
84 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /12 / $ 31. 0 0 © 2 012 I E E E

Editor: Diomidis Spinellis
Athens University of Economics
and Business, dds@aueb.gr

TOOLS OF THE TRADE

DYNAMIC LINKED LIBRARY (DLL)
hell was a condition that often affl icted
unfortunate users of old Microsoft Win-
dows versions. Under it, the installation
of one program would render others un-
usable due to incompatibilities between
dynamically linked libraries. Suffer-
ing users would have to carefully juggle
their confl icting DLLs to fi nd a stable
confi guration. Similar problems distress
any administrator manually installing
software that depends on incompatible
versions of other helper modules.

Thankfully, these problems are now
ancient history for most of us thanks to
the success of package management sys-
tems, which simplify software installa-

tion and maintenance by standardiz-
ing and organizing the production and
consumption of software collections.
Many modern operating systems and
extensible applications use packages
as the default software installation op-
tion; Table 1 lists commonly used ones.

A package management system com-
prises repositories hosting all packages,
installation and maintenance software,

and per-host data about installed pack-
ages. A package contains in a standard-
ized format a software module’s source
or compiled code (or the place where
these are hosted), together with its doc-
umentation and metadata. The meta-
data typically include the software’s
description, version, dependencies, ven-
dor, license, and installation specifi ca-
tions. The system simplifi es package in-
stallation by automatically fetching and
installing not only the required pack-
age but also all its dependencies. Most
package managers can also upgrade or
remove installed packages. Maintain-
ing packages in a centralized reposi-
tory ensures that packages play well

together and reduces the chance of ver-
sion incompatibilities between depen-
dencies. In fact, dependency checking
has advanced to the point where some
systems use a so-called Boolean satis-
fi ability problem solver to verify that
build dependencies aren’t intractable.

Consuming
As a software developer, you can bene-

fi t from package managers in two ways:
through a rich and stable development
environment and through friction-free
reuse. Start with the development envi-
ronment. By installing add-ons through
a package manager, you can choose
productivity-enhancing tools from an
amazingly extensive selection. The sta-
ble distribution of Debian GNU/Linux
offers 1,073 packaged tools that inter-
est developers, starting from a56, a
Motorola DSP 56001 assembler, to abi-
compliance-checker, a tool to compare
the application binary interface com-
patibility of shared C/C++ library ver-
sions, to zzuf, a transparent application
fuzzer. On top of that, add a choice of
198 editors and development environ-
ments, 129 version management sys-
tems and utilities, 728 text-processing
tools, and 25 shells. Or consider what
CTAN, the comprehensive TeX archive,
offers to documentation writers: if you
want to add nicely formatted program
listings, include multiple charts in a
fl oating fi gure, or produce an index of
cited authors, there’s a package for that.

The success of packages as an in-
stallation mechanism has even led to
the development of virtual packages or
metaports—collections of actual pack-
ages often used together that can be in-
stalled in one simple step. For instance,
the FreeBSD py27-kdebindings meta-
port will install 256 Python bindings
to the KDE libraries, while the gnome2
metaport will install 481 packages
comprising the GNOME 2 desktop and

Package Management
Systems
Diomidis Spinellis

Orderly and organized package
management is a key element of
a well-run software production process.

 MARCH/APRIL 2012 | IEEE SOFTWARE 85

TOOLS OF THE TRADE

its most common user applications.
Installation through a package man-

ager is fast and convenient. Although
I used to enjoy porting and installing
software by configuring and compil-
ing its source code (porting Perl to MS-
DOS was perversely interesting), I now
have to be really desperate to install
software in a form different from that
of a managed package. With a pack-
age manager, you can easily document
a development environment by simply
listing the names of its installed pack-
ages. Through such a list, you can
bring a new developer or development
machine up to speed in less than an
hour; gone are the detailed and ever-
changing instructions on how to set up
a working development environment.
As icing on the cake, your environment
is more likely to remain secure because
most package managers provide facili-
ties for upgrading all installed packages
to their latest securely patched versions.

