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The Antikythera mechanism 

is an ancient astronomical 

calculator that contains a 

lunisolar calendar, predicts 

eclipses, and indicates 

the moon’s position and 

phase. Its use of multiple 

dials and interlocking gears 

eerily foreshadows modern 

computing concepts from 

the fields of digital design, 

programming, and software 

engineering. 

T
wo thousand years separate us from an ancient Greek 
computing device known as the Antikythera mechanism. 
Here I explain the mechanism’s operation based on its 
reconstruction in Squeak Etoys, a multimedia authoring 
environment primarily designed to help high school stu-

dents learn scientific and engineering concepts.1,2 The reconstruction 
relies on the recent findings that an international cross-disciplinary 
team of scientists obtained through surface imaging and high-reso-
lution x-ray tomography. My work aims to present the functioning 
of this remarkable device using working code, the language of our 
community.

The complete image of this implementation is available online as 
open source software running on the Etoys environment (www.dmst.
aueb.gr/dds/sw/ameso). I encourage readers to download an Etoys 
image and run the software on it, as they step through the descrip-
tions in this article. 

History
In 1900, a group of sponge fishers seeking shelter from the Kythera 

Sea’s cruel weather anchored their boats on the barren island of Anti-
kythera. Continuing their diving there, they discovered at a depth of 
42 meters an ancient shipwreck with bronze and marble statues. For 
almost a year afterward, they worked with the Greek government to 
salvage the ship’s contents. These artifacts were then transferred for 
preservation and study to the National Archaeological Museum in 
Athens, where they remain on display to this day. Among the recov-
ered items, which dated from the first century B.C., were a beautiful 
nude bronze statue and a severely corroded lump of bronze clearly 
containing gear wheels.

Numerous scientists have devoted their lives to the study of this 
mysterious mechanism. Based on the few legible letters in fragments 
and descriptions of mechanical contraptions in ancient Greek and 
Roman texts, it was initially identified as an astrolabe or planetar-
ium. Derek J. de Solla Price, the father of scientometrics, subsequently 
spent three decades analyzing and reconstructing the device. Using 
radiographs, he was able to count the teeth of most of the device’s 
gears and construct a detailed model of their operation. In his seminal 
1974 monograph, “Gears from the Greeks,” he described the mecha-
nism as a calendar computer.3 Famously, his proposed model included 
a differential mechanism, similar to the one found in the drive trains 
of modern cars, apparently constructed scores of centuries before its 
reinvention.
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Recently, astronomers, archeologists, computer engi-
neers, and physicists from around the world collaborated 
on the Antikythera Mechanism Research Project (www.
antikythera-mechanism.gr) to reconstruct a more pre-
cise model. They used three computer-based imaging 
techniques—3D x-ray microfocus computed tomogra-
phy, polynomial texture mapping, and digitized high-
quality photography—to study virtual cross-sections 
of the device under various simulated lighting condi-
tions (samples of the images are available for interac-
tive study at the project website). The project’s results, 
published in Nature in November 2006,4 confirmed that 
the device was indeed a calendar computer. However, 
the new model proposes that the gears Price identified 
as a differential instead operate in a distinct, but no less 
sophisticated, manner to calculate the anomaly in the 
moon’s rotation.

Calculating with Gears
The Antikythera mechanism is believed to consist of 

35 gears. Archeologists identified 30 in the surviving 
fragments, while science historian Michael Wright and 
the authors of the Nature study introduced another five 
to explain the device’s functionality.4,5 

Figure 1 shows the relationship of the gears, each 
represented by a circle. The arrow at the top of each 
circle indicates the direction the gear is turning: → for 
clockwise and ← for counterclockwise. The number in 
the center indicates how many teeth the gear has. All 
studies of the mechanism name gears systematically 
with a letter-number combination; the figure adopts the 
nomenclature used in the Nature article: Gears with the 
same letter are concentric, and numbers increase from 
the front to the back of the mechanism.4 A simple line 
connects gears that rotate together as one piece, while 

an arrow connects those that engage other gears through 
their teeth. By making a pair of gears with your hands 
and using your fingers as teeth, you can easily verify 
that when two gears engage, their direction of rotation 
reverses. 

When two gears engage through their teeth, such as 
b2 with c1, their ratio of rotation periods will equal the 
ratio of their teeth. Thus, b2 will complete one rota-
tion in 64 time units, whereas c1 will complete one 
rotation in 38 time units. Concentric gears rotating 
together have by definition the same rotation period. 
Therefore, obtaining the ratio derived by a sequence of 
rotating gears requires multiplying together the ratios 
of all engaged gears. 

