fundamental ways from that of traditional
programming languages. Although the idea of DSLDSLs is
more than mature (Landin, 1966), their role in the ar-
chitecture, design, and implementation of software sys-
tems has only recently been acknowledged (Ramming,
1997). Some DSLDSLs are being designed as full-¯avoured
programming languages (Wirth, 1974) and implemented
as interpreters or compilers using traditional program-
ming language implementation techniques and tools
(Aho et al., 1985). However, the software process and
economics behind the realisation of a DSLDSL are, more
often than not, entirely di�erent from those that drive
the implementation of a traditional programming lan-
guage. Speci®cally, DSLDSLs are by de®nition part of a
larger system and often implemented for a narrow usage
domain. The resources available for designing and im-
plementing them are therefore constrained to a small
percentage of those available for the system they belong
to, and di�cult to amortise over a large user base. The
constraints on the design and implementation e�ort and
talent that can be devoted to the realisation of a DSLDSL

have brought forward a number of distinct and reusable
strategies. These DSLDSL realisation strategies solve speci®c
problems of design and can be applied to many similar
problems. The description of such reusable designs, of-

ten referred to as patterns (Alexander et al., 1977;
Coplien and Schmidt, 1995; Gamma et al., 1995), allows
their dissemination and conscious reuse by DSLDSL design-
ers and software practitioners.

The remainder of this paper is structured as follows:
in Section 2, we introduce DSLDSLs and outline their dif-
ferences from executable speci®cation and general pur-
pose languages while in Section 3, we present the
formalism of design patterns that we use for describing
the DSLDSL realisation strategies in Section 4. Finally, Sec-
tion 5 concludes this paper with a discussion of the re-
lationships between the outlined design patterns and
directions of future research.

2. Domain-speci®c languages

A DSLDSL is a programming language tailored speci®cally
to an application domain: rather than being for a gen-
eral purpose, it captures precisely the domain's seman-
tics. A DSLDSL-based development methodology addresses
the need for increasing domain specialisation in the
software engineering ®eld (Jackson, 1999). Examples of
DSLDSLs include lex and yacc (Johnson and Lesk, 1987)
used for program lexical analysis and parsing, HTMLHTML

(Berners-Lee and Connolly, 1995) used for document
mark-up, and VHDLVHDL used for electronic hardware de-
scriptions. DSLs allow the concise description of an
application's logic reducing the semantic distance
between the problem and the program (Bell et al., 1994;
Spinellis and Guruprasad, 1997).
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DSLDSLs are, by de®nition, special purpose languages.
Any system architecture encompassing one or more
DSLDSLs is typically structured as a confederation of mod-
ules; some implemented in one of the DSLDSLs and the rest
implemented using a general purpose programming
language (Fig. 1). As a design choice for implementing
software systems, DSLDSLs present a number of distinct
advantages over a ``hard-coded'' program logic:

Concrete expression of domain knowledge. Domain-
speci®c functionality is not coded into the system or
stored in an arcane ®le format; it is captured in a con-
crete human-readable form. Programs expressed in the
DSLDSL can be scrutinised, split, combined, shared, pub-
lished, put under release control, printed, commented,
and even be automatically generated by other applica-
tions.

Direct involvement of the domain expert. The DSLDSL ex-
pression style can often be designed so as to match the
format typically used by the domain expert. This results
in keeping the experts in a very tight software lifecycle
loop where they can directly specify, implement, verify,
and validate, without the need of coding intermediaries.
Even if the DSLDSL is not high-level enough to be used as a
speci®cation language by the domain expert, it may still
be possible to involve the expert in code walkthroughs
far more productive than those over code expressed in a
general purpose language.