If you’re going the package manage-
ment installation route, you should also
be aware of two potential problems.
First, package managers create a closed
ecosystem. If the software you want
is not available as a package, it might
be tricky to install it and make it play
nicely with your other packages. Sec-
ond, some package management sys-
tems trade life at the cutting edge for
stability. This means that the software
you install may well be a couple-years’-
old release, which might not suit you if
you’re looking for the latest and great-
est features.

And Producing
Making your software work with a
package manager isn’t trivial and it
isn’t for everyone. Many package man-
agement systems work only with source
code, some require the software to be
licensed as open source, and none that
I know of provide functionality allow-
ing users to pay for installing a pack-
age. Therefore, if your software’s busi-
ness model isn’t compatible with these

constraints, you’ll have to use an al-
ternative distribution mechanism, per-
haps through an app store, or enforce
payment with a license manager. Then
there are the hoops you have to jump
through to get your software included
in such a system. You’ll have to provide
all the needed metadata in the appro-
priate format, test that your software
and its dependencies install and unin-
stall correctly on all supported systems,
and convince the package maintainers
to include your software in the reposi-
tory. However, if you have a high-qual-
ity product that plays well with pack-
age management systems, you might
actually find that a volunteer will create
a package out of it.

There are many benefits in distribut-
ing your software as a package. First,
you offer your users a higher-quality
experience—all the goodies I described
in the preceding section. Given a pack-
age’s ease of installation, you can ad-
dress many more and less sophisticated
users. Many package management sys-
tems offer a GUI front end, and I sus-

pect that for many users, this is the
only way they install and manage their
packages. Second, some packaging sys-
tems will download source code and
compile it on the fly, and others offer
precompiled binaries. Both approaches
hide from you or your software’s hap-
less users the complexity of configuring
and running the compilation process.
Thus, your software can easily run on
diverse operating systems and proces-
sor architectures.

However, the biggest benefit of
working within a package manager is
the ability to reuse third-party com-
ponents without guilt. I used to be
wary and conservative about reusing
libraries in my projects because they
would introduce dependencies and
maintenance responsibilities that cre-
ated headaches both during software
development and deployment. Within
a package management ecosystem, in-
stallation of additional components
becomes a nonissue. Ensuring ongo-
ing compatibility between your code
and a third-party component is also

TA
B

L
E

 1 Commonly used package management systems

Name Target platform No. of packages

Debian packages Debian GNU/Linux 35,900

Maven Java 33,905

Portage Gentoo Linux 27,000

FreeBSD Ports FreeBSD Unix 22,900

CPAN Perl 21,600

MacPorts Mac OS X 13,300

Pkgsrc 15 operating systems 10,000

CRAN R 4,300

NuGet .NET 4,177

CTAN MiKTeX TeX under Windows 2,300

Cygwin Unix software under
Windows

2,000

86 IEEE SOFTWARE | WWW.COMPUTER.ORG/SOFTWARE

TOOLS OF THE TRADE

less of a problem for two reasons: first,
developers of widely reused packages
are loathe to break backward compat-
ibility because they’ll face numerous
complaints, and second, the package
management system build infrastruc-
ture often detects these problems when
an update is submitted and will ask the
package maintainer to address them.
And, yes, the detection of compatibil-
ity problems includes those associated
with building your application, which
is now part of the family.

T he breadth of modules you can
reuse is nothing short of amaz-
ing, making it a crime to start

writing code before you investigate
what packages you can reuse. What-
ever your need, there’s likely to be a
package that you can effortlessly link
with your application. Promisingly, the
structure that package managers bring
both to the tools we use in our devel-
opment process and the libraries we re-
use in our products ties nicely with the

recent move emphasizing development
operations (DevOps) as an integration
between software development and
IT operations. Orderly and organized
package management is a key element
of a well-run software production pro-
cess. Maintaining a list of an organiza-
tion’s recommended packages allows
teams to share best practices and avoids
package incompatibilities. So, if your
business allows it, join a package man-
agement ecosystem, enjoy the fruits of
other people’s labor, and contribute
back to the community.

