
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper.2009;00:1–18 Prepared usingspeauth.cls [Version: 2002/09/23 v2.2]

User-level operating system
transactions

Diomidis Spinellis1∗

1 Department Management Science and Technology, Athens University of Economics and Business,
Greece. email: dds@aueb.gr

SUMMARY

User-level operating system transactions allow system administrators and ordinary users to perform a
sequence of file operations and then commit them as a group, orabort them without leaving any trace
behind. Such a facility can aid many system administration and software development tasks. The snapshot
isolation concurrency control mechanism allows transactions to be implemented without locking individual
system calls; conflicts are detected when the transaction isready to commit. Along these lines we have
implemented a user-space transaction monitor that is basedon ZFS snapshots and a file system event
monitor. Transactions are committed through a robust and efficient algorithm that merges the operations
performed on a file system’s clone back to its parent. Both theperformance impact and the implementation
cost of the transaction monitor we describe are fairly small.

KEY WORDS: User-level transaction; snapshot; ZFS; snapshot isolation concurrency control

1. Introduction

Complex operations consisting of interrelated steps oftenbenefit from being organized as atransaction:
an atomic sequence of operations that can succeed or fail as awhole. Transactions already play
an important role in a diverse set of fields, such as applications of database systems [1, 2], the
implementation of file systems [3, 4], the recording of changes in version control systems [5], and,
recently, the memory access in multi-core processors [6].

There are many ways in which a system administrator or a software developer end-user could benefit
from an operating system’s transaction support. First, consider complex software installations. Many
types of software, such as MediaWiki, Ruby on Rails, and Cyrus IMAP, have very complex installation

Software: Practice & Experience, 39(14):1215–1233, September 2009. (doi:10.1002/spe.935).
This is a machine-readable rendering of a working paper draft that led to a publication. The publication should always becited in
preference to this draft using the reference in the previousfootnote. This material is presented to ensure timely dissemination of
scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons
copying this information are expected to adhere to the termsand constraints invoked by each author’s copyright. In mostcases,
these works may not be reposted without the explicit permission of the copyright holder.

Copyright © 2009 John Wiley & Sons, Ltd.

2 D. SPINELLIS

requirements with tens of dependencies on (often specific versions of) other components. Making a
mistake or encountering a bug on such an installation can render a system unusable. Although many
installation systems offer an uninstall facility, this seldom provides the assurance of undoing all the
installation’s side-effects. Furthermore, performing a major upgrade, for instance from the Apache web
server version 1.3 to 2.2, requires the careful manual adjustment of many configuration files. Again,
mistakes can bring down a service for many hours.

Finally, software developer end-users, although they are increasingly putting their everyday work
under a version control system (VCS) [7], often perform small (often experimental) steps within a
larger change. Typically programmers, in order to minimizechurn and noise, do not wish to put such
small changes under revision control, but they still want toretain the ability to undo their changes.

System administrators currently employ a number of alternatives to address the situations we have
described, but each has some disadvantages. Business-critical installations often operate a production
and a test system. Changes are first introduced in the test environment, verified, and then brought
over to the production system. However, as the performed changes often have to be re-applied to the
production system by hand, there is always the possibility that an error will creep in.

Another approach involves the use of virtual machine technology. The production virtual machine
is cloned, the changes are applied on the clone, and then the clone switches roles with the production
machine. This approach fails to work when the production system continuously writes data to files
or databases during its operation. In such a case, data written in the clone’s parent between the
original cloning time and the later switchover time would belost. Similar problems occur when using
file system snapshots or backup utilities, such as Apple’s time machine: changes unrelated to the
problematic rolled-back change can be lost. If, for instance, an administrator in order to undo a failed
upgrade rolls back a file system to a previous snapshot, work done by end-users on that file system
since the snapshot’s time will be lost. Furthermore, the switch between a clone and its parent can be
disruptive. For instance, underZFS promoting a file system’s clone to its parent requires unmounting
the file systems and therefore interrupting the operation ofthe production system.