Although the DSLDSL concept bears similarity to exe-
cutable speci®cation languages (Sommerville, 1989,
p. 125; Turski and Maibaum, 1987, p. 135) such as
OOSPECOOSPEC (Paryavi and Hankley, 1995), the DSLDSL approach
exhibits some important advantages:

Expressiveness. Executable speci®cation languages
taking a Swiss army knife approach towards the prob-
lem of speci®cation o�er facilities for specifying all types
of systems, but often at a cost of clearness of expression.
As an example, OBSERVOBSERV (Tyszberowicz and Yehudai,
1992) provides a multiparadigm environment allowing

the system speci®cation using object-oriented con-
structs, ®nite state machines, and logic programming. In
contrast, DSLDSLs being tailored towards a narrow, speci®c
domain can be designed to provide the exact formalisms
suitable for that domain.

Runtime e�ciency. The possible interactions between
di�erent elements of a general purpose speci®cation
language such as its type system and its support for
concurrency result in runtime ine�ciencies. A narrowly
focused DSLDSL can employ the most e�cient implemen-
tation strategy and specialised optimisations for satis-
fying the expressed speci®cation.

Modest implementation cost. DSLSLs are typically im-
plemented by a translator that transforms the DSLDSL

source code into source or intermediate code compatible
with the rest of the system. Such an approach can often
be implemented using string processing languages such
as awk (Aho et al., 1979) and Perl, language develop-
ment tools such as lex and yacc, specialised systems such
as TXLTXL (Cordy et al., 1991) and KHEPERAKHEPERA (Faith et al.,
1997), or declarative languages such as Prolog and ML.
The DSLDSL implementation cost is ± and should always be
± modest.

Reliability. As described in the previous paragraph,
the limited scope of a DSLDSL often allows a source-to-
source transformation type of implementation. The
small scale of the required implementation e�ort often
results in a translator whose correctness can be trivially
veri®ed. The size of typical executable speci®cation
languages means that the implementor must often take
the correctness of the language's implementation on
trust.

On the other hand, the system architect contemplating
the use of a DSLDSL architecture should also have in mind
the following potential shortcomings of this approach:

Tool support limitations. CASEASE and integrated soft-
ware development tools o�er only limited support for
integrating DSLDSLs into the development process. Ad hoc
solutions are often required to smoothly integrate DSLDSL

code with existing revision control systems, compilers,
editors, source browsers, and debuggers.

Training costs. In contrast to established speci®cation
languages such as Z (Potter et al., 1991) system imple-
menters and maintainers will by de®nition have no prior
exposure to the DSLDSL being used. This problem is some-
how mitigated by the fact that an appropriately chosen
DSLDSL will be familiar to other participants of the imple-
mentation e�ort such as those involved in the speci®-
cation, beta testing, and ®nal use. These participants will
be able to perform the DSLDSL code walkthroughs ± a task
normally reserved for experienced software engineers.

Design experience. DSLSL-based system architectures
are not widely adopted within the software industry. As
a result, there is an evident lack of design experience,
prescriptive guidelines, mentors, design patterns, and
supporting scienti®c literature. Early adopters will needFig. 1. UMLML diagram of a DSLDSL-based system architecture.
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to rely more on their own judgement as they adopt the
approach in a stepwise fashion.

Software process integration. The use of DSLDSLs is not
yet an integral part of established software processes.
Therefore, the software process being used has to be
modi®ed in order to take into account the design, im-
plementation, integration, debugging, and maintenance
of the adopted DSLDSLs.

The implementation of a DSLDSL di�ers from the imple-
mentation of a general purpose language. Compilers for
general purpose languages are typically structured as a
lexical analyser, a parser, a semantic analyser, an opti-
miser, and a target code generator. In contrast, the
limited scope of a DSLDSL allows and requires di�erent
implementation strategies. The lexical, syntactic, and
semantic simplicity of DSLDSLs often obviate the need for
some elements that would be required by a general
purpose language compiler; for example, instead of us-
ing a parser front-end, DSL implementations often
process the source language using regular expressions.
In addition, the often-limited user population of a DSLDSL

does not justify a large implementation e�ort forcing
DSLDSL implementers to choose the most economical real-
isation strategies; as an example, compilation into as-
sembly code of the target machine is rarely a practical
proposition. Finally, as DSLDSLs are often part of the de-
velopment process of a larger system, schedule pressures
drive DSLDSL builders towards implementation methods
that can rapidly deliver results. The aim of this paper is
to provide, in the form of a pattern language, a reper-
toire of methods often used in the implementation of a
DSLDSL.