Input to the Antikythera mechanism is controlled 
through gear a1, which engages laterally with gear b1 
and could conceivably be rotated with a hand-crank. 
However, the actual value of the mechanism’s input 
appears through gear b1, which, via a dial on the mech-
anism’s front face, shows the sun’s position throughout 
the year on the Zodiac cycle and a 365-day calendar 
(Figure 2a). The calendar’s scale can be rotated by one 
day every four years to take into account leap years. The 
known computed outputs of the mechanism are 

a lunisolar calendar (based on lunar months),
a prediction of eclipses, and 
the moon’s position and phase.

The lunisolar calendar and the eclipse prediction dials 
appear on the device’s back face (Figure 2b), while the 
moon’s position and phase appear on the front face. 
All dials rotate clockwise, and this is why on Figure 
1 the gears driving the back-face dials rotate counter-
clockwise. 
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Figure 1. Antikythera mechanism operational model. Each circle represents a gear, with the arrow at the top indicating the direction 
the gear is turning, the number in the center how many teeth the gear has, and the letter-number combination at the bottom the 
name of the gear. Gears with the same letter are concentric, and numbers increase from the front to the back of the mechanism.
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Lunisolar Calendar
Reckoning time progression through the moon’s 

phases is convenient. It involves a calendar based on the 
visibly recurring lunar phases defining the 29½-day syn-
odic month—the time from one full moon to the next. 
However, the months of such a calendar don’t fit cor-
rectly in the seasonal year, which has practical signifi-
cance for, say, agriculture. 

In the fifth century B.C., the Athenian astronomer 
Meton devised a way around this problem by observing 
that 19 seasonal (known as tropical) years contain almost 
exactly 235 synodic months, and proposing a cycle con-
taining 125 full months of 30 days and 110 hollow, 29-
day, months.6 A century later, Callippus further refined 
that model by proposing the removal of one day every four 
Metonic cycles. Two dials on the back of the Antikythera 
mechanism indicate each month in a Metonic cycle as well 
as track progress through the Callippic cycle.  

To increase the Metonic display’s resolution, the dial 
rotates five times in each cycle with a pointer tracking a 

five-turn spiral. As the pointer rotates, the spiral’s grooves 
force it to move toward the outer turns of the spiral, simi-
larly to a needle tracking a gramophone record. Once the 
pointer reaches the end of the spiral, the human operator 
would presumably return it to the beginning.

Gear n2 driving the Metonic calendar’s dial must 
rotate 5 times in 19 years, thus the ratio between gear 
b1 tracking the tropical years and n2 should be 5/19. 
Indeed, the sequence b2-l1-l2-m1-m2-n1 calculates this 
ratio: 64/38 × 53/96 × 15/53 = 960/3648 = 5/19. Further, 
gear o2 driving the Callippic cycle’s dial must turn at 
1/20 of the Metonic dial: once every four cycles of five 
turns each. The sequence n2-p1-p2-o1 calculates the 
required ratio: 15/60 × 12/60 = 1/20. Figure 3a shows 
the emulator setup of these gears.

Eclipse Prediction
The Antikythera mechanism predicts eclipses by 

means of the Saros cycle established by ancient Baby-
lonian astronomers: a period of 223 and 1/3 synodic 

Figure 2. Antikythera mechanism’s front and back faces. (a) A dial on the front face shows the sun’s position throughout the year 
on the Zodiac cycle and a 365-day calendar. (b) The back face contains two lunicalendar dials (showing the Metonic and Callippic 
cycles) and two eclipse-prediction dials (showing the Saros and Exeligmos cycles).

(a) (b)

Figure 3. Emulator setup of (a) lunisolar calendar and (b) eclipse-prediction gears.
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months in which identical moon and sun eclipses occur. 
Glyphs on the 223-month divisions of the plate where 
the Saros dial rotates indicate each eclipse type. The let-
ter Σ (for ΣΕΛΗΝΗ—moon) indicates a lunar eclipse, 
while the letter Η (for ΗΛΙΟΣ—sun) a solar one. Like the 
Metonic display, the Saros display is laid out in a four-
turn spiral. Interestingly, its construction involves two 
elements of modern software engineering: the use of a 
lookup table (the Saros eclipse data) to aid computation, 
and the adoption of a design pattern (a spiral for increas-
ing the display’s resolution). 

Because the Saros cycle contains a 1/3-day fraction, 
it’s necessary to wait three Saros cycles to witness an 
eclipse at the same time. Thus, a separate dial indicates 
the Exeligmos cycle, which comprises three Saros cycles 
and can be used to predict the time of each eclipse.

