
2 I E E E S o f t w a r E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 9 I E E E

tools of the trade
E d i t o r : D i o m i d i s S p i n e l l i s n A t h e n s U n i v e r s i t y o f E c o n o m i c s a n d B u s i n e s s n d d s @ a u e b . g r

I
t’s no accident that in all engineering branches,
our colleagues often communicate using draw-
ings and diagrams. Given many artifacts’ scale
and complexity, a drawing is often the best
way to describe them. Uniquely, in software
development we can easily derive pictures

from code, and sometimes even code from pictures.
Yet we don’t seem to benefit from drawings in

the way other engineers do. Have you ever printed
a UML diagram on a large-
format plotter? Perhaps part of
the problem lies in the fleeting
nature of software. Whereas a
building’s blueprints can serve
its engineers for decades, few of
us want to spend valuable time
drawing a diagram that will be
obsolete in a few years, if not
days. We can overcome these
problems through tools that au-

tomate diagram creation, thus saving us time and
helping us keep the diagrams up-to-date.

The text-based tools I describe can’t beat the
speed of firing up your drawing editor to jot a few
lines or your spreadsheet to create a chart from a
list of numbers. However, once you’ve invested in
learning them, you’ll be orders-of-magnitude more
efficient in diagramming, performing tasks you
wouldn’t dream of attempting in the GUI world.

The Lineup
Perhaps the most impressive tool of the pack is dot.
Part of the Graphviz suite (www.graphviz.org),
originally developed by AT&T, it lets you describe
hierarchical relations between elements using a
simple declarative language. For instance, with
statements like

DelegatingStatement ->

ResultSet;

you’ll obtain a diagram like Figure 1a. Dot offers a
wide choice of node shapes, arrows, and options for
controlling the graph’s layout. It can handle graphs
with thousands of nodes. I’ve used it to display class
hierarchies, database schemas, directory trees, pack-
age dependency diagrams, mechanical gear connec-
tions, and even my family tree. Its input language
is simple (mostly graph edges and nodes), and it’s
trivial to generate a diagram from a script of just a
few lines.

Three cousins of dot, also parts of GraphViz, are
neato, for drawing undirected graphs, and twopi
and circo, for drawing radial and circular layout
graphs. All use an input language similar to dot’s.
I’ve found them less useful for visualizing software
systems, but in some cases they come in handy.
I’ve used neato to draw the relationships between
software quality attributes, links between Wiki-
pedia nodes, and collaboration patterns between
colleagues.

A slightly lower-level, but no less versatile, tool
is pic. Originally developed at AT&T’s Bell Labs as
part of the Unix document preparation tools, it’s
more likely these days to appear in its GNU groff
(www.gnu.org/software/groff) reincarnation. Pic’s
language gives you commands such as box, circle, line,
and arrow, with which you can draw diagrams like
Figure 1b. Unlike the GraphViz tools, it won’t lay
out the diagram for you, but it makes up for its lack
of intelligence by letting you create macros and sup-
porting loops and conditionals. This lets you define
your own complex shapes (for your project’s spe-
cialized notation) and then invoke them with a sim-
ple command. In effect, you’re creating your own
domain-specific drawing language.

When you’re dealing with numbers, the biggest
game in town is gnuplot (www.gnuplot.info). It can
plot data and functions in a wide variety of 2D and
3D styles, using lines, points, boxes, contours, vec-
tor fields, surfaces, and error bars. You specify what

Diomidis Spinellis

1 Word = 1 Millipicture — /usr/games/fortune

Drawing Tools

 May/June 2009 I E E E S o f t w a r E 3

TooLS of The TraDe

your chart will look like with commands
like “plot with points” and “set xlabel.” To plot
varying data (for instance, to track the num-
ber of new and corrected bugs in your proj-
ect), you typically create a canned sequence
of commands that will read the data from
an external file your code generates. Fig-
ure 1c depicts a program’s stack depth and
was created through custom function-en-
try prologue code. For more-sophisticated
charts—for instance, when the chart’s style
varies dynamically—you can have a script
create the plotting commands on the fly.

