
focus

18	 I E E E S o f t w a r e P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y � 0 74 0 - 74 5 9 / 0 8 / $ 2 5 . 0 0 © 2 0 0 8 I E E E

gue s t e d i t o r s ’ i n t r o duc t i on

Where’s
My

Jetpack? Simon Helsen,
SAP

Arthur Ryman,
IBM Rational

Diomidis Spinellis,
Athens University of
Economics and Business

L
ook at the cover of a science fiction novel written 30 years ago, and you’ll
invariably notice that everyone has a jetpack on their back whose rockets let
them fly around effortlessly wherever they choose. In our age of skyrocket-
ing oil prices and chronic traffic jams, this vision seems like a cruel joke.

Have software development tools gone through a similar hype-and-bust cycle?

As we’ll see in this issue, in a sense they have.
Software factory tooling, computer-aided software
engineering, and model-driven development tools,
to name just a few buzzwords, clearly haven’t lived
up to their proponents’ sometimes-inflated prom-
ises. Just as with transportation, software tools’
state of the art has taken a more realistic (perhaps
even mundane), but not less exciting, route. Today’s
cars integrate sophisticated electronic steering com-
ponents and satellite guidance systems. In a similar
way, semiautomated software tools monitor a soft-
ware product’s development, evolution, quality, and
maintenance throughout its entire life cycle. As with
cars, comfort and economics have been the principal
drivers, all rooted in the typical pragmatism of de-
velopers who must produce real software that solves
real problems for real stakeholders. Rather than
the predicted progression toward ever-increasing
levels of abstraction, two trends have driven the evo-
lution of software development tools: integration at
the source code level and a focus on quality.

Back to the source
Source code and software development tools are un-
easy bedfellows. Source code’s original purpose was
for writing instructions to be compiled into execut-
able code. The editors we programmers use to write
and maintain source code use heuristics, at best, to
make sense of the code; at worst, they simply regard
it as a plain sequence of characters. So, it’s only nat-
ural that software development tool builders wanted
to escape from such a lowly communication form
(see “A Historical Overview of Software Develop-
ment Tools”). This quest for higher levels of ab-
straction led to a plethora of binary and proprietary
formats. Designs, models, diagrams, requirements,
documentation, version control, and even source
code were interpretable only by specialized tools
that could display them on a glitzy GUI window.

The inevitable backlash didn’t take long to ma-
terialize. It turned out that not everything could or
should be displayed in graphical form; for many
tasks, GUIs were unwieldy, offering mind-numbing

	 September/October 2008 I E E E S o f t w a r e � 19

repetitiveness for what text-based tools could
achieve with a few clever commands. The problem
was aggravated by the lack of integration between
text-based and graphical formats and their tools.
Code generation from graphical artifacts made rela-
tively trivial but extremely important activities such

as debugging difficult, forcing programmers to edit
the generated source code to avoid lengthy round-
trips between the binary graphical formats and the
source code. Sharing code among various commu-
nities through the Internet put further nails in the
coffin of proprietary binary and graphical formats.

Figure A displays exemplary well-known software develop-
ment tools from the last four decades. The x-axis indicates
the time when a particular tool was released or announced.
The y-axis indicates our assessment of the abstraction level
at which the tool operates. We intentionally don’t define ab-
straction precisely because it includes several dimensions that
would be difficult to define in a 2D graph. However, a higher
level of abstraction implies that the tool uses a richer semantic
model to manipulate or interpret its artifacts.

We don’t intend the figure to be complete, as there are

many more development tools. Nevertheless, even though new
tools operating at lower abstraction levels are still being intro-
duced, the abstraction level of tools clearly has risen over time.

Over these four decades of software development tools,
we’ve identified three major eras that drove the focus of the
invented tools. In the structured era, tools mostly supported
structured programming. In the object-oriented era, a lot of
tools were introduced to support OO design and develop-
ment. Finally, the Internet era has seen the introduction of tools
to support distributed Internet-based software development.

A Historical Overview of Software Development Tools

Smalltalk
IDE

make dbx

adb

grep

SCCS

1970

High

Low

1975 1980 1985 1990 1995 2000 2005 2010

Year

Le
ve

l o
f a

bs
tr

ac
tio

n

Turbo Pascal
CVS

Atari Assembly Editor
UCSD Pascal p-code

vi Emacs

XEmacs

VisualAge

MasterScope
RCS gprof

lex/yacc
lint

CodeWarrior Visual Studio
Maven

Eclipse
NetBeans

Macintosh Programmer’s Workshop
Hypercard

MetaCase XMF Mosaic

Visual Studio 2003+

Subversion
IntelliJ

XCode GWT

Jazz

SourceForge

Jinsight

Bugzilla Ant

JIRA

Google Code Search

Trac

Delphi
Rational Rose

.Net CLRJVM

Structured era

Internet era

Object-oriented era

Figure A. Well-known software development tools spanning the last 40 years and three eras. The tools support
higher levels of abstraction over time.