System administrators can also put all files of the production environment under version
control [8]. This setup offers the possibility of rolling back a failedchange. However, because system
administrators will perform changes in steps and not in an atomic operation, the production system
will be unstable during its maintenance. A more sophisticated way involves using aVCS to keep a
production and test environment synchronized. This approach has the advantage of leveraging the
VCS’s mature heuristics for resolving conflicting changes. Thedownside is thatVCSs typically do
not deal gracefully with large binary files. For instance, under such a scenario each commit in the
production environment would store in theVCS repository a complete copy of the system’s database
files.

Facilities currently being introduced in mass-market operating systems allow the efficient provision
of transactions at an operating system’s user level. In thispaper we explore one design approach using
file system snapshots and event monitoring. The main contributions of the work reported here are

• an overview of the design and implementation space for user-level transactions,
• the adoption of the snapshot isolation concurrency control mechanism from the database

community [9] as an efficient design choice,
• the proposal to use file system snapshots and event monitorsas tools for implementing user-level

transactions, and

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–18
Prepared usingspeauth.cls

USER-LEVEL OS TRANSACTIONS 3

• the design and implementation of a robust algorithm for merging the operations performed on a
file system’s clone back to its parent (see Section4.5).

Compared to other work, our approach minimizes the transaction monitor’s load by not monitoring
read operations and by having the file system clone facility perform all intermediate write operations.
For many workload scenarios this can result in higher efficiency.

2. Transactions as User-Level Entities

Transactions in computing systems are defined in terms of theproperties of atomicity (a transaction
succeeds or fails as a whole), consistency (the transactionleaves a consistent store consistent), isolation
(a transaction’s effects are not visible to other transactions until it commits), and durability (after a
commit the transaction’s effects persist, even if system crashes) [1, 10].

The design space we explore seeks to address mainly atomicity, and, to a lesser degree, isolation
at the user space: an application’s view of the system. In common with database systems, we
look at consistency at the application level and assume thatit is the user’s responsibility (for
instance an application will not be left in a partially installed state). Furthermore, we consider
durability a responsibility of the file system, the installation’s UPS, and graceful shutdown procedures.
Others [11, 12] have taken a lower-level view, looking at the consistency and durability of a file system
as properties that can be guaranteed by transactions.

Transaction conflicts can be detected at various levels of precision. For instance, we can define as a
conflict when two separate transactions modify the same file,or we could be more precise and look for
overlaps between the lines changed by the two transactions,as is the practice in manyVCSs. In addition,
we can take into account or ignore the side-effects of a transaction’s changes, such as the updating of a
directory’s modification time when a new file is created in it.To match the profile of the problems we
seek to address we decided to work at the level of files. For typical scenarios, conflicting changes are
either rare (e.g. simultaneous installations of packages that all change the installed package manifest)
or irrelevant (e.g. writes to the same cache file). Furthermore, correctly handing such conflicts requires
tricky and error-prone heuristics.

We decided to ignore second-order changes to file metadata, such as directory modification times
and file access times. For aborted transactions this metadata will not be affected, but for committed
transactions many directory modification and file access times will differ from their original time,
ending up close to the transaction’s commit time. Handling such changes as part of a transaction
would significantly increase the chance of conflicts, without any important corresponding gains in
the system’s utility. Moreover, the handling of such changes would make the system more difficult to
implement. In contrast to file modification times, which are used by tools such asmake[13] in order to
track build artifact dependencies, few if any tools depend on perfectly accurate file access and directory
modification times. In fact, in many systems these times are routinely changed outside the end-user’s
control by systems like file name and content indexers.

An alternative approach would be to consider changes to file system blocks, instead of files. This
was our initial approach, because it matched closely the wayfile system snapshots and clones are
implemented using copy on write mechanisms. Implementing it would require extensive file system–
specific changes to a system’s kernel. In addition, under such an approach it would be difficult to report

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–18
Prepared usingspeauth.cls

4 D. SPINELLIS

to the user the conflicts in a meaningful way. Once we realizedthat user-level transactions could be
efficiently implemented (mostly) through user-space processes tracking files, we adopted the file-level
approach as an elegant, modest-effort implementation choice that would be worth exploring.

