10015 0f the frade

Editor: Diomidis Spinellis

Athens University of Economics and Business = dds@aueb.gr

The Tools We Use

20

It is impossible to sharpen a pencil with a blunt ax. It is equally vain to try to do it with ten

blunt axes instead. —Edsger W. Dijkstra

hat’s the state of the art in the tools
we use to build software? To answer
this question, I let a powerful server
build from source code about 7,000
open source packages over a period
of a month. The packages 1 built
form a subset of the FreeBSD operating system
ports collection, comprising a wide spectrum of
application domains: from desk-
top utilities and biology appli-
cations to databases and devel-
opment tools. The collection is
representative of modern soft-
ware because, unlike say a ran-
dom sample of SourceForge.
net projects, FreeBSD developers
have found these programs use-
ful enough to port to FreeBSD.

The build process involves
fetching each application’s source code bundle
from the Internet, patching it for FreeBSD, and
compiling the source code into executable pro-
grams or libraries. Over the one-month period, I
also set up the operating system to write an ac-
counting record for each command it executed. I
then tallied the CPU times of the 144 million
records corresponding to the work to get a pic-
ture of how our software builds exploit the
power of modern gigahertz processors.

Figure 1 shows the time breakup of the com-
mands that took more than one percent of the
18 days of accumulated CPU time. The picture
isn’t pretty. First of all, variety in our tools
ecosystem appears to be extremely limited. A
full 94 percent of the CPU time is taken by only
10 commands, of which six drive the unpackag-

IEEE SOFTWARE Published by the IEEE Computer Society

ing process and are not directly part of each
package’s compilation. This wouldn’t be so bad
if the remaining commands, which apparently
represent the state of the art in software-building
tools, were based on shiny modern ideas. But
this isn’t the case. Three of the tools have their
roots in the 1970s and 1980s: C (1978), make
(1979), and C++ (1983). As you can see in the
figure, the compilation of C and C++ code takes
up the lion’s share of the building effort.

Is that so?

I hear you arguing that studying the tools used
at build time is disingenuous because most im-
provements have happened in the environment
where the software is written, not in the tools
that compile the software. And that nowadays,
many developers code using advanced IDEs (in-
tegrated development environments) that inte-
grate design, coding, debugging, performance
analysis, and testing—a sure sign of progress.

I beg to differ. Using a shiny IDE on top of
1970s technologies is equivalent to wearing an
iPod while ox-plowing: the work becomes less
burdensome, but we’re unlikely to reap sub-
stantial productivity improvements from such
a change.

The most important (perhaps only impor-
tant) artifact of software development is the
source code. This is where we store all knowl-
edge acquired during a system’s design, devel-
opment, and subsequent evolution. Specifica-
tions and design documents (when they exist)
quickly become out of date, knowledgeable de-
velopers switch jobs or retire, and many teams
don’t document or enforce development pro-

0740-7459/07/$25.00 © 2007 IEEE

TOOLS OF THE TRADE

cesses. This is why organizations often
stumble when they try to replace a
legacy system. All they have is code,
and legacy code is (as we saw in the
May/June column) often a mess. There-
fore, by looking at the tools we use to
convert source code into executable
format, we get an accurate picture of
the abstraction level that programmers
will face during construction and main-
tenance (where the largest chunk of
software development effort takes
place). We’ll see order-of-magnitude
productivity improvements only when
we raise our code’s level of abstraction.

Some of you might also argue that—
because programs written in Java, C#,
and scripting languages don’t require
the operating system-specific compila-
tion step that I measured—I haven’t
taken into account the large amount of
software written in these languages.
This is true, but Java and C# still use
the same data types and flow-control
constructs as C++. They’re also still
niche players in some important mar-
kets: system software, desktop applica-
tions, and embedded systems. Where
scripting languages are used (think of
Ruby on Rails for Web site building),
they offer big productivity gains by
raising the level of abstraction and of-
fering domain-specific functionality.
However, it’s not yet clear how we can
apply these gains to other fields.

Ox-plowing revisited

So what would make me happy?
For a start, I’d like to see a tractor re-
place the ox plow. I'd like to see large
chunks of a build’s CPU time going to
compilers for languages with at least
an order of magnitude more expressive
power than C and C++. Some candi-
dates that can offer us higher levels of
abstraction are domain-specific lan-
guages, general-purpose declarative
languages such as Haskell, and exe-
cutable UML (Unified Modeling Lan-
guage). These will let our computers
work harder to understand our higher-
level programs, thus trading CPU
power for human intellect.

For instance, the data I collected re-
flects the higher level of abstraction of
C++ over C. Each invocation of the

sh
pkg_delete \
jel \

miree
make —

cclplus
(C++ compiler)

Figure 1. Gomposition of the FreeBSD ports build effort.

C++ compiler consumes on average 1.6
s of CPU time—many times more than
the 0.17 s of each C compiler run. Ac-
cumulated over more than a million
executions, this is a lot of processor
time. However, nowadays CPU power
is a resource that (a) we can afford to
use and (b) we can’t afford not to use.

I’d also like to see the use of higher-
yield grains, fertilizer, and high-tech ir-
rigation; in our case, ancillary tools that
help us build reliable, secure, efficient,
usable, and maintainable software.
These could ensure, for example, that
the locks in my software are correctly
paired or that the implementation satis-
fies a formally described specification.
I’d also like to see in the top places of
the build-effort breakup a single testing
framework, a style checker, and a bug
finder. Although you could argue that
all these tools will only be used during
development, I think that a clean bill of
health from them during each build
would help us focus on reliability and
readability. After all, we don’t disable
the compiler’s type-checking function-
ality when performing a release build.
In an ideal world, one or two tools
dominating each category would let de-
velopers learn one of them and apply it
in all their work.

wo success stories of the 1970s that
Iraised the level of abstraction for a

specific domain are Stephen John-
son’s parser generator YACC (yet an-
other compiler compiler) and Michael
Lesk’s lexical analyzer generator Lex.
These two tools and the theory behind
them transformed the task of writing a
compiler from wizardry into a standard
rite of passage for computer science un-
dergraduates. It’s been a long time since
they appeared, and it’s high time to
come up with similarly revolutionary
new tools. So, the next time you design
a system’s architecture, think which
tools can give you the highest expres-
sive power. Look around, ask your tool
vendors, experiment, and invent. Don’t
just settle for the bland comfort of re-
polished 1970s technologies. &

Diomidis Spinellis is an associate professor in the De-
partment of Management Science and Technology at the Athens
University of Economics and Business and the author of Code
Quality: The Open Source Perspective (Addison-Wesley, 2006).
Contact him at dds@aueb.gr.

Post your comments online by visiting the column’s

blog: www.spinellis.gr /tools

July/August 2007 1EEE SOFTWARE 21

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

