
9 6 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 3 / $ 1 7 . 0 0 © 2 0 0 3 I E E E

C
olleagues in my research group and
in collaborating institutions typically
model software designs using graph-
ical tools such as Rational Rose,
Together, and Visio. I often witness
them toiling to adjust a graph’s ap-

pearance with the mouse or laboriously vis-
iting each class to change a single field’s
type. This need not be so. Design models

should be composed textually,
and graphs should be automati-
cally generated. You might find it
perverse to employ two differ-
ent representations (textual and
graphical) for the same underly-
ing model. So, to substantiate my
view, I’ll outline the advantages
of graphical models and describe
the benefits gained from directly
manipulating a textual represen-
tation, illustrating my point us-

ing a prototype implementation.

Graph-based models
No rule specifies that models should ap-

pear in a graphical form. A model is a sim-
plification of reality, so a model for a soft-
ware artifact could really be an outline of
that artifact; think of a class definition with-
out code in the method bodies. However, we
usually prefer to examine many of our mod-
els in a graphical representation: UML em-
ploys nine different diagrams for visualizing
different perspectives of a system.

Using a diagram to represent a model has
several advantages. When we examine a
model’s graphical representation, we use our
visual cognitive apparatus, which has mil-

lions of years of evolutionary advantage
over our text-reading abilities. A diagram’s
2D representation is a lot more expressive
than text, which readers typically scan from
left to right and from top to bottom. We can
view diagrams from different directions to
gain distinct insights, while using a larger
symbol set makes them more expressive. In
addition, we can obtain different levels of
detail from the same diagram: a bird’s-eye
view will easily convey a system’s structure,
while examining a class in detail can reveal
its collaborators. Finally, a diagram can let
us identify patterns; again, 2D pattern
matching is an activity we humans are par-
ticularly good at.

The drawing-editor approach
Designers typically create their model di-

agrams using a drawing editor. The seman-
tic distance between the editor’s graphical
model representation and the underlying
software artifact can vary enormously. Some
tools, such as Visio, are purely drawing aids.
Others, such as Rational Rose, offer round-
trip engineering (code-to-model and model-
to-code generation), while tools such as
ArgoUML provide domain-specific advice
during design. However, all drawing editors
require you to place and manipulate shapes
on the canvas, which, regardless of the help
that tools such as ArgoUML’s broom align-
ment tool provide, is tedious and time con-
suming. The effort and the motor coordina-
tion skills required for this activity are
mostly irrelevant to the end result. Unlike

loyal opposition

On the Declarative
Specification of Models
Diomidis Spinellis

… in which I oppose the uncritical overuse of graphical drawing tools for modeling

E d i t o r : R o b e r t L . G l a s s � C o m p u t i n g T r e n d s � r g l a s s @ i n d i a n a . e d u

Continued on p. 94

9 4 I E E E S O F T W A R E h t t p : / / c o m p u t e r. o r g / s o f t w a r e

LOYAL OPPOSITION

architectural or mechanical-engineer-
ing models, the appearance of a soft-
ware system’s model diagram is only
marginally related to the represented
software design’s quality.

The drawing activity is, however,
a creative task providing immediate
feedback; software engineers thus
often focus on delivering a nice pic-
ture rather than an effective design.
Furthermore, the model’s internal
representation is typically opaque or
under the drawing-editor tool’s con-
trol, and thus at odds with vertical
software process activities such as
configuration and revision control.
Finally, the semantic distance be-
tween the model and the artifact is
large enough to burden activities that
are naturally performed on software

code such as refactoring, automatic
code generation, and metric extrac-
tion. This is true even for design
tools that support round-trip engi-
neering of models, such as Rational
XDE and Jbuilder 6.