In database systems isolation can be achieved through a variety of approaches: two-phase locking,
the association of read and write timestamps with each object, the maintenance of multiple versions of
each object, or through the adoption of an optimistic concurrency control.

Two-phase locking involves a phase where locks are acquiredbut not released, and a second phase
where locks are released, but no new locks are acquired. Thisscheme does not fit our purpose, because
it requires modifications in existing applications to follow its protocol, it adds a locking overhead to
each operating system operation, and it can also lead to deadlocks.

A timestamp-based approach has the advantage of being able to run incrementally. However, it
requires monitoring both read and write operations, which can be an expensive proposition. This can
be overcome by maintaining multiple versions for each object, each with its own timestamps, thus
providing the advantage that reads are never blocked.

Optimistic concurrency control matches the profile of the typical use cases we envision, and can
also offer the advantage of allowing the user to consolidateconflicting changes. On the other hand,
it requires an expensive validation step, which has to be based on recording the read and write times
for all actions. An alternative approach involves the case where user involvement can be tolerated, and
each time only a single transaction is allowed to execute concurrently with other operations performed
outside its scope. In such a case the validation step can be replaced by a three-way-merge between the
data: in its original form, as modified by the transaction, and as modified by other changes that have
occurred outside the transaction.

In the end, what guided our design was the fact thatZFS supports the efficient creation of live
snapshots of a file system, named clones, and thatFsevents, the event monitoring framework we
chose (see Section4.1), monitors changes but not reads. We thus chose to base our design on these
technologies, running a variant of the multi-version concurrency control mechanism called in the
database worldsnapshot isolation[9].

3. System Design

Our design is based on a daemon that controls all transactions and a command-line utility that interfaces
with the daemon to perform the following actions.

Begin a new transaction. The user specifies as parameters the file systems that are to be put under
transaction control. The tool reports back the transaction’s unique identifier and the names of
file system clones (live snapshots of the specified file systems) where the operations of the
transaction should be executed.

Commit an existing transaction. The daemon verifies that the changes made by the transaction do not
conflict with the changes made by other committed transactions, or changes made by processes
running in parallel with the transaction. If conflicts are detected, they are reported, and the
transaction is aborted. Otherwise, the changes in the file system clones are merged back to their
parent (the file systems from which the clones were derived),and the clones are destroyed. After
a commit the transaction cannot be rolled back.

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–18
Prepared usingspeauth.cls

USER-LEVEL OS TRANSACTIONS 5

Abort a specified transaction, or all transactions. An abort can only be performed on transactions that
have not yet been committed. The daemon simply destroys the corresponding file system clones.
Non-root users can abort a specific transaction, or all transactions they have initiated, while root
can also abort all transactions. When multiple transactions are aborted, an informative message
is displayed on the terminal from which each transaction wasinitiated.

List active transactions, events, and monitored file systems. This facility can be used for debugging
the daemon’s operation.

The transaction monitoring daemon accepts requests for theexecution of user-initiated commands,
and also monitors changes performed on all file systems to detect conflicts. It maintains a global list of
objects (absolute file names) that are modified while transactions are in progress, as well as state data
and a modification log related to each transaction.

When a transaction begins, the monitor first obtains exclusive access to the file systems that will
be placed under transaction control. It then creates a snapshot of those file systems, and subsequently
a clone: an exact duplicate of the file system’s data that is mounted under the file system’s root and
can be independently modified. The monitor also timestamps the transaction’s start time, and, if no
other transactions are running at the time, starts to monitor file system events (otherwise, monitoring
is already taking place). Finally, it releases the exclusive access it obtained and reports back the
transaction’s unique identifier.