20	 I E E E S o f t w a r e w w w . c o m p u t e r . o r g / s o f t w a r e

We’re currently witnessing a similar move in the
storage formats of office productivity applications,
where binary files are becoming obsolete, replaced
by standardized XML alternatives. (See the “URLs
for More Information” sidebar to learn more about
the tools mentioned in this article.)

Standardized text-based file formats preserve the
intellectual capital invested in authoring the docu-
ments and code, allowing their communication
across space and, more importantly, time. Tools
that are often tied to operating systems and vendors
undergo rapid evolution and often become obsolete.
With the storage format decoupled from the author-
ing tool, however, the artifacts can live on. In the
software development world, the only stable for-
mats are programming-language source code files,
and we now see an explosion of tools that work on
this code. Often we can perform many software life-
cycle activities such as documentation, verification,
testing, and quality assurance directly on the source
code. Even sophisticated integrated development
environments such as Eclipse, NetBeans, and Intel-
liJ essentially operate on text artifacts, even though
they internally construct and maintain a complete,
transient model of the source code to facilitate pow-
erful navigation and context-aware tasks.

The nature of source code has also evolved to ac-
commodate the tools. Modern languages provide
extension facilities—for example, annotations and
tags in Java and attributes in C#. These mechanisms
permit developers to embed metadata into the source
code. This metadata can then be independently
evaluated to help other aspects of the software de-
velopment process. Examples include instructing a

testing framework (as with JUnit 4), creating UML
class diagrams (for example, UMLGraph), or guid-
ing deployment on an application server (as with
EJB 3). Furthermore, many tools increasingly rely
on comments, documentation tags, coding conven-
tions, and reflection for analyzing the source code.
These mechanisms, although not perfect, are tak-
ing the role of duct tape, piecing together a complex,
rich, custom-designed, organically grown process.
Source code has become the bus that tools tap into
for communicating with other tools. Stable lan-
guage standards keep in check but also limit what
tools can generate and process.

Quality time
Another interesting development in the software
tools arena is the increasing focus of development
tools on software quality. This is remarkable be-
cause it may well be a sign that software develop-
ment, as we now practice it, is moving outside the
comfort zone of what we can reliably build both as
individual developers and as members of process-
controlled teams. And, to make software devel-
opment even more challenging, important trends
such as agile development methods and globally
distributed, loosely coupled teams require new proj-
ect management practices and processes to control
quality attributes.

The economics of software quality tell us that
the earlier a problem is found, the cheaper it is to
fix. Focus has therefore shifted from defect removal
in the later phases to defect prevention in the earlier
phases. For example, agile practices such as contin-
uous integration, test-driven development, and cus-
tomer collaboration all aim to prevent defects from
escaping into delivered code. Tools help us here by
detecting bugs, semiautomating test-case creation,
automating refactoring tasks, monitoring the qual-
ity of produced software artifacts, increasing the
ability to reuse distributable applications, and find-
ing the reusable wheat in the tons of chaff available
on the Internet. This special issue includes articles
on tools that address each of these topics.

Venturing outside a comfort zone is always a
risky proposition. There we can reap rich rewards
and learn valuable lessons, but there also lie drag-
ons waiting to eat us alive. In the context of soft-
ware development tools, it’s not clear whether in the
long term the additional effort required for detect-
ing and correcting quality defects after we write the
code can scale to match software’s increasing com-
plexity. On the other hand, we might also interpret
the increased number of development tools that
support quality as a sign that the software devel-
opment profession is maturing beyond individuals’

URLs for More Information
Office Open XML file format: www.iso.org/iso/pressrelease.
htm?refid=Ref1123
Eclipse Platform: www.eclipse.org
The Netbeans Platform: www.netbeans.org
The IntelliJ IDEA: www.jetbrains.com/idea
Java 5.0 annotations: http://java.sun.com/j2se/1.5.0/docs/guide/
language/annotations.html
C# attributes: http://msdn.microsoft.com/en-us/library/z0w1kczw.aspx
JUnit testing framework: www.junit.org
Declarative drawing of UML diagrams: www.umlgraph.org
Enterprise JavaBeans technology: http://java.sun.com/products/ejb
XML: www.w3.org/XML
XML Schema: www.w3.org/XML/Schema
Web Services and Description Language: www.w3.org/TR/wsdl
Latest SOAP versions: www.w3.org/TR/soap
Enhancing all versions of Smalltalk with XML: http://xml.smalltalk.org

■

■

■

■

■

■

■

■

■

■

■

■

■

■

	 September/October 2008 I E E E S o f t w a r e � 21

skills. Just as an automotive engineer today employs
very sophisticated tools to monitor the quality of
produced parts, a modern software developer needs
quality-supporting tools to develop large, multi-
threaded, distributed applications in a timely man-
ner and with adequate quality. On the positive side,
this might arguably indicate that software develop-
ment is becoming more an engineering discipline
than an art.