3. Design patterns

The notion of design patterns has its origins on the
seminal work of the architect Christopher Alexander.
Alexander outlines how the relationship between re-
curring problems and their respective solutions estab-
lishes patterns as follows:

``Each pattern describes a problem which occurs
over and over again in our environment, and then
describes the core of the solution to that problem,
in such a way that you can use this solution a mil-
lion times over, without ever doing it the same way
twice.'' ± (Alexander et al., 1977)

Twenty years later Gamma et al. (1995) cross-
pollinated these ideas into the ®eld of reusable object-
oriented software design. Design patterns o�er a
convenient way to capture, document, organise, and
disseminate existing knowledge from a given area in a
consistent and accessible format. Patterns di�er from
algorithms and data structures in that the concepts they

describe cannot be coded and used as a subroutine or an
object class. Patterns also di�er from frameworks as
they do not describe the structure of a complete system:
interrelated patterns are typically used together to solve
a general design problem in a given context.

In this paper, we describe eight recurring patterns that
we have identi®ed as being used for DSLDSL design and
implementation. The description of these patterns pro-
vides the DSLDSL designers with a clear view of the available
DSLDSL realisation strategies, the forces that will guide them
towards the selection of a speci®c pattern, the conse-
quences of that decision, examples of similar uses, and
the available implementation alternatives. In our de-
scription of the patterns, we followed ± in free text form
± the format and classi®cation used by Gamma et al.
(1995). We classify each pattern as creational if it in-
volves the creation of a DSLDSL, structural if it describes the
structure of a system involving a DSLDSL, and behavioural if
it describes DSLDSL interactions.

4. DSL design patterns

In the following sections, for every pattern we:
· provide the name that will be used to describe it;
· illustrate its structure using a simple UMLUML (Rumb-

augh et al., 1999) diagram;
· classify it as creational, behavioural, or structural;
· illustrate the design problem that provides our moti-

vation to use the pattern;
· outline the situations where that pattern can be ap-

plied;
· outline the pattern's participants;
· describe how the pattern supports its objectives;
· provide examples and prescriptive guidelines towards

the pattern's implementation.

4.1. Piggyback

The piggyback structural pattern (Fig. 2) uses the
capabilities of an existing language as a hosting base for
a new DSLDSL. Often a DSLDSL needs standardised support for
common linguistic elements such as expression handling,
variables, subroutines, or compilation. By designing the
DSLDSL on top of an existing language, the needed linguistic

Fig. 2. The piggyback pattern.

D. Spinellis / The Journal of Systems and Software 56 (2001) 91±99 93



support is provided ``for free''. The piggyback pattern
can be used whenever the DSLDSL shares common elements
with an existing language. Typically, the DSLDSL language
processor passes the linguistic elements that are ex-
pressed in the existing language to the language pro-
cessor of the existing language. Where the DSLDSL is
implemented as a compiled language, a typical imple-
mentation compiles the DSLDSL code into the base lan-
guage: DSLDSL code is compiled as needed, while embedded
base-language elements are emitted unmodi®ed. Con-
sequently, the resulting output of the compilation con-
sists entirely of the base language. If the DSLDSL is
implemented as an interpreter, a similar strategy can be
applied if the base language provides a facility for call-
ing its interpreter with suitable arguments from within
the DSLDSL interpreter.

Typical examples of this approach are the yacc
(Johnson, 1975) and lex (Lesk, 1975) processors. While
the speci®cations of the input grammar (in the case of
yacc) and the input strings (in the case of lex) are ex-
pressed in a DSLDSL, the resulting actions for recognised
grammar rules and tokens are speci®ed in C which is
also the processors' output language. Yacc uses the
piggyback approach more aggressively as it introduces
special variables (denoted by the $ sign) to the C con-
structs used for specifying the actions.