The monitoring of file system events is used for two purposes:to detect conflicts between various
transactions, and to merge in an efficient way a transaction’s changes into the file system from which
it was cloned. When a new event arrives, the transaction monitor determines whether the event is
associated with a file system clone, (i.e. part of an executing transaction), with a corresponding parent,
or with a file system that is not under transaction control. Events of the third category can be safely
ignored. File systems from which transactions start, i.e. parent file systems, notionally operate under
what is called in the database world asauto-commitmode. This means that changes to them are
immediately considered to be committed, since there is no transaction running on them that will commit
at a later point. Therefore, if an event is associated with a parent file system, the object associated
with the event is immediately marked with a commit timestampof the current time. On the other
hand, events associated with a file system cloned for a transaction simply associate the object with the
corresponding transaction, without however setting the object’s commit time. Furthermore, these events
are also stored in the transaction’s log, so that they can be replayed when a transaction commits. Note
here that although a clone and its parent file system are mounted under differing paths, the objects
associated with them are normalized to always refer to the name of the parent file system. Some
events, like that occurring after a rename operation, are associated with two objects; in such a case
the transaction housekeeping is performed for each object.An event can also signal that the kernel was
unable to deliver all events to the transaction monitor. If this happens the transaction monitor cannot
function reliably, and will therefore abort all transactions.

Aborting a transaction is simply a cleanup operation. The monitor will first verify the user
credentials, so that only a transaction’s owner or root can abort it. It will then clear the data associated
with the transaction, like file systems that required monitoring and objects that were not committed, and
destroy the snapshots and clones associated with it. If at this point no other transactions are running,
event monitoring can also cease.

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–18
Prepared usingspeauth.cls

6 D. SPINELLIS

Table I. Representative transactions in action.

Time User Action Transaction Logic File System Changes

12 transaction begin transaction id← 1239; start_time← 12 create clone-1239
13 touch a commit_time[a]← 13 (auto-commit)
14 touch clone-1239/b commit_time[b]← 0 (pending commit)
15 transaction begin transaction id← 1240; start_time← 15 create clone-1240
16 transaction commit 1239 OK (commit_time[b] < start_time) copy clone-1239/b b

commit_time[b]← 16 destroy clone-1239
17 touch clone-1240/b commit_time[b] = 16 (unchanged, pending commit)
18 touch c commit_time[c]← 18 (auto-commit)
19 transaction begin transaction id← 1241; start_time← 19 create clone-1241
20 transaction commit 1240 Conflict (commit_time[b] > start_time) destroy clone-1240
21 touch clone-1241/c commit_time[c] = 18 (unchanged, pending commit)
22 transaction commit 1241 OK (commit_time[c] < start_time) copy clone-1241/c c

commit_time[c]← 22 destroy clone-1241
23 transaction begin transaction id← 1242; start_time← 23 create clone-1242
24 touch clone-1242/c commit_time[c] = 22 (unchanged, pending commit)
25 touch c commit_time[c]← 25 (auto-commit)
26 transaction commit 1242 Conflict (commit_time[c] > start_time) destroy clone-1242

The committing of a transaction is the most delicate operation. After the user’s credentials are
verified, the transaction monitor obtains again an exclusive lock on the file systems associated with
the transaction. It then sets the transaction’s commit timetimestamp and checks for conflicts using the
snapshot isolationmulti-version concurrency control algorithm. Specifically, for each object that the
transaction modified, the monitor checks if the object’s commit time is larger than the transaction’s
start time. If this is the case, a conflict has arisen and the transaction is aborted. (In section7 we
describe that these occurrences can be gracefully handled by allowing the user to explicitly deal with
conflicts.) Otherwise, the transaction can safely commit. The use of the multi-version concurrency
control algorithm allows for the efficient detection of conflicts and a fast merging of changes. The
actual commit involves setting the commit time of all objects that the transaction modified to the
transaction’s start time, and replaying the event log associated with the transaction on its parent file
system. Finally, exclusive access to the file systems can be released, and the cleanup operation we
described on abort can be performed.

