
12 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 4 / $ 3 1 . 0 0 © 2 0 1 4 I E E E

Editor: Diomidis Spinellis
Athens University of Economics
and Business, dds@aueb.gr

TOOLS OF THE TRADE

First, Do No Harm
Diomidis Spinellis

LET’S FACE IT: not all software de-
velopers are superstar programmers
(and, trust me, not all luminary de-
velopers program in a sane way).
This means that when we maintain
existing code, we must be very care-
ful to avoid breaking or degrading
the system we work on. Why? Be-
cause a failure of a running system

can affect operations, people, prof-
its, property, and sometimes even
lives. Here are the rules.

Development
Have the design and change scope re-
viewed. Discuss with both your man-
ager and your users what you intend
to implement, and how you plan to

offer the required functionality. We
developers often get carried away
implementing complex functionality
when the customer actually requires
(or can agree to) a much simpler im-
plementation. The reason behind this
could be technological machismo,
the desire to learn new stuff, the not-
invented-here syndrome, or a simple

misunderstanding. Through a design
review, you can minimize the chance
that you’ll waste effort and burden
the software with needless com-
plexity. For example, your reviewer
might point out a simpler implemen-
tation that will work well enough or
an existing library you can reuse to
save days of work.

Follow code style rules. Incon-
sistently styled code is distracting to
read and a pain to edit. Worse, the
careless attitude it exudes can give
rise to ghastly design and implemen-
tation sins. When developers see code
that’s all over the place, they get the
message that any programming sin
is fair game. Therefore, fi nd the style
rules adopted in your setting and fol-
low them religiously. If these aren’t

documented, simply derive the con-
ventions by examining similar code.
And when you see code with style
fl aws, coordinate with your col-
leagues to fi x them (in a commit sepa-
rate from your other changes, please).

Program defensively. When you
add new code, you’ll often fi nd your-
self wondering how exactly the exist-
ing system behaves. Counteract this
uncertainty by verifying the assump-
tions you make through runtime as-
sertions and rigorous error checking.

Maintain backward compatibil-
ity. Your interfaces to the external
world are a contract you’re obliged
to keep: it’s often diffi cult to coor-
dinate with everyone who depends
on those interfaces. This means you
can’t change APIs, fi le formats, sche-
mas, and service endpoint URLs ar-
bitrarily. Ensure that you make such
changes in a way that’s transparent
to existing clients. (In some cases,
you might even need to remain bug-
compatible with the system you re-
place.) Make the new functionality
a superset of the old one, perhaps
through an adaptation layer. Ver-
sioning of interfaces and the gradual
deprecation of older ones through
warnings can help you manage
backward compatibility over longer
time scales.

Preserve architectural properties.
When you stay within the realm of
a single module and use code con-
structs similar to those that are al-
ready there, you’re probably treading
on safe ground. Otherwise, you must

Inconsistently styled code is distracting
to read and a pain to edit.

Post your comments online
by visiting the column’s blog:

www.spinellis.gr/tools

s5too.indd 12 8/7/14 1:13 PM

TOOLS OF THE TRADE

 SEPTEMBER/OCTOBER 2014 | IEEE SOFTWARE 13

verify that your code doesn’t breach
any existing architectural properties.
For instance, your code might be
breaking encapsulation by exposing
functionality that was private to a
module or violating layering through
calls to higher-level layers.

Testing
Have your code reviewed. A second
pair of eyes will look at it from a
different perspective, question any
incorrect implicit assumptions you
might have made, notice errors you
may have overlooked, pinpoint style
and architectural infractions you
might have brushed aside, and keep
you honest about the amount of
testing that’s required. Don’t skimp
on it; record how you close each
raised issue, and repeat the reviews
until you and your reviewer agree that
you’ve resolved all the spotted issues.

Pass existing tests. If the system
you modify features a testing infra-
structure, verify it works correctly
before you apply your changes, fix it
if it doesn’t, and then use it to verify
the system’s functionality after you
make your changes.

Create unit tests for the imple-
mentation of the new functional-
ity. A legacy system could well lack
a comprehensive unit test suite, and
creating one from scratch is often im-
practical. However, by adding unit
tests for the new code you write, you
can increase your confidence that it
works as intended and will play well
with the rest of the system. For extra
points, try adding unit tests for any
existing routines that you modify.