Figure 3b shows the emulator setup of the eclipse-
prediction gears. We already know from the Metonic 
calendar that there are 235 synodic months in 19 years. 
For the Saros display, we need four revolutions in 223 
synodic months, a ratio of 4/223 × 235/19. The sequence 
b2-l1-l2-m1-m3-e3-e4-f1-f2-g1 establishes this ratio, 
which can be easily verified with a calculator. Further, 
the Exeligmos dial must turn once every three four-turn 
Saros cycles, thus at a rate 1/12 of Saros. The sequence 
g2-h1-h2-i1 calculates this ratio.

Lunar Calculations
The Antikythera mechanism’s front dial indicates the 

moon’s anomalistic month—its position on the celes-
tial sphere taking into account both the moon’s ellipti-
cal orbit and the additional rotation of the ellipse’s two 
extreme points. This anomaly is caused by the solar tide, 
and one full rotation takes nine years to complete. Gears 
b0 and q1 combine the moon’s position with that of the 
sun to show the moon’s phase. The three-step calcula-
tion of the moon’s position is the most sophisticated of 
the mechanism’s known parts.  

The first step involves calculating the sidereal month, 
the moon’s period in a fixed frame of reference. In a 
period of 19 years, the moon performs 235 synodic 
rotations (from the Metonic calendar) and another 19 
due to its rotation around the sun—a total of 254. The 
sequence b2-c1-c2-d1-d2-e2, shown in Figure 4a, calcu-
lates the required yearly rotation ratio 254/19.

Next, the Antikythera mechanism models the moon’s 
elliptical orbit through an ingenious device known as 
Hipparchos’s lunar mechanism. The sidereal rotation 
established on gear e2 is transferred to gear e5, which is 
mounted on the same axle, as Figure 4b shows. Gear e5 
in turn turns k1, which has a pin mounted a small dis-
tance from its center. Gear k2 is mounted below k1, but 
its center is slightly displaced from k1’s center. The pin 
moves within a slot cut into gear k2, and, because the 
two gears are eccentrically mounted, harmonically var-
ies k2’s rotation rate. Running the Antikythera emulator 
demonstrates that k2’s rotational speed is high when the 
slot is at the top of the screen and low when it’s at the 
bottom; this models the corresponding variation of the 
moon’s speed between its perigee and apogee.

Finally, the Antikythera mechanism models the rota-
tion of this elliptical orbit by mounting k1 and k2 on 
e3. The gear e3 rotates at the rate of the elliptical orbit’s 
rotation—the precession period of the moon’s long 
axis—through the sequence b2-l1-l2-m1-m3-e3. Note 
that this rotates k2’s axis and thereby complicates driv-
ing a dial with it. Thus, k2 drives e6, which is on a fixed 
axis. Gear e6 in turn drives e1, which is located on the 
front-dial side of e3, and b3 moves the rotation clock-
wise to the front dial’s center. In computer engineering 
terms, the sequence e6-e1-b3 interfaces the processing 
unit to the display unit.

Another parallel with modern computing technology 
is the dual role of some gears: e3 in the calculation of 
both the Saros and the anomalistic month, and m1 in the 
calculation of Saros and the lunisolar calendar. This is 

Figure 4. Emulator setup of gears to (a) calculate the sidereal month and (b) modify this calculation using Hipparchos’s lunar 
mechanism to model the moon’s elliptical orbit.
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a technique commonly employed in digital circuits—for 
example, in a full-adder implementation, the half-adder 
sum output typically drives both the sum and the carry-
bit circuits.

ETOYS Implementation 
The Web offers numerous Antikythera mechanism 

simulators based on Price’s outdated model that repli-
cate the mechanism’s operation in software using com-
puter arithmetic to simulate the gear interactions, and 
then reflect back the computed results onto the simu-
lated gears. In contrast, my implementation emulates the 
modern model; it doesn’t calculate the gear positions but 
instead employs mechanical principles (gear teeth push-
ing each other) to emulate the mechanism at a physical 
level. This approach let me experience the mechanism’s 
physical properties and appreciate the thinking of its 
ancient developer. It also fitted neatly with the Etoys 
platform’s constructivist learning approach.

Etoys programming is based on assembling primitives 
that manipulate visual objects appearing on the screen. 
The intellectual forebears of Etoys are Logo, Smalltalk, 
and HyperCard. Etoys is currently used as a teaching 
vehicle in high schools in Asia, Europe, Japan, South 
America, and the United States. It’s also an integral part 
of the One Laptop per Child (http://laptop.org/laptop) 
initiative’s XO computer, known as the “$100 laptop.”