TableI shows some cases of successful and failed transactions. Thecommandcmd is assumed to
run in the same directory, modifying various files; the directoriesclone-nnnnare the clones created
for the corresponding transaction. Transaction1239succeeds, and is allowed to commit, because the
change in the transaction’s clone file system and in its parent affect two different files (a andb). When it

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–18
Prepared usingspeauth.cls

USER-LEVEL OS TRANSACTIONS 7

commits, the file it modified (b) gets timestamped with the transaction’s commit time (16).Transaction
1240 is not allowed to commit, because at time step 17 it also modifies a file namedb. At commit
time it is found that fileb is timestamped after the transaction started. Transaction1241modifies file
c (at time step 21) that is also modified outside the transaction (at time step 18). However, because
the timestamp ofc is earlier than the transaction’s start time the transaction is allowed to commit (the
changed version ofc was already included in the transaction’s cloned file system). Finally, transaction
1242gives rise to a conflict, because the transaction modifies filec at time step 24, and at time step 25
the file is also modified outside the transaction while it is executing. Thus, at its end the commit time
of c is greater than the transaction’s start time.

4. Prototype Implementation

By shopping around for an operating system platform that could readily provide most of the facilities
we needed, we put together a research prototype of the systemwith modest implementation effort.
The system runs under MacOS X modified with the installation of writableZFS functionality. It
uses theZFS snapshots and clones, and also relies heavily on Apple’sFseventsfile system event
functionality [14, Section 11.8.2]. The system comprises less than 2000 linesof code. The command-
line interface, the daemon startup code, and the file system event monitoring are written in C, while the
transaction processing logic is written in C++. The robust and efficient data structures provided by the
C++ standard template library (set, map, string, vector) greatly simplified the implementation of the
transaction processing logic.

The transaction processing monitor is implemented as a single-process, single-threaded server. A
selectcall is used to multiplex between the monitoring of events and the processing of user-sent
commands. Avoiding multiple processes or threads ensures the integrity of the monitor’s (non-trivial)
data structures and algorithms. Although this implementation limits the monitor’s throughput, we do
not think that this will be a problem in practice, because we envision transactions to be few large-
grained operations.

4.1. Event Monitoring

From the two facilities required for implementing our systems, a versatile event monitoring mechanism
turned out to be the most difficult to locate. File system clones as implemented by Sun’sZFS [15] are
currently available under the Solaris, FreeBSD, Mac OS X (as a downloadable module), and Linux
(underFUSE) operating systems. On the other hand, the file system monitoring facilities available
under Linux and FreeBSD (the inotify andkeventinterfaces) could not statisfy our needs, because they
require registering every directory for which changes are monitored. A simple experiment showed that
simply locating all available directories in a typicalusrpartition in the most efficient manner could take
three minutes, and therefore these interfaces were unsuitable for our purpose. Furthermore, at the time
of writing the file event monitoring facility of Solaris (FEM) lacked a userlandAPI. Using DTrace [16]
was not an option, because it might silently drop events. Finally, we feared that the cost of injecting a
monitor for all file-system calls, using theptracemechanism [17, pp. 129–131] would be prohibitively
intrusive and expensive. This left Apple’sFseventsfacility and MacOS X as the only contender.

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–18
Prepared usingspeauth.cls

8 D. SPINELLIS

Fseventsis a file system event monitoring framework that is part of Apple’s Spotlight: a system
that allows the efficient harvesting and searching of file metadata. UnderFseventsone can register
an event monitor through a special file (/dev/fsevents). From that point onward the kernel will send
to the monitor packets describing the operations and arguments for any performed file changes. The
arguments include the file’s path name as well as the corresponding device and inode numbers. As
we shall see these turned out to be crucial for the system’s implementation. The facility’s official
documentation is minimal, but having access to the operating system’s source code worked out as a
perfectly adequate alternative.∗

As the kernel uses a fixed-size buffer for storing packets, itis important for applications using the
monitor to constantly retrieve all events. When the buffer fills, the operating system will coalesce
events and finally also drop them. Dropped events are signalled to the monitoring applications through
a special event type, and applications receiving such an event will not take the issue lightly. Our
transaction monitor will abort all executing transactions, while Spotlight will reportedly rescan all
disks [14, p. 1420]. In order to minimize the chance of missing events,we turnoff event monitoring
while a transaction is committing. A commit can take considerable time, during which the transaction
monitor cannot process file change events. However, during acommit the file systems on which
transactions are executing are locked, and therefore eventmonitoring can be safely turned off.