The last domain I’ll cover involves geo-
graphical data. Where do your customers
live? Where are your team’s most active de-
velopers? If you want to put the answers to
these questions on the map, one option is
the Generic Mapping Tools (GMT; http://
gmt.soest.hawaii.edu). You use these by
plumbing together 33 tools that manipulate
data and plot coastlines, grids, histograms,
lines, and text using a wide range of map
substrates and projections (see Figure 1d).
Although these tools aren’t as easy to use
as the others I’ve covered, they create high-
quality output and offer extreme flexibility
in a demanding domain. Another alterna-
tive involves generating KML, the Google
Earth XML-based file format, which you
can then readily display through Google

Earth and Maps. The limited display op-
tions you get are offset by the ease of cre-
ating KML files and the resulting display’s
interactivity.

Tips and Tricks
At this point, I admit I’ve been a bit sneaky.
I didn’t directly generate Figures 1a and 1b
but used UMLGraph (www.umlgraph.org)
to drive dot and pic. Having one graphics
tool or script generate output for another is
a common and nifty trick. It simplifies your
life by letting you reach your—sometimes
daunting—goal in small increments. For in-
stance, I once wrote a small script to scan
a large C++ program and produce the Java
syntax files with which UMLGraph gener-
ates class diagrams.

If none of the tools I’ve outlined fits
your purpose, you can dive into lower-level
graphics languages such as PostScript and
SVG (Scalable Vector Graphics). I’ve used
this approach to annotate program code
and to illustrate memory fragmentation.
Finally, you can always use ImageMagick
(www.imagemagick.org) to automate an
image’s low-level manipulation.

The tools we’ve seen offer a bewildering
variety of output formats. Nevertheless, the
choice is easy. If you’re striving for profes-
sional-looking output, create vector-based

formats such as PostScript, PDF, and SVG;
choose the format your software supports
best. The resulting diagrams will use nice-
looking fonts and appear crisp, no matter
how much you magnify them. On the other
hand, bitmap formats, such as PNG, can be
easier to display in a presentation, memo, or
Web page. Often the best way to get a pro-
fessional-looking bitmap image is to first
generate it in vector form and then rasterize
it through Ghostscript (http://pages.cs.wisc.
edu/~ghost) or a PDF viewer. Finally, if
you want to polish a diagram for a one-off
job, the clever route is to generate SVG and
manipulate it using the Inkscape vector-
graphics editor (www.inkscape.org).

T he tools I’ve described are distributed
as free or open-source software and are
available on the major operating sys-

tems. All you have to do is to install them
and start automating the illustration of your
software and its development process.

Diomidis Spinellis is a professor in the Department of
Management Science and Technology at the Athens University
of Economics and Business. He recently coedited Beautiful
Architecture (O’Reilly, 2009). Contact him at dds@aueb.gr.

Root

 m_adapters : Map<>
 m_types : List<>
 m_maps : List<>
 m_tables : List<>
 m_ops : List<>

 getAdapter(klass : Class<>) : Adapter

Adapter

 getRoot() : Root

0..n

1..1

ObjectType

0..n

ObjectMap

 m_type : ObjectType

0..n

Table

0..n

DataOperation

0..n

Element

 getRoot() : Root

1..1

1..1

c:Client p:ODBCProxy

«create»

:Transaction

{Transient}

setActions(a,d,o)

setValues(d,3.4)

setValues(a,"CO")

committed

«destroy»

 0

 500

4956 7456

S
ta

ck
 d

ep
th

Function call number
180˚

240˚

300˚

0˚

60˚

120˚

180˚

-90˚

-60˚

-30˚

0˚

30˚

60˚

90˚

10
1

10
1

10
2

10
3

10
4

10
5

LO
C

(a)

(c) (d)

(b)

figure 1. Drawing by code: diagrams made with (a) dot, (b) pic, (c) gnuplot, and (d) the Generic Mapping Tools.
Declarative tools can automate the drawing of any imaginable diagram.

Post your comments online by visiting the column’s
blog: www.spinellis.gr/tools