Each gear and dial appearing on the screen is a separate 
object. Although the gears might look formidable, building 
them was simple: I constructed them as polygons, tooth by 
tooth. I started with an empty polygon. After I added the 
tooth’s two sides, I rotated the gear by the tooth’s displace-
ment and repeated the operation. This mode of construc-
tion resembles the manual cutting of physical gear teeth. 
Having the gears as polygons makes modeling their inter-
actions child’s play. Etoys has a built-in primitive to locate 
overlapping objects. Thus, on each time step, I simply look 
for overlapping polygons and rotate them in the appropri-
ate direction until they no longer overlap.

I used a similar principle to implement the spiral dials’ 
pointer-follower mechanism and the pin-and-slot device 
of Hipparchos’s lunar mechanism. The emulated back-
face dials contain a small circular pin at their end that 
traces the spirals. When the pin overlaps with the spiral’s 
edge, I simply increase the dial’s length and move the pin 
to its new end. To implement Hipparchos’s lunar mecha-
nism, I bore a hole on the polygon of gear k2 by adding 
6 more vertices. The pin is a separate object, which I 
rotate in sync with k1. Whenever the pin overlaps k2, 
k2 rotates, thus responding to k1’s “push.”

For simplicity, the emulation and corresponding 
images in this article depart from the device’s construc-
tion in a few ways. First, the positioning of the gears 
and dials doesn’t follow the mechanism’s actual layout, 
because positioning gears on the horizontal and verti-
cal axes is significantly simpler, and it also makes the 

gears’ operation easier to inspect. Further, although in 
the mechanical operation as gears engage their direction 
reverses, in my implementation I hard-coded the appro-
priate new direction in each gear-engagement test.

Finally, in contrast to the actual mechanism, in my 
implementation the ratio of gear teeth to gear diameter 
is constant. Because I had already simplified the gear 
layout, I didn’t see any point in following the exact gear 
dimensions. The fixed-sized teeth and the liberties I’ve 
taken with gear placement result in some gears that 
should be mounted on the same axis appearing in places 
different from the original. This isn’t a problem in the 
emulator because I implement gears mounted on top 
of each other by simply maintaining them on the same 
heading after each gear rotation. 

In the actual mechanism, varying teeth sizes allows 
gear rotations representing different calculated values 
to appear on the same axis for further processing. For 
example, in the original mechanism, the sequence b2-
i1-i2-m1-m3-e3 representing the rotation of the moon’s 
orbit line of apses (perigee and apogee) shares the same 
axis with the sequence b2-c1-c2-d1-d2-e2 representing 
a sidereal month. This allows the two quantities to be 
subtracted—through the epicyclical mounting of k1 
and k2—to calculate the moon’s eccentric motion at the 
anomalistic month’s required rate.

Here, we can draw an analogy with hardware con-
struction for high-speed computers. The Antikythera 
mechanism employs different gear sizes to drive two 
separate quantities to the same axis. Modern printed 
circuit board design software similarly routes separate 
but related signal paths in a way that keeps their length 
equal, ensuring that the signals will arrive concurrently 
at their destination for further processing.  

Emulating rather than simulating the Antikythera 
mechanism proved to be a sound choice. For exam-
ple, it revealed two bugs that would have otherwise 

gone unnoticed. My first operation of the back-face dials 
had the Saros dial scan months at a different rate than 
the Metonic dial. Normally both should move through 
lunar months at exactly the same rate: 235 months every 
19 years. Further, the Callippic dial appeared to be mov-
ing too slowly. By examining the number of teeth I had 
programmed in each gear, I found that gear p2 had 15 
teeth instead of 12 and gear g1 had 60 teeth instead of 54. 
This accident demonstrates that faithfully emulating the 
mechanism makes it possible to validate its operation.

Adopting the Etoys platform made development of the 
emulator a productive, accessible, and enjoyable activity. 
Scientific and engineering visualization applications can 
be a tough nut to crack, and have attracted the attention 
of many influential researchers.7,8 Cookie-cutter tech-
niques and frameworks such as those for implementing 
desktop applications are ineffective at presenting dispa-
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rate phenomena that can’t be standardized to a specific 
format. Moreover, to be accessible to students, educa-
tional applications should avoid complex algorithms, 
formulas, or techniques.

Having experimented with other candidate environ-
ments like Visual Basic and Tcl/Tk, I can vouch that Etoys 
currently holds a significant edge in its niche. It let me 
appreciate the mechanism’s beauty and, I dare say, even 
“talk” with that unknown computer engineer who two 
millennia ago was grappling with similar problems. ■
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