Challenges and outlook
As we’ve seen, we expect software development
tools to do more with less. In many real projects,
tools are the major driver for maintaining quality,
and we expect them to take up this role by relying
mostly on the project’s source code.

Multiple attempts over the last two decades to
increase the level of programming abstraction have
failed but are also unlikely to stop. We managed
to move from machine code to assembly language
and from there all the way to modern third- and
even fourth-generation programming languages.
So, what’s next? And what does it mean for tools?
Source code is still expressed in one specific pro-
gramming language and therefore bound to that
language’s existence and support structure. How-
ever, having the software industry standardize on
one programming language is unlikely and undesir-
able, not only because of competitive reasons but
also because we’d want to write software for many
domains and specializations.

In many branches of commercial software devel-
opment, XML and XML Schema are becoming the
lingua franca to express content in a domain-specific
manner (as expressed by the countless domain-
specific schemas). Such artifacts are universally in-
terpretable because of the widespread acceptance of
XML and because XML is textual and (somewhat)
human readable. Today, the integration of heteroge-
neous business-software landscapes is largely based
on Web services using schema standards such as
WSDL (Web Services Description Language) and
SOAP, which are XML-based. In fact, numerous
software development tools already exist for these
schema standards, letting us manipulate artifacts at a
higher abstraction level, namely at the domain level.

Although many elements of a software system
are now encoded in XML, source programs are
still expressed in their own unique syntaxes. This
is because most existing general-purpose program-
ming languages have enormous expressive power.
Their domain is usually large enough that develop-
ers are still willing to learn their proprietary syn-
tax. A notable exception to this is Smalltalk, which
has a bare-bones complete syntax and is converg-

ing on an XML standard for tool integration. Yet,
many language-specific frameworks require devel-
opers to express additional attributes in the form
of a programming-language-independent format,
usually XML. And for many of these frameworks,
domain-specific tools are available to edit these
additional attributes. This indicates that domain-
specific XML-based elements are eating away some
of the general-purpose programming language pie.

I t’s impossible to conclude that domain-specific
languages, whether or not they’re encoded in
XML, will eventually replace general-purpose

languages and thus permit a universal integration
for development tools at a higher abstraction level
than just plain text. However, it’s safe to say that
we’ll use software development tools only if they
follow economic principles and permit software
projects to integrate their artifacts in an effective,
transparent, and portable way. At the end of the
day, we all do want jetpacks, but maybe not ones
that are powered by unaffordable gasoline. And we
want them to have enough safety features so that
we won’t crash.

Acknowledgments
The views expressed in this article are those of
the authors and not necessarily of their respective
employers.

About the Authors
Simon Helsen is a development architect at SAP, working on an enterprise-level
metadata repository for design-time tools on top of NetWeaver’s Composition platform.
He has worked on the ArcStyler MDA tool while at Interactive Objects Software and has
published several articles and a book chapter on model-driven development tools and
techniques. His current interests range from scalable model and code-generation paradigms
to high-volume repository technologies. Helsen received his PhD in computer science from
Freiburg University. Contact him at shelsen@computer.org.

Arthur Ryman is a distinguished engineer in IBM’s Rational Division. He works at the
IBM Toronto Laboratory, where he develops tools, most recently Rational Application Devel-
oper. He was a leader of the open source Eclipse Web Tools Platform project and coauthored
a book on that topic (Addison-Wesley, 2007). Ryman has a PhD in mathematics from Oxford
University and is an IEEE senior member. Contact him at ryman@ca.ibm.com.

Diomidis Spinellis is an associate professor in the Department of Management
Science and Technology at the Athens University of Economics and Business and the author
of Code Quality: The Open Source Perspective (Addison-Wesley, 2006). He leads the Software
Quality Observatory for Open Source Software, a European Union-funded project for es-
tablishing a suite of software quality assessment tools for open source software. Spinellis
received his PhD in computer science from Imperial College London. Contact him at dds@
aueb.gr.

