
tools of the trade

78	 I E E E S o f t w a r e P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E

E d i t o r : D i o m i d i s S p i n e l l i s n A t h e n s U n i v e r s i t y o f E c o n o m i c s a n d B u s i n e s s n d d s @ a u e b . g r

Rational Metaprogramming
Diomidis Spinellis

M
etaprogramming, using programs to
manipulate other programs, is as old
as programming. From self-modify-
ing machine code in early computers
to expressions involving partially ap-
plied functions in modern functional-

programming languages, metaprogramming is
an essential part of an advanced programmer’s

arsenal.
Also known as generative

programming, metaprogramming
leverages a computer language’s
power. Rather than manipulating
plain data elements, it manipu
lates symbols representing various
complex operations. However,
like all levers, metaprogramming
can be a blunt instrument. Small
perturbations on the lever’s short

end (the language) result in large changes in the
final product. In metaprogramming, this lever-
age can lead to unmaintainable code, insidi-
ous bugs, inscrutable error messages, and code-
injection-attack vulnerabilities. Even when we take
away industrial-strength compilers and interpre
ters, which are also metaprograms, we find meta
programming wherever we look.

Everyday metaprogramming involves on-the-fly
code production. Representative examples include
dynamically generated SQL statements and code
created for evaluation at runtime in interpreted
languages. Metaprogramming also occurs in pro-
grams that spew out HTML or XML. Although
we can’t classify these markup languages as code,
their rich syntactic structure qualifies their genera-
tion as metaprogramming. Unfortunately, we com-
monly produce code on the fly by simply pasting

together character strings. This means that it’s dif-
ficult to verify essential properties of the generated
code—such as validity, correctness, and safety—at
compile time.

Language extensions
A more powerful type of metaprogramming

involves extending existing languages or creating
new ones.

In the C programming language, the vehicle for
metaprogramming is the preprocessor, and its ap-
plications range from the mundane to the bizarre.
In 1978, Steven Bourne was using macro defini-
tions to give C the flavor of Algol. Ten years later,
Jack Applin entered the International Obfuscated C
Code Contest with an entry that calculated a list of
prime numbers at compile time. Most commonly,
however, the C preprocessor hides tricky or long
code sequences behind macros that are easier on the
eye. Although the C preprocessor has a functional-
programming language at its core, its severe limita-
tions (no recursion and no syntax or type checking of
the generated code) make it a tricky, dangerous tool.

In the C++ world, we often use its templates
facility for metaprogramming. In contrast to the
C preprocessor, these lead to syntactically correct
code. Through templates, we can provide type-safe
and terse canned implementations of design pat-
terns such as Visitor and Object Factory. However,
hijacking a language facility (dauntingly named
structural polymorphism and intended for creating
more versatile classes) and using it to create elabo-
rate language extensions leads to problems. While
I admire the cleverness and skill that hides behind
C++ libraries such as Boost (www.boost.org), the
fact remains that writing advanced template code
is devilishly hard, and even using it can be quite

	 January/February 2008 I E E E S o f t w a r e � 79

Tools of the trade

tricky. This approach’s brittleness is appar-
ent in the compiler error messages that can
span hundreds of lines if a developer uses a
wrong type.

Java and .NET’s modern frameworks
provide more restrictive extension mecha-
nisms: annotations (in Java) and attributes
(in .NET). We can use these to annotate our
code, and our metaprograms are then run-
time libraries or compiler extensions that
act on the annotated code. Unfortunately,
although each platform lets us extend the
language through a carefully designed API
and corresponding tools, we’re still severely
constrained in extending the language. For
instance, we can only use compile-time con-
stants as arguments to Java’s annotations.

Specialized languages
and tools

The least restrictive form of metapro-
gramming involves implementing a domain-
specific language (DSL) as a simple compiler
or interpreter. Although this is a common
approach with few inherent limitations, its
large start-up cost weighs against the long-
term productivity payoff. Tools for a DSL
will always be inferior to those for a main-
stream language and will always require an
expert to maintain them.

So-called wizards that generate code
from user replies to canned questions sad-
dle us with an additional problem. Because
the original user interaction is typically
lost, we’re left to maintain the often inscru-
table wizard-generated code.

A final alternative involves using a lan-
guage that’s explicitly designed with meta
programming in mind. Functional lan-
guages fall in this category, because in them
functions are first-class citizens that we
can manipulate in the same way as other
data. Using a specialized transformation
language, like TXL and (to a lesser extent)
XSLT, can also work in some instances.
However, in all cases we’re left with the im-
pression of operating in a niche area where
support, documentation, and trained devel-
opers will be hard to come by.

A tall order
I hope to have convinced you by now

that although metaprogramming is ubiqui-
tous, the way we go about it leaves a lot to
be desired.

In the early 1970s, Brian Kernighan, dis
mayed with the complexity of writing struc-

tured code in Fortran (66, I guess), imple-
mented Ratfor, a preprocessor that would
take Fortran statements flavored with a
block structure and spew out the goto-
infested code that was in those days the
norm. That made Fortran programming
a considerably saner affair—“pleasant” in
Kernighan’s words. Ratfor presaged the
widespread adoption of current block-struc-
tured languages, like C and Java.

Over the past few years, I’ve been
dreaming about a similar move toward a
rational framework for metaprogramming.
Embarrassingly, I’ve been unable to come
up with an acceptable result. However, in
the process, I’ve put together some require-
ments for a satisfactory solution:

Consistent programming and meta­
programming languages. Designing,
learning, and supporting different lan-
guages is wasteful. Programmers of-
ten shy away from metaprogramming
because they have to master two lan-
guages and handle their often tricky in-
teractions. By using the same language
at all levels, we can reap wide econo-
mies of scale.
Compile-time objects as first-class citi­
zens. This includes both code and types.
We should be able to generate through
code any program that we can write by
hand.
Closed form. Manipulations of compile-
time objects should always lead to syn-
tactically correct code and valid types.
Familiar metaprogramming constructs.
I admit that the functional-program-

n

n

n

n

ming community has already solved el-
egantly most of the problems I describe.
Yet, despite impressive progress on
many fronts, including performance,
type-system versatility, library support,
and tool availability, most program-
mers are loath to embrace an unfamil-
iar and—to their eyes at least—often
impenetrable programming paradigm.
So, we should base the solution on syn-
tax and programming constructs that
most developers already know. If the
distance between the metaprogram-
ming theory and the available language
constructs is large, it’s up to the theo-
rists to bridge it, not the programmers.
Familiar code. The metaprogramming
facilities should enforce the principle
of least astonishment on the target lan-
guage. Programs that take advantage of
metaprogramming-provided extensions
should be readable and easy to under-
stand by developers unfamiliar with
the extensions.
Parsimony. A general-purpose language
supporting metaprogramming should
be simpler than today’s modern lan-
guages. Metaprogramming should pro
vide many of the language features,
just as today’s languages rely on (stan-
dard) external libraries for much of their
functionality.

Although languages like Lisp and Python
satisfy some of the goals I’ve stated, I think
that we’re still a long way from a satisfac-
tory solution.

D id I miss any requirements? Do you
find my goal realistic? How can we go
about making it a reality? Please post

your responses in the column’s blog.

Diomidis Spinellis is an associate professor in the
Department of Management Science and Technology at the
Athens University of Economics and Business and the author
of Code Quality: The Open Source Perspective (Addison-Wesley,
2006). Contact him at dds@aueb.gr.

n

n

Post your comments online by visiting the column’s
blog: www.spinellis.gr/tools

It’s up to theorists
to bridge the

distance between
metaprogramming

theory and the available
language constructs.

