
22	 I E E E S o f t w a r E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 	 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E

tools of the trade
E d i t o r : D i o m i d i s S p i n e l l i s n A t h e n s U n i v e r s i t y o f E c o n o m i c s a n d B u s i n e s s n d d s @ a u e b . g r

Software Builders
Diomidis Spinellis

T
he tools and processes we use to trans-
form our system’s source code into an ap-
plication that we can deploy or ship have
always been important, but nowadays they
can mean the difference between success
and failure. The reasons are simple: larger

code bodies; teams that are bigger, more fluid, and
more widely distributed; richer interactions with

other code; and sophisticated
tool chains. All these mean that
a slapdash software build pro-
cess will be an endless drain on
productivity and an embarrass-
ing source of bugs, while a high-
quality one will give us develop-
ers more time and traction to
build better software.

Automate
Software building’s golden rule is that you should
automate all build tasks. This automation’s scope
includes setting up the build environment, compil-
ing the software, performing unit and regression
testing, typesetting the documentation, stamp-
ing a new release, and updating the project’s
Web page. You can never automate too much.
In a project I manage, I’ve arranged for each re-
lease distribution to pick up from the issue-
management database the bugs that the release
fixes and then include them in the release notes.
This has markedly improved the performance of
external testers. Automation serves three pur-
poses: it documents the processes, it speeds up the
corresponding tasks, and it eliminates mistakes
and forgotten steps. (Did we correctly update the
documentation to indicate the software’s current
version?)

At the simplest level you can automate pro-
cesses by writing small scripts or programs, us-
ing your operating system’s shell language or
a general-purpose scripting language. In some

cases—for instance, flashing an embedded device’s
memory image—you might even need to develop
a purpose-built program to avoid mouse-clicking
on that pesky GUI application that your hard-
ware vendor supplied. However, this approach is
suitable for only the most specialized purposes. In
most cases, a build tool will standardize your pro-
cess and provide you with many useful facilities.

Choose
The most popular tool options for automating your
build are the facilities that your IDE provides, the
various implementations of Make, and Apache Ant
and Maven. I don’t recommend basing your build
process on your IDE for anything but the most
trivial projects. The build process gets tied down to
the specific IDE and the platforms it runs on. Even
if the IDE is popular, why needlessly restrict the
developers’ choice? Also, most IDEs provide lim-
ited build facilities, often restricting how you can
abstract tasks and options.

Maven is an interesting choice, if your project
is Java based. It’s a tool with an attitude, sporting
a range of built-in patterns for software builds.
If you’re willing to adopt its predefined patterns,
you end up with a well-defined, complete, and
standardized build process and with less verbiage
than other alternatives.

The differences between Make and Ant are
noteworthy, but the choice isn’t difficult. Make has
been used for everything—from typesetting books
to setting up phone exchanges. Ant’s domain is lim-
ited mostly to the Java world. However, nowadays
some circles consider building a Java application
with anything but Ant or Maven downright ec-
centric. So, if you’re working with Java, you should
have a very convincing story to explain a contrar-
ian choice. However, keep in mind that Sun’s Java
Development Kit ships with 471 makefiles (Make’s
default input file) and just 36 Ant build files.

Both tools work on a dependency graph of

tools of the trade
E d i t o r : D i o m i d i s S p i n e l l i s n A t h e n s U n i v e r s i t y o f E c o n o m i c s a n d B u s i n e s s n d d s @ a u e b . g r

	 May/June 2008 I E E E S o f t w a r E 	 23

ToolS of The TrADe

tasks. For this, you describe your build
processes as a series of tasks that depend
on each other. For instance, to link to-
gether your project’s modules, you must
first compile them. Make’s graph nodes
are typically files; its decisions on what to
build are based on those files’ time stamps.
This lets it short-circuit large parts of the
build process when the build is incremen-
tal, giving you a performance edge. Ant’s
tasks are abstract named blocks. Ant will
always traverse the whole graph, but some
tasks, such as that of the Java compiler,
can internally determine that their work
is already done.