DIOMIDIS SPINELLIS is a professor in the Depart-
ment of Management Science and Technology at
the Athens University of Economics and Business
and the author of the books Code Reading and Code
Quality: The Open Source Perspective (Addison-Wes-
ley, 2003, 2006). Contact him at dds@aueb.gr.

Post your comments online
by visiting the column’s blog:

www.spinellis.gr/tools

HOW TO
REACH US

WRITERS

For detailed information on submitting articles,
write for our Editorial Guidelines
(software@computer.org) or access
www.computer.org/software/author.htm.

LETTERS TO THE EDITOR

Send letters to

 Editor, IEEE Software
 10662 Los Vaqueros Circle
 Los Alamitos, CA 90720
 software@computer.org

Please provide an email address
or daytime phone number with your letter.

ON THE WEB

www.computer.org/software

SUBSCRIBE

www.computer.org/software/subscribe

SUBSCRIPTION
CHANGE OF ADDRESS

Send change-of-address
requests for magazine subscriptions
to address.change@ieee.org.
Be sure to specify IEEE Software.

MEMBERSHIP
CHANGE OF ADDRESS

Send change-of-address requests for
IEEE and Computer Society membership to
member.services@ieee.org.

MISSING
OR DAMAGED COPIES

If you are missing an issue or you
received a damaged copy, contact
help@computer.org.

REPRINTS OF ARTICLES

For price information or to order reprints,
send email to software@computer.org
or fax +1 714 821 4010.

REPRINT PERMISSION

To obtain permission to reprint an article,
contact the Intellectual Property Rights Office
at copyrights@ieee.org.

IEEE Software (ISSN 0740-7459) is published bimonthly by the IEEE Computer Society. IEEE head-
quarters: Three Park Ave., 17th Floor, New York, NY 10016-5997. IEEE Computer Society Publications
Office: 10662 Los Vaqueros Cir., Los Alamitos, CA 90720-1314; +1 714 821 8380; fax +1 714 821 4010.
IEEE Computer Society headquarters: 2001 L St., Ste. 700, Washington, DC 20036. Subscription rates:
IEEE Computer Society members get the lowest rate of US$54 per year, which includes printed issues plus
online access to all issues published since 1984. Go to www.computer.org/subscribe to order and for more
information on other subscription prices. Back issues: $20 for members, $163 for nonmembers (plus ship-
ping and handling).

Postmaster: Send undelivered copies and address changes to IEEE Software, Membership Processing
Dept., IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854-4141. Periodicals Postage Paid at New
York, NY, and at additional mailing offices. Canadian GST #125634188. Canada Post Publications Mail
Agreement Number 40013885. Return undeliverable Canadian addresses to PO Box 122, Niagara Falls,
ON L2E 6S8, Canada. Printed in the USA.

Reuse Rights and Reprint Permissions: Educational or personal use of this material is permitted with-
out fee, provided such use: 1) is not made for profit; 2) includes this notice and a full citation to the
original work on the first page of the copy; and 3) does not imply IEEE endorsement of any third-
party products or services. Authors and their companies are permitted to post the accepted ver-
sion of IEEE-copyrighted material on their own webservers without permission, provided that the
IEEE copyright notice and a full citation to the original work appear on the first screen of the posted
copy. An accepted manuscript is a version which has been revised by the author to incorporate re-
view suggestions, but not the published version with copy-editing, proofreading and formatting
added by IEEE. For more information, please go to: http://www.ieee.org/publications_standards/
publications/rights/paperversionpolicy.html. Permission to reprint/republish this material for commercial,
advertising, or promotional purposes or for creating new collective works for resale or redistribution must
be obtained from IEEE by writing to the IEEE Intellectual Property Rights Office, 445 Hoes Lane, Piscat-
away, NJ 08854-4141 or pubs-permissions@ieee.org. Copyright © 2012 IEEE. All rights reserved.

Abstracting and Library Use: Abstracting is permitted with credit to the source. Libraries are permitted
to photocopy for private use of patrons, provided the per-copy fee indicated in the code at the bottom of
the first page is paid through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

