
0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E 	 July/August 2008 I E E E S o f t w a r E 	 89

E d i t o r : D i o m i d i s S p i n e l l i s n A t h e n s U n i v e r s i t y o f E c o n o m i c s a n d B u s i n e s s n d d s @ a u e b . g r

tools of the trade

The Way We Program
Diomidis Spinellis

If the code and the comments disagree, then both are probably wrong. —Norm Schryer

I
can still remember the first time I laid eyes on
production-quality source code. This was in
the early 1980s, and the code was the BIOS
listing of the original IBM PC. The 5,940
lines of code spanned 80 neatly typeset pages
in a three-ring slip-covered binder. Two things

made a lasting impression on me. The first was
the elation of being able to read, understand, and

learn from the code that made
a real machine tick. This might
have sparked my current practi-
cal and research interests in open
source software. The second was
the way the code was com-
mented. The BIOS was written
in 8086 assembly language, and
almost every line had a comment
on its right-hand side. By poring
over the code and its comments, I

learned 8086 assembly, programming style, and the
PC’s hardware architecture.

Comments, identifiers,
and whitespace
So how important are comments in the programs
we write? To answer this question, I set out to mea-
sure the percentage of source code size occupied
by comments in a few programs. It then occurred
to me that comments are only one of the mecha-
nisms we developers use to communicate with our
colleagues through the source code. Other meth-
ods include creating meaningful identifiers, laying
out the program with whitespace, using language-
provided high-level abstractions, and developing our

own abstractions. To get a feeling of how important
these mechanisms are, have a look at Figure 1 list-
ing a Basic interpreter implemented in 1,536 bytes.
I wrote that program with the express goal to com-
municate as little information as possible, in order
to submit it to the 1990 International Obfuscated
C Code Contest (www.ioccc.org/years.html#1990_
dds). The code uses single-letter identifiers, em-
ploys minimal whitespace, and doesn’t contain any
pesky comments. This is the type of code that can
keep us awake at night—a literal and metaphorical
nightmare.

To see how we use these three mechanisms in
practice, I took 30 programs of various sizes and
measured what percentage of their source code
consisted of comments and whitespace. I also cal-
culated the percentage of source code size devoted
to meaningful identifiers by counting the number
of (nonlibrary) unique identifiers, then deriving
the minimum number of characters required for
expressing them, and finally obtaining the corre-
sponding source code size savings obtainable from
using the smallest possible identifier names. (It
turns out that for programs up to 15 KLOC, you
can get away with two-character identifiers. For
all but the three largest systems I measured—the
Linux, Solaris, and FreeBSD kernels—three-char-
acter identifiers are perfectly adequate. And this
calculation is conservative, because I ignored the
savings possible from reusing identifiers in differ-
ent scopes. Malfeasant programmers and language
designers, take note.) Figure 2 shows a graphical
summary of this small study. (The remaining per-
centage of each program’s source code composition

90	 I E E E S o f t w a r E w w w . c o m p u t e r . o r g / s o f t w a r e

ToolS of The TraDe

is what the compiler actually requires to create the
executable code.)

I found the results surprising. In a typical sys-
tem’s source code, more than half the code serves
not as instructions to the computer but as a com-
munications vehicle targeting developers. Further-
more, although we often discuss the importance of
comments (this was my original idea for this col-
umn), it seems that programmers devote almost
the same area of screen real estate to meaningful
identifiers and even the humble whitespace. There-
fore, all three mechanisms appear to be equally
important. In addition, although I expected that
the measured composition of a program’s elements
would differ according to a program’s size, my
data didn’t show this variation for programs span-
ning thousands to millions of code lines. It seems
that for any nontrivial program, each of these
three mechanisms carries equal weight; we could
well posit that this reflects a stylistic equilibrium
we reached through evolution. Finally, although
the ratio of code serving the developers rather than
the compiler seems high, note that it doesn’t even
include the overhead of code employed for build-
ing and using various abstractions, such as method
definitions and calls. Although some abstractions
can result in more compact code, I feel that on bal-
ance abstractions (deservedly) contribute positively
to a system’s source code size.

Implications
Nobody in their right mind, I think, would ever
dream of writing or even representing the Linux
kernel as a blob (at least not before getting ideas
from Figure 1). Nevertheless, the large proportion
of the source code explicitly targeting developers is
profoundly significant to me, because it confirms my
belief that source code is the most important artifact
of the software development process. Programming
is not coding. Programming is not the mechanical
transfer of a software design into a form the com-
puter can execute. As many others have observed,
programming is an art, and the three elements I’ve
measured are separate, identifiable artistic expres-
sions. The writing of comments is prose literature,
aiming to tell the story behind the code. The forma-
tion of layout through whitespace is sculpture, seek-
ing to show the code’s hidden structure. Finally, the
choice of meaningful identifiers is almost stylized
poetry, a type of creative communication through
a few words adhering to a specific form. Our over-
arching goal is to communicate effectively—plainly,
succinctly, and unambiguously.