Declarative modeling
Computer power and automatic-

graph-drawing algorithms1 have suf-
ficiently advanced so as to allow the
automatic placement of graph nodes
on the canvas and the near optimal
routing of the respective edges. So,
we can design models using a declar-
ative textual representation and sub-
sequently view, publish, and share
them in graphical form. Building ar-
chitects employ a similar technique
when they create realistic ray-traced
pictures of a building out of “2-1/2
dimensional” ground plans (draw-

ings where numerous xy coordinates
share a single height datum, such as
all of a house’s 3-meter-high walls).
My prototype uses a model expressed
in a Java-like notation (see Figure 1a)
to automatically create the diagram
(see Figure 1b).

Creating models in a declarative,
textual notation offers several advan-
tages. The model composition mech-
anism matches well both a program-
mer’s high-level skills (the textual,
abstract formalization of concrete
concepts) and low-level skills (the
manipulation of text using an editor
and other text-based tools).

Also, the declarative notation, by
being closer to the program’s repre-
sentation, forces the designer to dis-
tinguish between the model and the
respective implementation and be-
tween essential system characteristics
and trivial adornments. In addition,
designers using a declarative model
will find it more difficult to get away
with, as they often do now, drawing
for a model a nice picture of the im-
plementation they have in mind.

Furthermore, the declarative rep-
resentation is highly malleable. The
existing visual structure does not hin-
der drastic changes, and users don’t
waste effort on the tidy arrangement
of graph nodes, thus lifting a psycho-
logical barrier against massive design
refactoring.

Declarative models can also be au-
tomated easily: they can be generated
from even higher-level descriptions
by trivial scripts and tools operating
on design process inputs such as
database schemas, existing code, or
structured requirements documents.2
Text macro processors can provide
configuration management, while re-
vision control and team integration
activities can utilize the same proven
tools and processes that are used for
managing source code. So, with a
tool such as RCS (Revision Control
System), you can keep track of design
revisions, create and merge branches,
and monitor model changes, while a
system such as CVS (Concurrent Ver-
sions System) lets you split work into
teams.

Finally, the declarative approach

Asset

BankAccount RealEstate Security

InterestBearingItem InsurableItem

CheckingAccount SavingsAccount Stock Bond

Figure 1. Automatic graph drawing: (a) a model expressed in Java-
like notation; (b) the diagram created from the model.

class Asset {}
class InterestBearingItem {}
class InsurableItem {}
/**
* @extends InsurableItem
* @extends InterestBearingItem
*/

class BankAccount extends Asset {}
/** @extends InsurableItem */
class RealEstate extends Asset {}
class Security extends Asset {}
class Stock extends Security {}
class Bond extends Security {}
class CheckingAccount extends BankAccount {}
class SavingsAccount extends BankAccount {}

(a)

(b)

Continued from p. 96

M a r c h / A p r i l 2 0 0 3 I E E E S O F T W A R E 9 5

LOYAL OPPOSITION

can readily utilize existing text-pro-
cessing tools for tasks that a drawing
editor might not provide. Consider
how your favorite model editor han-
dles the following tasks and how you
could handle them using a simple
Perl script or a text-processing pipe-
line applied to the declarative model
specification:

� Identify all classes containing a
given field (as a prelude to an as-
pect-oriented cross-cut).

� Count the total number of private
fields in a given design.

� Order methods appearing in mul-
tiple classes by their degree of
commonality.

� Identify differences between two
design versions.

T he declarative specification of
software models is clearly not a
panacea. My current UML dia-

gram design prototype sometimes
stresses dot, the underlying graph
layout generator, into generating
graphs with overlapping edges and
nodes. For example, when dot draws
UML association relationships, the
multiplicity and visibility adorn-
ments might overlap with the respec-
tive edges. Furthermore, learning the
declarative notation might be more
difficult than experimenting with the

toolbars of a GUI-based diagram edi-
tor competing for the designer’s atten-
tion. However, because a profession’s
maturity is also judged by the tools its
practitioners use, I believe that build-
ing and adopting a sharp declarative-
modeling toolset will enrich and ad-
vance software engineering. You can
download the tools I used to generate
the diagram in this article from www.
spinellis.gr/sw/umlgraph.

