
9 2 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 6 / $ 2 0 . 0 0 © 2 0 0 6 I E E E

tools of the trade
E d i t o r : D i o m i d i s S p i n e l l i s ■ A t h e n s U n i v e r s i t y o f E c o n o m i c s a n d B u s i n e s s ■ d d s @ a u e b . g r

O
ne way to deal with bugs is to avoid
them entirely. For example, we could
hire only the best software engineers
and meticulously review every specifica-
tion, design, or code element before
touching a computer. However, this

approach would be wasteful because we’d be
underutilizing the many automated tools and
techniques that can catch bugs for us. As Pericles

recognized, creating a bug-free
artifact is a lot more difficult
than locating errors in it. Conse-
quently, although humans can
seldom cast large-scale bug-free
code from scratch, successful
bug-finding tools abound.

Most tools for eliminating
bugs work by tightening the spe-
cifications of what we build; an
industrial engineer might simi-

larly seek to reduce variability by manufacturing
to tighter tolerances. At the program code level,
tighter specifications will affect the operations
allowed on various data types, our program’s be-
havior, and our code’s style. Furthermore, we can
use many different approaches to verify that our
code is on track: the programming language, its
compiler, specialized tools, libraries, and embed-
ded tests are our most obvious friends here.

Languages
Modern programming languages do a great

job in restricting many risky code constructs and
expressions. First of all, structured languages (any-
thing better than assembly language and old-style

Fortran) prohibit, or at least impede, many pro-
gramming tricks that can easily lead to unmain-
tainable spaghetti code. Even C, with its support
for goto and longjmp (giving us ample rope to
hang ourselves) doesn’t allow arbitrary jumps
across different functions. Also, once using a struc-
tured language makes us properly indent our code,
we’re also forced to split it into separate functions
or methods: we’d be mad to try to write code
with more than a handful of indentation levels.
This splitting eliminates bugs by promoting at-
tributes such as encapsulation and testability.

Additionally, languages can often enforce
correct behavior on our code. In Java, if a
method can throw an exception, methods that
call it will have to catch it or declare that they
may also throw that exception; in C# we can
ensure that resources we acquire will be prop-
erly disposed of via the using construct.

More importantly, languages with strong
typing rules can detect numerous problems at
compile time as data-type errors (adding apples
to oranges). Obviously, errors we catch at com-
pile time won’t appear when the program runs:
this is an effective way to eliminate bugs. For
example, the introduction of generics into Java
1.5 lets us specify that a list container will house
only strings; our program won’t compile if we
attempt to store a value of a different type in it.
In earlier versions of Java where the list con-
tained values of the type Object—the least
common denominator of all Java types—the er-
ror would manifest at runtime as a bug when
we attempted to cast an element retrieved from
the list into a string.

Bug Busters
Diomidis Spinellis

Although only a few may originate a policy, we are all able to judge it. — Pericles of Athens

TOOLS OF THE TRADE

Compiler tricks
Even when the programming lan-

guage lets us write unsafe code, we can
often ask the compiler to verify it for us.
Most compilers will generate warnings
when encountering questionable code
constructs; we can save ourselves from
embarrassing bugs by actually paying
attention to these. However, many of us,
when we’re working under a pressing
deadline, will ignore compiler warnings.
We can deal with this problem by using
another commonly supported compiler
option that treats warnings as errors:
the code won’t compile until we deal
with all warnings.

We can also often help the compiler
generate better warnings for us. Con-
sider, for example, C’s notoriously error-
prone printf- and scanf-like func-
tions. These functions require us to match
the types specified in a format string with
the supplied arguments. If we get this
correspondence wrong, our program
could crash, print garbage, or, worse,
open itself to a stack-smashing attack.
Some compilers will verify format argu-
ments for the C library functions, but we
often add our own functions with similar
behavior, which the compiler can’t check.
For these cases, the GNU C compiler pro-
vides the _attribute_((format()))
extension. We tag our own function dec-
larations with the appropriate attribute,
and the compiler will check the argu-
ments for us. Along the same line, Mi-
crosoft’s attributed program extensions
to C++ and corresponding Windows API
header annotations can catch dangerous
buffer overflows.

