
100 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /12 / $ 31. 0 0 © 2 012 I E E E

Editor: Diomidis Spinellis
Athens University of Economics
and Business, dds@aueb.gr

TOOLS OF THE TRADE

Git
Diomidis Spinellis

EVEN IN LIGHT of our � eld’s dizzy-
ing rate of progress, I wouldn’t have
expected to revisit the subject of ver-
sion control just seven years after I � rst
wrote about it in this column (“Version
Control Systems,” IEEE Software, vol.
22, no. 5, 2005, pp. 108–109). Yet,
here we are. The new kid on the block
is git, a distributed revision control sys-
tem available on all mainstream devel-
opment platforms through a free soft-
ware license.

Git, the brainchild of Linus Tor-
valds, began its life in 2005 as a revision
management system used for coordi-
nating the Linux kernel’s development.
Over the years, its functionality, porta-
bility, ef� ciency, and third-party adop-
tion have evolved by leaps and bounds
to make it its category’s leader. (Two
other systems with similar characteris-
tics are Mercurial and Bazaar.)

Revisions, Not Versions
Traditional version control systems de-
rive their requirements from software

con� guration management practices.
The focus of these practices is to iden-
tify, control, and disseminate the soft-
ware’s con� guration and changes. A
system like CVS or Subversion that can
retrieve the � les corresponding to a spe-
ci� c software version, list the changes
that led to it, and keep developers from
trampling on each others’ feet satis� es
these requirements and offers an ad-
vantage over exchanging � les through
a shared folder or email. However,
con� guration management primarily
prevents bad things from happening
during software development; in other
words, it provides (valuable) control
but few tools that genuinely aid a devel-
oper’s everyday life.

Developers don’t really care whether
they work on version 8.2.72.6 of branch
RELENG_8_2, but they care deeply
about software revisions: changes they
made to � x a speci� c bug, infrastruc-
ture changes that were needed to sup-
port that � x, another set of changes
that didn’t work out, and some work
in progress that was interrupted to
work on that urgent bug � x. Fittingly
for a tool written by a programmer to
scratch his own itch, git supports these
needs with gusto. It gives developers a
complete copy of the software reposi-
tory, allowing them to create their own
private branches corresponding to their
individual needs. Each branch can cor-
respond to a distinct task, like the de-

velopment of a new feature or a bug � x.
Developers can quickly create and de-
lete branches, switch from one working
branch to another, make small incom-
plete incremental commits, cherry-pick
commits from other branches or com-
mits, or even stash away some changes
to revisit them later. When a feature is
mature for wider distribution, devel-
opers can package their changes as a
complete well-integrated changeset that
others can merge into their work.

An important difference of git over
its older ancestors is that it elevates
the software’s revisions to � rst-class
citizens. By managing revisions, git al-
lows a developer to select precisely
which ones will comprise an integrated
change, down to partial changes within
a single � le. More importantly, git
keeps as a graph a complete history of
what changes have been merged into
which branches, thus allowing develop-
ers to think in terms of revisions they’ve
integrated rather than low-level � le
differences between diverging branch
snapshots. This switch to a higher level
of abstraction is no less dramatic than
the one from assembly language, which
dealt with CPU registers and memory
addresses, to high-level programming
languages, which provide entities like
objects, containers, and threads. As one
would expect, a higher level of abstrac-
tion provides opportunities for chang-
ing the way we think and work.

Post your comments online
by visiting the column’s blog:

www.spinellis.gr/tools

 MAY/JUNE 2012 | IEEE SOFTWARE 101

TOOLS OF THE TRADE

Decentralized Revision Control
By managing revisions, git makes it
natural and easy to push a revision to
a remote repository (remember, each
developer has a separate complete re-
pository copy) or to pull some revisions
from a remote repository to the local
one. This in turn allows developers and
their managers to build a variety of in-
teresting work� ows, most of which are
impossible to run on a traditional cen-
tralized version control system. For in-
stance, an integration manager can se-
lectively pull changes from developers’
public repositories and integrate them
into a master repository that contains
the project’s de� nitive picture. If the
workload on the integration manager
becomes excessive, a team of “lieuten-
ants” can take over the integration of
speci� c project parts. The lieutenants
integrate the developer changes in their
public repositories, and a higher-level
manager can then take those larger
change sets and integrate them into the
master repository. (This is the Linux
kernel development model.) Or two de-
velopers can coordinate and share their
work in a peer-to-peer fashion by pull-
ing from each other’s repository.

The Importance of Being Local
Unfortunately for this column’s focus,
there’s more to git than its superb man-
agement of revisions and decentralized
repositories. First, by keeping locally
a complete version of a repository, git
allows you to work and commit indi-
vidual changes without requiring In-
ternet connectivity. This local staging
area also makes it possible for you to
edit, reorder, and squash together your
past commits (rebase, in git’s parlance)
in order to present a coherent story to
the outside world. When you’re back
online, you can push your changes to a
remote repository. The project’s entire
past history is also always available to
you. Want to see who � xed a speci� c
bug while traveling at 30,000 feet? Go

through the project’s commit history;
it’s there. Want to examine how the bug
was � xed? The corresponding changes
are likewise one command away. Fur-
thermore, the local repository (and, no
doubt, some highly skilled program-
ming) makes all operations blindingly
fast. This is a blessing for your personal
productivity, but it’s also an enabler for

performing more complex operations.
For instance, building on the rapid re-
pository access, git’s bisect command
allows you to perform a binary search
between two points in time to � nd the
commit that broke your software. Fi-
nally, local repositories make it triv-
ial to put even the smallest personal
project under version control. Just en-
ter “git init” at the directory in which
your project resides, and you’re ready
to go. When you later decide to share
the project with others, you can easily
associate it with a public remote reposi-
tory and push there all your changes.
This (plus git’s ability to import history
from other version control systems) has
allowed me to share work that precedes
git’s inception.

Enter GitHub
If the idea of setting up a public re-
pository, maintaining its servers and
connectivity, keeping it secure and up
to date, setting up user accounts, and
supporting your users isn’t appeal-
ing, you can delegate all such tasks to
a third-party provider. GitHub is the
best known, but at least eight others

offer similar functions. GitHub sim-
pli� es many repository management
tasks through a Web-based user in-
terface. In addition, it promotes coop-
eration in open source projects, which
are hosted for free, by making it easy
for developers to clone existing proj-
ects and submit their contributions as
a pull request. If you decide to pay to

host a proprietary project on GitHub,
then you’ll value the ability to set up
teams with varying access rights across
the project’s repositories. GitHub also
provides an issue-tracking system, a
� le download area, and Gollum, a git-
based wiki. Through Gollum, you can
edit a page on the Web and record the
change as a git commit, but you can
also perform manual or automated
changes on the � les of a local wiki
clone and then push them onto an up-
stream repository. This gives you wiki-
style effortless collaboration with git’s
work� ow sophistication; what more
could one want?

DIOMIDIS SPINELLIS is a professor in the Depart-
ment of Management Science and Technology at
the Athens University of Economics and Business
and the author of the books Code Reading and Code
Quality: The Open Source Perspective (Addison-
Wesley, 2003, 2006). Contact him at dds@aueb.gr.

Git allows developers and their
managers to build a variety
of interesting work� ows.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