The piggyback approach resembles in structure the
compiler front-ends that generate an intermediate lan-
guage. However, the structure we propose uses an ex-
isting, human-readable, and typically general-purpose
language, as the compilation target rather than a spec-
ialised, machine-readable intermediate language. The
e�ort of translating the DSLDSL into an existing human-
readable language instead of implementing an alter-
native compiler front-end is substantially lower. In
addition, the process of this translation is relatively
straightforward and can be implemented as a simple
source-to-source transformation ± often merely using
lexical processing constructs as described in Section 4.3.
In contrast, the implementation of a compiler front-end
requires detailed knowledge of the intermediate lan-
guage, and often intimate knowledge of a speci®c com-
piler implementation.

4.2. Pipeline

The pipeline behavioural pattern (Fig. 3) solves a
problem of DSLDSL composition. Often a system can best be
described using a family of DSLDSLs. The prototypical ex-
ample for such an application is the composition of di-
verse mark-up languages in text processing systems.

Such di�erent languages can be used to specify tables
(Lesk, 1979b), mathematical equations (Kernighan and
Cherry, 1974), chemical formulas (Bentley et al., 1987),
pictures (Kernighan, 1982), graphs (Bentley and Kerni-
ghan, 1986), and organic element chemical structures
(Bentley et al., 1987). In cases where a number of DSLDSLs
are needed to express the intended operations, their
composition can be designed and implemented using a
pipeline. Typically, all DSLDSLs are organised as a series of
communicating elements. Each DSLDSL handles its own
language elements and passes the rest down to the oth-
ers. Sometimes, the output of one DSLDSL can be expressed
in terms of the input expected by another DSLDSL further
down the pipeline chain (Bentley, 1986). The use of the
pipeline pattern encourages the division of responsibility
among small specialised DSLDSLs and discourages bloated
feature-rich language designs. The DSLDSL-based system
can be built in a stepwise fashion, adding components as
needed with new components utilising existing ones.

As suggested by its name, the pattern can often be
implemented using a pipeline of independent commu-
nicating system processes. Many modern operating
systems provide facilities for setting up such a pipeline,
while the Unix shells also provide a supporting built-in
notation. The pipeline approach has been used by the
tro� (Ossanna, 1979) family of text processing tools.
Elements of a tro�-based text processing pipeline can
include eqn (Kernighan and Cherry, 1974) for process-
ing equations, tbl (Lesk, 1979b) for processing tables, pic
(Kernighan, 1982) for processing pictures, grap (Bentley
and Kernighan, 1986) for drawing statistical displays,
dag (Gansner et al., 1988) for typesetting directed
graphs, chem (Bentley et al., 1987) for typesetting
chemical structures, and refer (Lesk, 1979a) for pro-
cessing references. A similar structure has also been used
to produce algorithm animations (Bentley and Kerni-
ghan, 1991). In addition, if one considers the command
line arguments passed to typical Unix commands as a
mini-DSLDSL, then typical pipelines of Unix tool invoca-
tions can also be considered as an application of this
pattern. This mode of use allows the implementation of
sophisticated applications such as spell checkers or
complicated operations on images and sound using
families of tools such as the system's text processing
tools, the pbm (Poskanzer et al., 1993) portable bitmap
collection, and the sox sound tools.

4.3. Lexical processing

The lexical processing creational pattern (Fig. 4) o�ers
an e�cient way to design and implement DSLDSLs. Due to
their ± by de®nition ± limited ®eld of applicability, DSLDSLs
impose severe restrictions to the e�ort that can be used
for their design and implementation. Many DSLDSLs can be
designed in a form suitable for processing by techniques
of simple lexical substitution; without tree-based syntaxFig. 3. The pipeline pattern.
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analysis. The design of the DSLDSL is geared towards lexical
translation by utilising a notation based on lexical hints
such as the speci®cation of language elements (e.g.,
variables) using special pre®x or su�x characters. The
form of input for this family of DSLDSLs is often line-ori-
ented, rather than free form and delimited by character
tokens. This design pattern can be used together with
the piggyback pattern in cases where, after some lexical
processing, the output of the DSLDSL processor can be
passed to the processor of the base language.