Beware of changed components.
When you upgrade the libraries, the
compiler, the framework, the middle-
ware, the storage engine, the operat-
ing system, or the hardware on which
your software runs, bad things can
happen, especially if their developers

haven’t followed this column’s advice.
Don’t assume your software will run
just fine under the new configura-
tion—test it thoroughly.

Check for performance re gressions.
Evaluate the system’s performance
in terms of time, storage, and (per-
haps) power and bandwidth before
and after your changes. Keep an
eye out for performance regressions
that are outside acceptable limits.
Also, make sure that you haven’t
accidentally degraded an impor-
tant operation’s time or space com-
plexity (for example, changing the
time’s complexity class from linear
time to quadratic).

Operations
Perform a phased rollout. First de-
ploy on a test system to avoid break-
ing production systems with any se-
rious errors that might have crept
through. Once you’re satisfied, de-
ploy so-called canaries to a small
percentage of the production sys-
tems, and carefully monitor how
your system performs in that envi-

ronment. Only when you’re com-
pletely satisfied, roll out to the entire
user base.

Have a back-off plan. Even a
well-tested systems and careful de-
ployment can go catastrophically
wrong. Develop a plan to quickly
pull out the new system from pro-
duction when problems arise. Test
the plan, and don’t hesitate to abort
deployment at the first sign of trou-
ble. We developers are often opti-
mistic, thinking that our code is al-
ways correct, and that the problems
showing up in deployment are just
minor teething pain. With objective
criteria for when to back off, you
prevent (bad) judgment decisions
under stress.

“Test as you fly, fly as you test.”
It’s often tempting to push a tiny
change to production without go-
ing through the arduous and time-
consuming process of testing and
phased rollout. It’s also very risky,
and this is why the aerospace com-
munity operates by a simple rule: all
systems that fly should be tested, and

s5too.indd 13 8/7/14 1:13 PM

14 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

TOOLS OF THE TRADE

only the tested systems should fl y. Re-
peating this motto in my head every
time I had the urge to take a testing
shortcut has saved me on countless
occasions. I suggest you do the same.

Deploy in off-peak periods. Col-
leagues who work at telecoms tell me
that they plan disruptive upgrades
for 4 am, yet they still get calls from
irate customers who complain about
outages. Imagine what would have
happened at a peak time! Improper
timing of a release can overwhelm
your support personnel, alienate
customers, and cloud your decision-
making ability. To avoid the tempta-
tion and external pressure to deploy
during a peak period, consider set-
ting a policy on the hours or times of
the year when new deployments can
(or can’t) be performed.

Coordinate with support teams.
Let everybody who’s supporting
your software, from system engi-
neers to helpdesk staff, know your
deployment and back-off plan, your
changes, and who to contact when
things go wrong. Present your plan
in a meeting to make certain you’re
all on the same page and that you’ve
addressed any concerns support
teams may have.

Have key people on standby. The
main developer of a popular open
source system used to issue new re-
leases on the evening before he left
for vacation. Today, this practice just
doesn’t cut it. Coordinate with key
developers and other engineers so
that they’ll be available during de-
ployment to advise the team on how
to handle any snafus.

A s you can see, “doing no
harm” can be a tall order.
Yet, following this guideline

is a sign of professionalism and respect
for your colleagues and customers.

DIOMIDIS SPINELLIS is a professor in the
Department of Management Science and Tech-
nology at the Athens University of Economics
and Business and the author of the books Code
Reading and Code Quality: The Open Source Per-
spective (Addison-Wesley, 2003, 2006). Contact
him at dds@aueb.gr.

See www.computer.org/
software-multimedia
for multimedia content
related to this article.

software-multimedia
for multimedia content
related to this article.

IEEE Software offers
pioneering ideas,
expert analyses, and
thoughtful insights for
software professionals
who need to keep up
with rapid technology
change. It’s the authority
on translating software
theory into practice.

www.computer.org/
software/subscribe

www.computer.org/software

cyber Dumpster Diving // 9

the airbus a380’s cabin software // 21

programming with ghosts // 74

January/february 2013

www.computer.org/software

from minecraft to minds // 11

Landing a spacecraft on mars // 83

Design patterns: magic or myth? // 87

marcH/aprIL 2013

www.computer.org/software

storytelling for software
professionals // 9

In Defense of Boring // 16

Beyond Data mining // 92

may/June 2013

s5too.indd 14 8/7/14 1:13 PM