Specialized tools
Another way to eliminate bugs is to

pass our code through one or more
tools that will explicitly check it for
problems. The progenitor of this tool
family is Lint, a tool Stephen Johnson
wrote in the ’70s to check C code for
nonportable code and error-prone or
wasteful constructs. For example, Lint
will flag the construct if (b = 0) as
an error, complaining of an assignment
in a conditional context; we probably
intended to write if (b == 0). Nowa-
days we can find commercial and open
source lint-like tools for many commonly

used languages. Some examples include
CheckStyle, ESC/Java2, FindBugs, JLint,
Lint4J, and PMD (covering Java); FxCop
and devAdvantage (covering C#); and
PC-lint and Coverity (covering C or
C++). Other tools specialize in locating
security vulnerabilities—a class of bugs
that stand out for their potentially devas-
tating consequences. Tools in this cate-
gory include Flaw-finder, ITS4, Splint (se-
cure programming Lint), and RATS
(rough auditing tool for security).

Specialized tools can cover a lot more
than what we could realistically expect a
compiler to warn us about. For example,
many tools will report violations of cod-
ing style guidelines, such as indentation
and naming conventions. Furthermore,
some tools are extensible: we can add
rules particular to our own project (calls
to launchMisilemust be preceded by a
call to openHatch), and we can precisely
specify the rules that our project will fol-
low. Integrating a code-checking tool into
our build process, configuring its verifi-
cation envelope, and extending it for our
project should be an important part of
our development process. In some proj-
ects, a clean pass from the code-checking
tools is a (sometimes enforced) prerequi-
site for checking code into the version
control system.

Code
Finally, we can delegate bug busting

to code. Many libraries come with hooks
or specialized builds that can catch ques-
tionable argument values, resource leaks,
and wrong ordering of function calls. As

a prime example, consider the C lan-
guage dynamic memory-allocation func-
tions—a potent source of both bugs and
research papers that describe versions of
the library that can catch them. We can
catch many of these bugs by using the
valgrind tool, by loading the watchmal-
loc.so library (under Solaris), or by set-
ting the MALLOC_CHECK or MALLOC_OP-
TIONS environment variables (under
GNU/Linux distributions and FreeBSD).

When writing our own code, we’ve
even more options at our disposal. We
can sprinkle our code with assertions, ex-
pressing preconditions, postconditions,
and invariants. Any violation of them
will trigger a runtime error and help us
pin down a possibly difficult-to-locate
bug. At a higher level, we can instrument
our classes with unit tests, using the JUnit
testing framework or the equivalent for
our environment. When churning out
code, unit tests will identify many early
bugs; later on, when we focus on mainte-
nance, unit tests will ring a bell when we
introduce new bugs.

Bugs many be a fact of life, but
they’re not inevitable. We have some
powerful tools to find them before they
mess with our programs, and the good
news is that these tools get better every
year. Go out and use them!

Diomidis Spinellis is an associate professor in the De-
partment of Management Science and Technology at the Athens
University of Economics and Business and the author of Code
Quality: The Open Source Perspective (Addison-Wesley, 2006).
Contact him at dds@aueb.gr.

Many libraries come
with specialized builds
or hooks that can catch
questionable argument
values, resource leaks,

and wrong ordering
of function calls.

Nu Info Systems, Inc.
Nu Info Systems, Inc., a software-
consulting firm, headquartered in
West Palm Beach, Florida, has
multiple ongoing opportunities in
each technology set for experienced
software professionals.

Candidates must have:
Bachelor in Comp Science/Engg., Math or Business and 2 years
experience in stated technology group or four years experience in job in
required skills;
Some positions require Master's Degree or equivalent and one year
experience.

Technologies wanted:
JAVA, J2EE, JAVA Server, JSP, XML
VC++, C++, C, MFC, COM/DCOM, OOD
Systems Administrators:
Unix/Solaris/AIX/Windows NT
Win Runner, Load Runner, TSL, Rational Suite
VB.NET, ASP.NET, Visual Basic 6.0, MS SQL Server, Oracle
PeopleSoft HR & Payroll modules
SAP FI & CO Modules
C++, Unix, PERL, CORBA, Oracle, Multithreading
COBOL, CICS, DB2, JCL, MVS
Database Administrators: Oracle, SQL Server, DB2, Terradata
PowerBuilder, PFC, Oracle, Sybase SQL Server

Qualified candidates, please email CV to: hr@nuis.com or
Fax to: 561-828-6383

or mail to:
ATTN: HR Department,

Nu Info Systems, Inc., 515 N Flagler Drive, Suite 300P,
West Palm Beach, FL 33401

