
074 0 -74 5 9 /12 / $ 31. 0 0 © 2 012 I E E E November/December 2012 | Ieee Software 85

Editor: Diomidis Spinellis
Athens University of Economics
and Business, dds@aueb.gr

APIs, Libraries, and Code
Diomidis Spinellis

Tools of The Trade

Let’s say you want to display a
JPEG-compressed image, calculate
Pearson’s correlation coefficient, parse
an XML file, or create a key-value store.
You can often choose between using the
functionality of the application’s plat-
form (Java EE or .NET), calling one of
several available external libraries, or
writing the code on your own. It isn’t
an easy choice because you have many
factors to consider. Specifically, you
must take into account the task’s com-

plexity, as well as the licensing, quality,
and support of competing options. You
can narrow down your choice by elimi-
nating alternatives at the earliest possi-
ble decision point. Here’s how I recom-
mend you go about it.

Where to start?
There are clear advantages in writing
your own code: you control its qual-

ity, your code plays well with the rest
of your system (and you can even reuse
other parts of it), you don’t introduce
new dependencies, and you don’t need
to make special arrangements to sup-
port the code. The main deciding fac-
tor here is the task’s complexity. You’re
getting paid to deliver end results, not
to reinvent the wheel. Unless the task
is trivial to implement, professional-
ism dictates looking at existing solu-
tions. Handcrafting code to find the

biggest number in a sequence is okay if
a corresponding function isn’t directly
available in your environment. On
the other hand, unless you work for
a game studio or Pixar, building a 3D
rendering engine from scratch is defi-
nitely a no-go area.

If some alternatives come as exter-
nal libraries, start by looking at the li-
censing terms. Many offerings might be
available as open source software. See
if the distribution license is compat-
ible with your business model. Tightly
integrating GPL-licensed code with a
product you’ll distribute without its
source code will get you into trouble.
Less worrisome scenarios include us-

ing open source code that comes with
a more permissive license, such as the
BSD, MIT, and Apache ones, dynami-
cally linking against an LGPL-licensed
library, releasing your product’s source
code with a compatible license, or of-
fering services over the Web rather than
as a product. When examining propri-
etary packages, look at the one-off cost
and per-user royalties. Only a library
offering strategic functionality might
justify the administrative burden and
cost of paying royalties for each of your
product’s end users.

Next, judge the usability of the li-
brary or the platform API. Is the inter-
face straightforward or complex and
full of hidden gotchas ready to bite
you? Some libraries require you to ob-
tain an object from a factory for even
the simplest operation and then ini-
tialize it with various obligatory pa-
rameters (including other objects that
you need to create) before performing
multiple actions, each of which can
fail in several obscure ways. I’ve even
encountered cases where the library
will mysteriously fail unless I guess
and setup its correct configuration. I
recently saw a CSV library that would
process a large file incorrectly, unless
a buffer size was increased. Such be-
havior is pure evil. Libraries should be
configured with sensible defaults that
allow them to work faultlessly under
all conditions (convention over config-
uration). Additional settings could im-
prove their performance or specialize
their operation, but they should never
be required.

You’re getting paid to deliver end results,
not to reinvent the wheel.

See www.computer.org/software
-multimedia for multimedia
content related to this article.

86 Ieee Software | www.computer.org/Software

Tools of The Trade

Compatibility Rules
A library’s compatibility with your sys-
tem will ultimately affect its usability in
your hands. Are naming conventions,
error handling, resource management,
thread safety, and build requirements
playing well with the rest of your code?
Platform APIs have an edge here over
external libraries because, by defini-
tion, you’re already following their style.
Judge the effect of each facet I listed. You
can fix minor deviations by developing a
small shim that adapts the library’s con-
ventions to those of your project.

Elements with diverse naming con-
ventions coexisting within the same
source code are not only an eyesore
but an open invitation for more dis-
order and worse style abuses. If you
name your methods likeThis, and a li-
brary names them LikeThat or like_that,
your code won’t look pretty. Sadly, in
C++ and Python, various naming con-
ventions coexist even in the standard li-
brary, at odds with recommended ones.
Contrast this with the Java and .NET
libraries, where names are given with
Prussian-style discipline.

Error handling is another area of
disagreements. A function can signal
an error by returning a negative value
(as do most Unix system calls), a false
value (0, as is the case with the Win-
dows API), or by triggering an excep-
tion (the standard way in the Java and
.NET platforms). Mixing these idioms
is like storing pesticide in a food con-
tainer bottle: sooner or later, someone’s
going to get hurt.

Memory management can also be
a potent source of problems. If each
component in your project manages its
own memory and the new library re-
quires you to manually deallocate all
the objects it returns (or the opposite),
you’re inviting trouble. At some point,
an object will be freed twice or a mem-
ory leak will occur. Thankfully, mod-
ern languages with automatic garbage
collection avoid this problem (by pre-

tending it doesn’t exist). There are even
application domains where dynamic
memory allocation is prohibited; obvi-
ously, these severely limit your selection
of third-party libraries.

If your system is multithreaded, you
must examine whether the library is
compatible with such a setting. Some-
times this is evident from the library’s
interface. Routines that return results
from a single statically allocated area
spell trouble. In other cases, similar
restrictions might be hidden behind
the library’s interface. It’s safest to as-
sume a library isn’t thread-safe unless
its documentation expressly discusses
this aspect.

A final element of compatibility
involves the way the library is built
or distributed. Maven versus Make
versus Ant versus Visual Studio ver-
sus an Eclipse project—there are un-
fortunately many incompatible ways
in which a library’s source code can
be built. If the library is distributed
in binary form, you have to consider
whether the format is compatible with
your processor’s architecture or virtual
machine, your operating system and
package manager, the object file for-
mat, and the compiler’s calling conven-
tions. If you’re building from source,
invest a little time to bring the library’s
build under your own control. While
you’re at it, verify that the library is
available and works correctly under all
current and planned platforms where
your software will run.

Final steps
Associated with compatibility are the
library’s dependencies, the extended
family you’re marrying into. Here, you
need to balance the functionality the li-
brary provides against its dependencies.
For instance, dragging into your proj-
ect a 200-Mbyte GUI framework or a
dependency on a specific vendor’s op-
erating system just to read the screen’s
dimensions is probably excessive.

Having determined the library’s
suitability, you can now invest time to
determine its quality. Are all the func-
tions, interfaces, and error conditions
well documented? (A surprising num-
ber of production systems fail that last
test.) Judge correctness and robustness
by using as a proxy the test cases that
come with the library. A lack of test
cases should raise an alarm. Run your
own tests of the library, based on your
particular use patterns. Look at the cre-
dentials and reputation of the library’s
developer. Determine who else is us-
ing the library. A large number of users
form a pressure group that can aid the
resolution of future problems.

Finish your assessment by looking
at the offering’s support. When did the
last release come out? Is there a public
Q&A forum? Are the library’s develop-
ers participating in it? How quickly are
issues resolved?

u ltimately, the choice among
using libraries, writing your
own code, and using an API is

a matter of judgment. Thankfully, you
can base your decision on the simple ob-
jective measures I’ve just described.

DiomiDis spineLLis is a professor in the Depart-
ment of Management Science and Technology at
the Athens University of Economics and Business
and the author of the books Code Reading and Code
Quality: The Open Source Perspective (Addison-
Wesley, 2003, 2006). Contact him at dds@aueb.gr.

Post your comments online
by visiting the column’s blog:

www.spinellis.gr/tools