The utilisation of this pattern lowers the imple-
mentation cost for DSLDSLs making them a practical
proposition for applications where the cost of a full
parser-based translation would not be justi®ed. As
translators based on lexical structure are often imple-
mented using interpreted or rapid prototyping
languages, the DSLDSL design and implementation can
gracefully evolve together in a combined iterative pro-
cess. Examples of this application include numerous
DSLDSLs implemented using tools such as sed (McMahon,
1979), awk (Aho et al., 1988), Perl (Wall and Schwartz,
1990), Python (Lutz, 1996), m4 (Kernighan and Ritchie,
1979), and the C pre-processor. Most of these tools o�er
a rich set of lexical processing and substitution facilities
± often expressed in terms of extended regular expres-
sions ± that can be used to implement a complete DSLDSL in
tens of lines of code.

4.4. Language extension

The language extension creational pattern (Fig. 5) is
used to add new features to an existing language. Often
an existing language can e�ectively serve a new need
with the addition of a few new features to its core
functionality. In this case, a DSLDSL can be designed and

implemented as an extension of the base language. The
language extension pattern di�ers from the piggyback
pattern by the roles played by the two languages: the
piggyback pattern uses an existing language as an im-
plementation vehicle for a DSLDSL, whereas the extension
pattern is used when an existing language is extended
within its syntactic and semantic framework to form a
DSLDSL. The design of a DSLDSL using this pattern involves the
addition of new language elements to an existing base
language. These elements can include new data types,
language block interaction mechanisms, semantic ele-
ments, or syntactic sugar. Typically, the DSLDSL inherits all
syntax and semantics of the base language used, while
adding its own extensions. An object-oriented class hi-
erarchy can thus be formed with a number of DSLDSLs being
derived from base languages and forming base lan-
guages for other DSLDSLs.

The use of the language extension pattern frees the
DSLDSL designer from the burden of designing a full-fea-
tured language. In addition, where the pattern is used to
design a non-trivial DSLDSL hierarchy, the pattern o�ers a
clear way of organising the language relationships and
interactions (Spinellis et al., 1995). Compiled-language
implementations of the extension pattern are often
structured in the form of a pre-processor which trans-
forms the DSLDSL into the base language. Alternatively,
source-to-source transformations (Cordy et al., 1991),
code composition (Stichnoth and Gross, 1997), or in-
tentional programming (Simonyi, 1995) techniques can
be used to augment the language using high level oper-
ators. One of the earliest examples of this pattern is the
``rational FORTRANFORTRAN'' (Ratfor) compiler (Kernighan,
1975) which provided a structured version of FORTRANFORTRAN.
The implementation of the original C�� compiler
(cfront) also used this technique (Stroustrup, 1984). A
current e�ort using the extension pattern involves the
addition of generic types to the Java programming
language (Bracha et al., 1998). Extensions of interpreted
languages can also bene®t from this design pattern by
implementing the language extension using a meta-in-
terpreter (Sterling and Shapiro, 1986, pp. 303±330) or a
meta-circular evaluator (Abelson et al., 1990, pp. 293±
382). Examples include the examination of abstract
syntax trees using an interpreter of Prolog extended with
an ambient current object (Crew, 1997) and the exten-
sion of MLML for graph drawing (Kamin and Hyatt, 1997).

4.5. Language specialisation

Language specialisation (Fig. 6) is a creational pattern
that removes features of a base language to form a DSLDSL.
In some cases, the full power of an existing language
may prevent its adoption for a specialised purpose. A
representative case arises when requirements related to
the safety or security aspects of a system can be satis®ed
only by removing some ``unsafe'' aspects (such asFig. 5. The language extension pattern.