4.2. ZFS Interface

Interfacing withZFS for creating clones and snapshots is performed by invoking the corresponding
ZFS commands. On our system these commands can sometimes take more than a second to complete,
especially if a file system is stored in flash memory. To minimize the impact of this delay, we let
the commands that destroy the snapshot after a transaction run in the background. Unfortunately, the
command for setting up a clone must be executed synchronously, and therefore the user experiences a
small delay when initiating a transaction.

Another issue concerned the mapping between theZFSdataset names, which the user specifies as the
targets for a transaction, and the integer device identifierof their corresponding mount points, which
the system receives as part of the file system change events. Fortunately,ZFS provides a command
(zfs get -H -o value mountpointdatasetname) for programs to query values and obtain the results in a
format that is easy to parse. We used this to create the corresponding map.

4.3. File System Monitoring

As we described in Section3, file system events are divided among those that belong to a transaction’s
file system, those that belong to its parent, and those that can be ignored. Making this distinction based
on a file’s name can be very difficult, if one takes into accountthe various ways in which file systems
can be mounted. Luckily,ZFS allocates a different device identifier (dev_t) for each file system and

∗After implementing the transaction monitor we came across another facility, Apple’s file system eventsAPI

(http://developer.apple.com/documentation/Darwin/Conceptual/FSEvents_ProgGuide/
FSEvents_ProgGuide.pdf). It is unclear whether using thisAPI instead of directly tapping into the event monitor
file would have been a better implementation choice.

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–18
Prepared usingspeauth.cls

http://developer.apple.com/documentation/Darwin/Conceptual/FSEvents_ProgGuide/
FSEvents_ProgGuide.pdf

USER-LEVEL OS TRANSACTIONS 9

clone. We were thus able to implement an efficient map from a file system’s identifier to the type of
monitoring required for that file system.

4.4. File System Locking

Although our system requires the ability to obtain exclusive access to file systems when a transaction
begins and ends, MacOS X does not provide this functionality, and we did not implement it due to lack
of support for a standalone Darwin kernel derivative.† Lack of file system locking means that, under
our current implementation, conflicting changes performedwhile a transaction is committing will not
be detected. In practice we do not think that this will be a significant problem: conflicts will be rare and
the value of transactions will mainly lie in the ability to abort flawed changes and commit successful
ones.

Nevertheless, the implementation of this facility seems tobe straightforward. It has already been
described and implemented in the context of performing snapshots in the 4.4BSD FFS [18, Section
6], [17, p. 350]. This involves suspending activity on the corresponding file system (by calling
vfs_write_suspend), and allowing system calls writing to the file system to finish. The facility is
implemented by inserting a gate at the top of each system callthat can write to the file system. The gate
counts the processes using the file system, and can also be closed to suspend them while a transaction
is in a critical region. All that is missing is a system call (e.g. fslock) that will take as arguments an
array of file system names, its length, and a flag of the required operation (lock or unlock). When
implementingfslock, care must be taken to avoid deadlocks; allowing only onefslockcall to execute at
a time seems to be a reasonable approach.

4.5. Event Replay

Replaying a transaction’s event log on its parent file systemis not trivial. The complexity arises from
the fact that for the sake of efficiency we store in the event log only the metadata of each operation
(operation type, file path, file type), and not the actual data(file contents, permissions, owners, extended
attributes, andACLs). Instead, we rely on the availability of this informationon the cloned file system
to copy it to its parent when it is required. Unfortunately, simply accessing a file’s contents through its
name is not always possible because subsequent rename operations may change the name under which
its contents are stored.

Initially we attempted to solve this problem by associatingwith each file’s unique identifier (the
device and inode number pair) its updated path. A first pass through the event log would setup this
map, which could then be used for accessing a file’s contents through its identifier. This scheme is
relatively efficient; for a transaction comprisingN events of whichM are rename operations and a map
stored in a data structure with a retrieval costO(logN) the algorithmic cost of replaying the event log is
O(N+(N+M) logN). However, although this scheme handles correctly the renaming of a file path’s
last component (the file name), it will fail when an intermediate part of the path is renamed or moved.