A major advantage of Ant is its scripts’
portability. In contrast to Make, which
invokes external programs to accomplish
its work, Ant’s tasks are built into it (or
loaded as extensions, written in Java).
So, an Ant script should behave identi-
cally on any Java platform, whereas with
Make you must spend effort to avoid or
abstract-away system-specific commands.
If you’re using Make on a Windows plat-
form, installing a Unix-compatibility suite
such as Cygwin can help your makefiles
run on both Windows and Unix. Alterna-
tively, you can inject cross-platform com-
patibility into your build system through
CMake (http://cmake.org).

Portability aside, because Make does
its work with normal shell commands,
you can easily dry-run any part of your
build process on the command prompt.
Debugging a build process (yes, unfor-
tunately this is sometimes needed) is also
easier with Make, because the output you
see from it is the commands that the sys-
tem runs. In contrast, Ant’s behavior is
opaque: to analyze what a task is doing,
you must add print statements and (at a
deeper level) look at the Java source code
that implements it.

Some developers have reimplemented
and extended the original 1970s Make
program. Versions such as those con-
nected with the Berkeley Software Dis-
tribution (BSD) and GNU offer file inclu-
sion, conditionals, more readable ways to
specify implicit rules and their variables,
string processing, and loops. These fea-

tures increase the expressiveness of your
build scripts but can make them less por-
table, because they become tied to a spe-
cific implementation of Make.

optimize
After automating your build process, the
next step is to optimize it. As much as I
nostalgically remember the days when I
could cook and eat dinner while compil-
ing an application, a quick build cycle can
keep developers focused by robbing them
of the excuse to browse Slashdot (and
worse) while their code is compiling. The
first optimization step involves the correct
handling of dependencies, so that a part
(for instance, an object file) is built if and
only if one of its constituents (the corre-
sponding source file) changes. This step
poses two possible problems. Extraneous
processing (for example, compiling many
C source files together by invoking the
compiler with a wild card) is a waste of
time. On the other hand, missing a depen-
dency, such as the fact that a C file must
be recompiled when a header file changes,
can introduce subtle bugs that are difficult
to track down. For preprocessor-based
languages such as C and C++, dependency
tracking can become so complicated that
tools (such as ccache) will cache each com-
pile cycle’s input and output to transpar-
ently skip compilations for which they
have the correct cached result.

An additional neat optimization pos-
sibility is to exploit idle workstations in
your organization or processor cores on
your machine. Many parts of a build pro-

cess are trivially parallelizable and con-
tain a nice mix of I/O and CPU-intensive
processing. So, you can shave significant
fractions of the build time by running
parts in parallel. Most modern Make pro-
grams can do that (with a -j option speci-
fying the number of jobs to run simul-
taneously), while Ant has the equivalent
“parallel” container task. In addition,
tools such as distcc and Icecream can dis-
tribute a build across many machines.

excel
Once you’ve got that build process in place,
take the extra steps needed to make it
shine. A makefile or an Ant build file is also
source code, and you should treat it with
the same respect. Put it under version con-
trol, document it with ample comments,
use descriptive variable and target names,
put often-used sequences into reusable
blocks, and don’t repeat yourself. Appro-
priate reuse can keep your build specifica-
tions short and sweet. For instance, almost
half of the 2,400 makefiles that control the
FreeBSD operating system’s build process
are shorter than a dozen lines, while the
whole system (the kernel, 706 commands,
and 725 libraries) can be built through
them with just two commands.

Finally, invest some effort to squeeze
the most out of your build process. Once
you’ve automated the process, you can cou-
ple it with your version control system and
arrange for nightly or continuous builds. A
small script can retrieve the source code’s
latest version, build it (with full compiler
warnings enabled and treated as errors),
and test it. This “tinderbox script” can
then immediately send any error messages
to all the developers, thus exerting peer
pressure that keeps your system always
ready to ship.

B uild automation is one of those re-
markable places where product and
process, programmers, and managers

meet with common interests and goals. In-
vest in it and you won’t regret it.

Diomidis Spinellis is an associate professor in the
Department of Management Science and Technology at the
Athens University of Economics and Business and the author
of Code Quality: The Open Source Perspective (Addison-Wesley,
2006). Contact him at dds@aueb.gr.

A quick build cycle
can keep developers
focused by robbing
them of the excuse
to browse Slashdot

(and worse) while their
code is compiling.

Post your comments online by visiting the column’s
blog: www.spinellis.gr/tools