The large amount of creativity that goes into
software source code has several practical impli-
cations. It means we can get great code by hiring
talented developers and compensating them as
we would pay a great artist (ideally not the arche-
typal starving one). It also means that we should

#define O(b,f,u,s,c,a)b(){int o=f();switch(*p++){X u:_ o s b();X c:_ o a b();default:p--;_ o;}}

#define t(e,d,_,C)X e:f=fopen(B+d,_);C;fclose(f)

#define U(y,z)while(p=Q(s,y))*p++=z,*p=' '

#define N for(i=0;i<11*R;i++)m[i]&&

#define I "%d %s\n",i,m[i]

#define X ;break;case

#define _ return

#define R 999

typedef char*A;int*C,E[R],L[R],M[R],P[R],l,i,j;char B[R],F[2];A m[12*R],malloc

(),p,q,x,y,z,s,d,f,fopen();A Q(s,o)A s,o;{for(x=s;*x;x++){for(y=x,z=o;*z&&*y==

*z;y++)z++;if(z>o&&!*z)_ x;}_ 0;}main(){m[11*R]="E";while(puts("Ok"),gets(B)

)switch(*B){X'R':C=E;l=1;for(i=0;i<R;P[i++]=0);while(l){while(!(s=m[l]))l++;if

(!Q(s,"\"")){U("<>",'#');U("<=",'$');U(">=",'!');}d=B;while(*F=*s){*s=='"'&&j

++;if(j&1||!Q(" \t",F))*d++=*s;s++;}*d--=j=0;if(B[1]!='=')switch(*B){X'E':l=-1

X'R':B[2]!='M'&&(l=*--C)X'I':B[1]=='N'?gets(p=B),P[*d]=S():(*(q=Q(B,"TH"))=0,p

=B+2,S()&&(p=q+4,l=S()-1))X'P':B[5]=='"'?*d=0,puts(B+6):(p=B+5,printf("%d\n",S

()))X'G':p=B+4,B[2]=='S'&&(*C++=l,p++),l=S()-1 X'F':*(q=Q(B,"TO"))=0;p=B+5;P[i

=B[3]]=S();p=q+2;M[i]=S();L[i]=l X'N':++P[*d]<=M[*d]&&(l=L[*d]);}else p=B+2,P[

*B]=S();l++;}X'L':N printf(I)X'N':N free(m[i]),m[i]=0 X'B':_ 0 t('S',5,"w",N

fprintf(f,I))t('O',4,"r",while(fgets(B,R,f))(*Q(B,"\n")=0,G()))X 0:default:G()

;}_ 0;}G(){l=atoi(B);m[l]&&free(m[l]);(p=Q(B," "))?strcpy(m[l]=malloc(strlen(p

)),p+1):(m[l]=0,0);}O(S,J,'=',==,'#',!=)O(J,K,'<',<,'>',>)O(K,V,'$',<=,'!',>=)

O(V,W,'+',+,'-',-)O(W,Y,'*',*,'/',/)Y(){int o;_*p=='-'?p++,-Y():*p>='0'&&*p<=

'9'?strtol(p,&p,0):*p=='('?p++,o=S(),p++,o:P[*p++];}

figure 1. a complete
Basic interpreter as
a code blob, written
with the goal of
communicating as little
information as possible.

ToolS of The TraDe

	 July/August 2008 I E E E S o f t w a r E 	 91

ToolS of The TraDe

figure 2. Developer-oriented elements in the composition of 30 programs’ source code. Typically, more than half of the
source code facilitates developer communications rather than delivering instructions to the computer.

take care of code, treating it as a prized posses-
sion. We should learn, respect, apply, and preserve
style guidelines and naming conventions; we should
treat each comment as part of an essay that will be
marked by the most exacting English teacher we’ve
ever had.

T o paraphrase William Ward: The mediocre
code compiles. The good code runs. The supe-
rior code passes tests and inspections. The great

code inspires.

Diomidis Spinellis is an associate professor in the Department
of Management Science and Technology at the Athens University of Econo-
 mics and Business and the author of Code Quality: The Open Source Per­
spective (Addison-Wesley, 2006). Contact him at dds@aueb.gr.

100

90

80

70

60

50

40

30

20

10

0

So
ur

ce
 c

od
e

co
m

po
si

tio
n

(%
)

1

10

100

1,000

10,000

So
ur

ce
 c

od
e

si
ze

 (K
LO

C—
lo

g
sc

al
e)

Comments Meaningful identifiers Spacing KLOC

Lin
ux

Fre
eB

SD

Sola
ris

WRK

Pos
tgr

eS
QL

Perl

Gho
sts

cri
pt

Em
ac

s

Grap
hv

iz
NTP

Sen
dm

ail

tcp
du

mp
tcs

h
Bas

h

na
med vi

gn
up

lot pp
p

xli
nt

mak
e sh atm

wind
ow lex pa

x

rou
ted mail CVS

bz
ip2 ed

Program

Our experts.
Your future.

www.computer.org/byc