†http://web.archive.org/web/20070409155747/http://www.opendarwin.org/en/news/shutdown.html

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–18
Prepared usingspeauth.cls

http://web.archive.org/web/20070409155747/http://www.opendarwin.org/en/news/shutdown.html

10 D. SPINELLIS

Complete

event log

Create file a

Content modified a

Delete b

Chown a

Rename a b

Create dir c

Content modified b

Rename / delete

event log

Delete b

Rename a b

Empty

placeholder

Figure 1. Example of the full and compressed event logs.

To address this deficiency, we implemented an alternative solution, based on a rename log. This is
a list of all rename operations performed during the course of the transaction. When the event log is
replayed in order to transfer the effects of the transactionfrom the clone to its parent, each source
file name is first transformed by applying to it all recorded rename operations. Note that the target
file name does not need to be transformed, because it will be correctly renamed or moved when the
corresponding events are processed on the parent file system. For a transaction comprisingN events of
whichM are rename operations, the algorithmic cost of replaying the event log isO(N+N×M). This
approach also failed, when the same (typically temporary) file name is reused and renamed multiple
times during the course of a transaction.

In the end, we had each event follow the name’s rename operations from that event’s start until the
end of the event log (or the file’s deletion). Normally, the cost of this operation isO(N(N− 1)/2),
which proved expensive: in a transaction comprising half a million events the daemon spent 76CPU

minutes in user mode, most of it presumably recalculating file names. We therefore optimized the
search by keeping in a separate list only the renames and deletes, and associating with each event the
corresponding start position of the list (see Figure1). Because the future first rename or delete operation

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–18
Prepared usingspeauth.cls

USER-LEVEL OS TRANSACTIONS 11

to be associated with an event is not known when an event is processed, the list always contains at its
end a dummy placeholder event. Once a rename or delete event is encountered, the placeholder is
updated to match the contents of that event, and a new placeholder is appended to the list. Assuming
that theM rename operations are uniformly distributed among theN events, the total cost of calculating
file names during an event replay is

O

(

N
M
×

M(M−1)
2

)

= O

(

N(M−1)
2

)

.

The cost of this revised scheme is not prohibitive, because rename operations are typically only a small
percentage of the total number of operations, andI /O is likely to dominate the cost of merging the
committed files to a clone’s parent directory.

A final stumbling block for the implementation of the event log replay seemed to be the correct
transfer of all the file’s metadata, including permissions,extended attributes, access control lists, and
finder data, from the clone file system to its parent. Fortunately, Mac OS X provides acopyfile(3)
library function, which is designed to handle all these cases. Although our design does not depend on
the existence of thecopyfilefunction, its availability simplified the implementation.

4.6. Interprocess Communication

The transaction monitoring daemon communicates with the command-line control tool through a Unix
domain socket. This allows the command-line tool to pass reliably to the daemon the user’s credentials
and a descriptor associated with its standard error stream using the socket’s out-of-band message
communication facility. The user’s credentials are storedwith each associated transaction, and ensure
that only its user (or root) can commit or abort it. They are also used for setting the daemon’s effective
user id, when replaying the event log to each parent file system. One could argue that this is not
required, because the daemon is playing back events that have already succeeded, and, as there were
no conflicting events, one could assume that the user will have sufficient privileges to execute the
corresponding actions. This however ignores situations where during the course of a transaction the
permissions of a directory change.

The file descriptor associated with the command-line tool’sstandard error stream is also stored
as part of a transaction’s data. This is used to notify the transaction’s owner when the transaction is
forcibly terminated by the administrator or due to a system error. In such cases the correspondingZFS

clones are destroyed, and therefore subsequent system calls of the transaction’s processes related to
its file systems will fail; emitting a message with the underlying cause is a reasonable user interface
design choice.

