10013 0f 16 trate

Editor: Diomidis Spinellis

Athens University of Economics and Business

dds@aueb.gr

78

IEEE SOFTWARE

etaprogramming, using programs to
manipulate other programs, is as old
as programming. From self-modify-
ing machine code in early computers
to expressions involving partially ap-

plied functions in modern functional-
programming languages, metaprogramming is
an essential part of an advanced programmer’s
arsenal.

Also known as generative
programming, metaprogramming
leverages a computer language’s
power. Rather than manipulating
plain data elements, it manipu-
lates symbols representing various
complex operations. However,
like all levers, metaprogramming
can be a blunt instrument. Small
perturbations on the lever’s short
end (the language) result in large changes in the
final product. In metaprogramming, this lever-
age can lead to unmaintainable code, insidi-
ous bugs, inscrutable error messages, and code-
injection-attack vulnerabilities. Even when we take
away industrial-strength compilers and interpre-
ters, which are also metaprograms, we find meta-
programming wherever we look.

Everyday metaprogramming involves on-the-fly
code production. Representative examples include
dynamically generated SQL statements and code
created for evaluation at runtime in interpreted
languages. Metaprogramming also occurs in pro-
grams that spew out HTML or XML. Although
we can’t classify these markup languages as code,
their rich syntactic structure qualifies their genera-
tion as metaprogramming. Unfortunately, we com-
monly produce code on the fly by simply pasting

Published by the |[EEE Computer Society

together character strings. This means that it’s dif-
ficult to verify essential properties of the generated
code—such as validity, correctness, and safety—at
compile time.

Language extensions

A more powerful type of metaprogramming
involves extending existing languages or creating
new ones.

In the C programming language, the vehicle for
metaprogramming is the preprocessor, and its ap-
plications range from the mundane to the bizarre.
In 1978, Steven Bourne was using macro defini-
tions to give C the flavor of Algol. Ten years later,
Jack Applin entered the International Obfuscated C
Code Contest with an entry that calculated a list of
prime numbers at compile time. Most commonly,
however, the C preprocessor hides tricky or long
code sequences behind macros that are easier on the
eye. Although the C preprocessor has a functional-
programming language at its core, its severe limita-
tions (no recursion and no syntax or type checking of
the generated code) make it a tricky, dangerous tool.

In the C++ world, we often use its templates
facility for metaprogramming. In contrast to the
C preprocessor, these lead to syntactically correct
code. Through templates, we can provide type-safe
and terse canned implementations of design pat-
terns such as Visitor and Object Factory. However,
hijacking a language facility (dauntingly named
structural polymorphism and intended for creating
more versatile classes) and using it to create elabo-
rate language extensions leads to problems. While
I admire the cleverness and skill that hides behind
C++ libraries such as Boost (www.boost.org), the
fact remains that writing advanced template code
is devilishly hard, and even using it can be quite

0740-7459/08/$25.00 © 2008 IEEE

TOOLS OF THE TRADE

tricky. This approach’s brittleness is appar-
ent in the compiler error messages that can
span hundreds of lines if a developer uses a
wrong type.

Java and .NET’s modern frameworks
provide more restrictive extension mecha-
nisms: annotations (in Java) and attributes
(in .NET). We can use these to annotate our
code, and our metaprograms are then run-
time libraries or compiler extensions that
act on the annotated code. Unfortunately,
although each platform lets us extend the
language through a carefully designed API
and corresponding tools, we’re still severely
constrained in extending the language. For
instance, we can only use compile-time con-
stants as arguments to Java’s annotations.

Specialized languages
and tools

The least restrictive form of metapro-
gramming involves implementing a domain-
specific language (DSL) as a simple compiler
or interpreter. Although this is a common
approach with few inherent limitations, its
large start-up cost weighs against the long-
term productivity payoff. Tools for a DSL
will always be inferior to those for a main-
stream language and will always require an
expert to maintain them.

So-called wizards that generate code
from user replies to canned questions sad-
dle us with an additional problem. Because
the original user interaction is typically
lost, we’re left to maintain the often inscru-
table wizard-generated code.

A final alternative involves using a lan-
guage that’s explicitly designed with meta-
programming in mind. Functional lan-
guages fall in this category, because in them
functions are first-class citizens that we
can manipulate in the same way as other
data. Using a specialized transformation
language, like TXL and (to a lesser extent)
XSLT, can also work in some instances.
However, in all cases we’re left with the im-
pression of operating in a niche area where
support, documentation, and trained devel-
opers will be hard to come by.

A tall order

I hope to have convinced you by now
that although metaprogramming is ubiqui-
tous, the way we go about it leaves a lot to
be desired.

In the early 1970s, Brian Kernighan, dis-
mayed with the complexity of writing struc-

tured code in Fortran (66, I guess), imple-
mented RATFOR, a preprocessor that would
take Fortran statements flavored with a
block structure and spew out the goto-
infested code that was in those days the
norm. That made Fortran programming
a considerably saner affair—“pleasant” in
Kernighan’s words. RATFOR presaged the
widespread adoption of current block-struc-
tured languages, like C and Java.

Over the past few years, I've been
dreaming about a similar move toward a
rational framework for metaprogramming.
Embarrassingly, I've been unable to come
up with an acceptable result. However, in
the process, I've put together some require-
ments for a satisfactory solution:

B Consistent programming and meta-
programming languages. Designing,
learning, and supporting different lan-
guages is wasteful. Programmers of-
ten shy away from metaprogramming
because they have to master two lan-
guages and handle their often tricky in-
teractions. By using the same language
at all levels, we can reap wide econo-
mies of scale.

B Compile-time objects as first-class citi-
zens. This includes both code and types.
We should be able to generate through
code any program that we can write by
hand.

B Closed form. Manipulations of compile-
time objects should always lead to syn-
tactically correct code and valid types.

B Familiar metaprogramming constructs.
I admit that the functional-program-

IS up to theorists
to bridge the
distance between
metaprogramming
theory and the available
language constructs.

ming community has already solved el-
egantly most of the problems I describe.
Yet, despite impressive progress on
many fronts, including performance,
type-system versatility, library support,
and tool availability, most program-
mers are loath to embrace an unfamil-
iar and—to their eyes at least—often
impenetrable programming paradigm.
So, we should base the solution on syn-
tax and programming constructs that
most developers already know. If the
distance between the metaprogram-
ming theory and the available language
constructs is large, it’s up to the theo-
rists to bridge it, not the programmers.

B Familiar code. The metaprogramming
facilities should enforce the principle
of least astonishment on the target lan-
guage. Programs that take advantage of
metaprogramming-provided extensions
should be readable and easy to under-
stand by developers unfamiliar with
the extensions.

B Parsimony. A general-purpose language
supporting metaprogramming should
be simpler than today’s modern lan-
guages. Metaprogramming should pro-
vide many of the language features,
just as today’s languages rely on (stan-
dard) external libraries for much of their
functionality.

Although languages like Lisp and Python
satisfy some of the goals I’ve stated, I think
that we’re still a long way from a satisfac-
tory solution.

id T miss any requirements? Do you

find my goal realistic’c How can we go

about making it a reality? Please post
your responses in the column’s blog. &

Diomidis Spinellis is an associate professor in the
Department of Management Science and Technology at the
Athens University of Economics and Business and the author
of Code Quality: The Open Source Perspective (Addison-Wesley,
2006). Contact him at dds@aueb.gr.

Post your comments online by visiting the column’s
blog: www.spinellis.gr/tools

January/February 2008 |EEE SOFTWARE 79