Fig. 4. The lexical processing pattern.
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dynamic memory allocation, unbounded pointers, or
threads) from a language (Motor Industry Research
Association, 1994). In such cases, a DSLDSL may be de-
signed and implemented as a subset of an existing lan-
guage. Whenever some speci®c features of an existing
language render it unsuitable for a given application, the
design of a DSLDSL following the specialisation pattern can
result in a mature language that satis®es the given re-
quirements. The design of the DSLDSL involves the removal
from the base language of the unwanted syntactic or
semantic features. Since the DSLDSL is e�ectively a subset of
the base language, the removal can be guaranteed by a
language processor that checks the DSLDSL conformance. In
a limited number of cases, additional run-time checks
may be required. Examples of DSLDSLs designed following
the specialisation pattern are Javalight (Nipkow and von
Oheimb, 1998) which is a type-safe subset of Java, the
educational subsets of Pascal used for a stepwise intro-
duction to the language (Savitch, 1995), the HTMLHTML

(Berners-Lee and Connolly, 1995) application of SGMLSGML

(ISO8879, 1986), and the automotive ``safer-subset'' of
C (Edwards and Rivett, 1997).

4.6. Source-to-source transformation

The source-to-source transformation creational pattern
(see Fig. 7) allows the e�cient implementation of DSLDSL

translators. As outlined in Section 2, the resources
available for implementing a DSLDSL are often severely
constrained. Source-to-source transformation can be
used to ease the burden of implementation. When the
DSLDSL cannot be designed as a language extension, spe-
cialisation, or using the piggyback pattern, it is often
possible to leverage the facilities provided by existing
language tools using a source-to-source transformation
technique. The DSLDSL source code is transformed via a
suitable shallow or deep translation process into the
source code of an existing language. The tools available

for the existing language are then used to host ± compile
or interpret ± the code generated by the transformation
process.

When using this pattern, one capitalises on the exist-
ing language processor infrastructure. This can include
optimising compilers, linkers, and native code instruc-
tion schedulers. In addition, in some circumstances, even
tools that rely on mappings between the source code and
the machine code (such as pro®lers, execution tracers,
and symbolic debuggers) can be used. In particular,
some candidate host languages such as C o�er a mech-
anism for specifying the ®le and source line of the DSLDSL

code that generated a particular sequence of host code
instructions. The use of this pattern makes it also rela-
tively easy to troubleshoot the DSLDSL compilation process,
because the resulting code will often be easy to read and
reason about. Another possibility involves the transla-
tion of the DSLDSL code into the intermediate language used
by existing language compilers. The pattern can be im-
plemented using a traditional lexical analysis, parsing,
and host code generation process. In addition, a number
of tools such as TXLTXL (Cordy et al., 1991) and KHEPERAKHEPERA

(Faith et al., 1997) can be used to speed-up the imple-
mentation process.

4.7. Data structure representation

The data structure representation creational pattern
(Fig. 8) allows the declarative and domain-speci®c
speci®cation of complex data. Data-driven code (Ker-
nighan and Plauger, 1978, p. 67) relies on initialised data
structures whose complexity can often make them dif-
®cult to write and maintain. Complicated structures are
better expressed using a language rather than their un-
derlying representation (e.g., a graph adjacency list may
be easily expressed as a list of path connections). De-
signing a DSLDSL to represent the data o�ers an attractive
solution to the problem. The pattern is of use whenever
a non-trivial data structure (anything other than rect-
angular arrays) needs to be initialised with data. It is
particularly applicable to the initialisation of data
structures whose elements are interrelated such as trees,
graphs, arrays of pointers to statically initialised struc-
ture elements, arrays of pointers to functions, and
multilingual text elements.

The DSLDSL typically de®nes a user-friendly, alternative
but isomorphic, representation of the underlying data
structure elements. The DSLDSL compiler can then parse
the alternative data representation and transform the
data elements to the structure needed for the internal

Fig. 7. The source-to-source transformation pattern. Fig. 8. The data structure representation pattern.