Acknowledgments
The prototype I describe could not exist

without the Graphviz graph visualization sys-
tem; John Elson and Stephen C. North gra-
ciously incorporated my changes for UML ar-
row styles into the tool’s source distribution.
Spyros Oikonomopoulos provided feedback
during the development of this work.

References
1. E.R. Gansner et al., “A Technique for Draw-

ing Directed Graphs,” IEEE Trans. Software
Eng., vol. 19, no. 3, May 1993, pp. 214–230.

2. D. Spinellis and V. Guruprasad, “Lightweight
Languages as Software Engineering Tools,”
Proc. Usenix Conf. Domain-Specific Lan-
guages, Usenix Assoc., Berkeley, Calif., 1997,
pp. 67–76.

Diomidis Spinellis is an assistant professor in the De-
partment of Management Science and Technology of the Athens
University of Economics and Business. Contact him at dds@aueb.gr.

Copyright and reprint permission: Copyright © 2003 by the Institute of Electrical and Electronics Engi-
neers, Inc. All rights reserved. Abstracting is permitted with credit to the source. Libraries are permitted to
photocopy beyond the limits of US copyright law for private use of patrons those post-1977 articles that
carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through
the Copyright Clearance Center, 222 Rosewood Dr., Danvers, MA 01923. For copying, reprint, or repub-
lication permission, write to Copyright and Permissions Dept., IEEE Publications Admin., 445 Hoes Ln.,
Piscataway, NJ 08855-1331.

Circulation: IEEE Software (ISSN 0740-7459) is published bimonthly by the IEEE Computer Society. IEEE
headquarters: Three Park Ave., 17th Floor, New York, NY 10016-5997. IEEE Computer Society Publications
Office: 10662 Los Vaqueros Cir., PO Box 3014, Los Alamitos, CA 90720-1314; (714) 821-8380; fax (714)
821-4010. IEEE Computer Society headquarters: 1730 Massachusetts Ave. NW, Washington, DC 20036-
1903. Subscription rates: IEEE Computer Society members get the lowest rates and choice of media option—
$43/34/56 US print/electronic/combination; go to http://computer.org/subscribe to order and for more infor-
mation on other subscription prices. Back issues: $10 for members, $20 for nonmembers (plus shipping and
handling). This magazine is available on microfiche.

Postmaster: Send undelivered copies and address changes to Circulation Dept., IEEE Software, PO
Box 3014, Los Alamitos, CA 90720-1314. Periodicals Postage Paid at New York, NY, and at addi-
tional mailing offices. Canadian GST #125634188. Canada Post Publications Mail Product (Cana-
dian Distribution) Sales Agreement Number 0487805. Printed in the USA.

How to
Reach Us

Writers
For detailed information on submitting articles,
write for our Editorial Guidelines (software@
computer.org) or access http://computer.org/
software/author.htm.

Letters to the Editor
Send letters to

Editor, IEEE Software
10662 Los Vaqueros Circle
Los Alamitos, CA 90720
software@computer.org

Please provide an email address or
daytime phone number with your letter.

On the Web
Access http://computer.org/software for
information about IEEE Software.

Subscribe
Visit http://computer.org/subscribe.

Subscription Change of Address
Send change-of-address requests for magazine
subscriptions to address.change@ieee.org.
Be sure to specify IEEE Software.

Membership Change of Address
Send change-of-address requests for IEEE
and Computer Society membership to
member.services@ieee.org.

Missing or Damaged Copies
If you are missing an issue or you received
a damaged copy, contact help@computer.org.

Reprints of Articles
For price information or to order reprints,
send email to software@computer.org or fax
+1 714 821 4010.

Reprint Permission
To obtain permission to reprint an article,
contact William Hagen, IEEE Copyrights and
Trademarks Manager, at whagen@ieee.org.

How to
Reach Us