Fig. 6. The language specialisation pattern.
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representation. The adoption of this pattern minimises
the chances of initialising data structures with wrong
or inconsistent data, as the DSLDSL compiler can perform
such checks when compiling the data into the internal
format. In addition, the data can be generated in the
most e�cient internal representation using tools such as
the perfect hash function generator gperf (Schmidt,
1990). The pattern is most often implemented as a DSLDSL

compiler from the external to the internal representa-
tion. Where runtime e�ciency is not a major constraint,
the DSLDSL can be directly coded within the system's host-
ing language source code utilising the user-friendly al-
ternative data structure and suitably interpreted at
runtime. Such strategies are often employed in systems
written in interpreted declarative languages such as
Prolog or Lisp. A representative example of a DSLDSL based
on this pattern is FIDOFIDO (Klarlund and Schwarzbach,
1997) which is designed to concisely express regular sets
of strings or trees. Other cases of DSLDSL-based data spec-
i®cations are the table initialisations generated by yacc
(Johnson, 1975) and lex (Lesk, 1975) for the table-driven
parsing and lexical analysis automata they create.

4.8. System front-end

The con®guration and adaptation of a system can
often be relegated to a DSLDSL front-end (Fig. 9). Compli-

cated software systems o�er hundreds of con®guration
options, while their users require ever-increasing adap-
tation possibilities. Adding more features and con®gu-
ration options can enlarge and complicate the system
with diminishing returns on real functionality and user-
friendliness. Making the system programmable by
means of the DSLDSL front-end structural pattern provides
its users with a declarative, maintainable, organised, and
open-ended mechanism for con®guring and adapting it.
Systems with more than a few con®guration options,
and systems whose operation cannot be adequately
speci®ed by means of some arguments or a graphical
user interface typically bene®t from the addition of a
DSLDSL front-end.

Using this strategy, the system's con®guration pa-
rameters and internal functionality are exposed as ele-
ments of the DSLDSL ± e.g., as variables and functions,
respectively. At this point, it is often advantageous to
remove from the system all elements that can be speci-
®ed by means of the DSLDSL, and code them in terms of it,
thus simplifying its structure.

Often the addition of a DSLDSL to a system can reveal
synergistic e�ects by enabling its communication with
other systems, allowing for the automatic generation of
DSLDSL programs with increased functionality, establishing
a common language among its user base, providing a
mechanism for optimising or checking the system's
con®guration, and opening a market for third-party
add-on applications. The pattern is most often imple-
mented as an interpreted language embedded within the
target system. A number of existing interpretative lan-
guages have been used or targeted explicitly for this
purpose. Lisp-like languages have been used by systems
such as the Emacs (Stallman, 1984) editor and the
AutoCAD package (Rawls and Hagen, 1998), while
languages such as Tcl (Ousterhout, 1994), Perl (Wall
and Schwartz, 1990), and Microsoft's Application BasicFig. 9. The system front-end pattern.

Fig. 10. Relationships within the DSLDSL pattern language.
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(Boctor, 1999) provide explicit support for system em-
bedding.

5. Conclusions

We have described a DSLDSL pattern language consisting
of eight DSLDSL design patterns. Our pattern language does
not include the design of a DSLDSL using traditional pro-
gramming language design and implementation tech-
niques (lexical analysis, parsing, code generation), as the
aspects of those are extensively covered in the existing
literature. The relationships of the patterns we described
are depicted in Fig. 10. The interrelationships between
the patterns are both interesting, and typical of a pattern
language focused on a speci®c domain. Throughout our
literature research for drafting this work we were im-
pressed by the multitude of DSLDSL designs, implementa-
tion strategies, and resulting systems, and the scarcity of
supporting design frameworks and methodologies. We
hope that the pattern language we have presented can be
used as a building block for a systematic view of the
software development process involving DSLDSLs.
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