4.7. Data Structures and Resource Management

The system’s data structure schema is illustrated in Figure2. Each transaction maintains a list of
associated events: operations on files located in the clonedfile system. When the transaction commits,
these are replayed (as described in Section4.5) to replicate the cloned file system on its parent.

Transactions are also associated with transacted objects:files and directories that are modified by a
transaction. These objects are always identified by the nameof the corresponding object in the parent
file system. They can come to life either when a transaction modifies an object in a cloned file system,

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–18
Prepared usingspeauth.cls

12 D. SPINELLIS

TransactedObject

name

commi t_ t ime

Moni toredFi lesystem

device

transact ion

mountpoint

other_mountpoint

number_of_references

Transact ion

id

error_fd

uid

star t_ t ime

moni tored_f i lesystems

events

t ransacted_objects

begin()

commit ()

 0 . .1

1..*

*

*

Event

type

name

name2

dev

*

1

Figure 2. Logic schema of the maintained data.

or when another process modifies an object on a cloned file system’s parent; such a modification
is immediately auto-committed. Every transaction maintains a set of the objects it has modified. A
transacted object can be associated with more than one transaction, but the link from the object to the
transaction is not maintained. Instead, the object’s commit time is used to detect conflicts during a
transaction’s commit. Transacted objects are garbage collected when all transactions commit.

Finally, the system also maintains a bidirectional link between transactions and the file systems that
each transaction monitors. Every transaction needs to monitor one or more cloned file systems. The link
from the cloned monitored file systems to the corresponding transaction is used by the event monitor
to update the transaction with the transacted objects associated with each event. In addition, the system
also monitors the corresponding parent file systems. This isused by the event monitor to auto-commit
objects that are modified in those file systems.

Monitoring a file system is an expensive operation, because it burdens the transaction monitor with
some processing for every operation performed on that file system. A map between device numbers
and monitored file systems allows the event monitor to efficiently determine when an event requires

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–18
Prepared usingspeauth.cls

USER-LEVEL OS TRANSACTIONS 13

further processing. In addition, each monitored file systemmaintains a reference count. When this
count drops to zero the object is deleted, and monitoring on the file system ceases. When no file
systems are monitored (i.e. when no transactions are in progress), the event monitor is completely
disabled, thus zeroing theCPU load of a quiescent transaction monitor.

4.8. Limitations

As implemented, the command-line tool provides a relatively low-level interface, allowing a user
to perform transacted operations on file system clones. Ideally, we would want a transaction to
transparently provide a complete environment where operations can take place in isolation, and later
committed or aborted. This may involve performing achroot on a specially crafted file system that
includes the appropriate clones, or setting up an application container through azone(under Solaris) or
jail (under FreeBSD). Additional complications of a more comprehensive approach include a scheme
for specifying which users can use transactions (currentlywe allow any user to start a transaction), and
the handling of changes that are not mirrored in a file system (e.g.settimeofday).

Currently the system doesn’t perform the requisite file system locking (see Section4.4), and also
fails to handle correctly hard links, mirroring them to the parent file system as a copy of the linked
file. The transaction monitor sees hard links as file creationevents for a specific inode. As it is very
expensive to map from an inode to a file name, and the system does not provide a system call to directly
link a file name to a given inode, a more faithful implementation of hard links requires an operating
system extension.

Finally, the transaction monitor is not integrated with theoperating system startup and shutdown
operations. The requirements for addressing this deficiency boil down to prohibiting a shutdown while a
transaction is committing, aborting all active transactions when a shutdown commences, and cleanning
up file system clones left by an ungraceful shutdown. If a system is equipped with aUPS, so that it will
not shut down on a power failure while a transaction is committing, satisfying these requirements will
address the transactiondurability property.

5. Performance Evaluation

To measure the performance of our system we used theSSHworkload [19] and the PostMark synthetic
benchmark [20]. In common with the tests performed by the developers of theAmino transaction
system [12] we used version 4.2p1 of theSSH package, and we split the workload into three phases:
unpack, which involves decompressing and untarring the distribution file, configure, which involves
running the configuration script, andmake, which involves compiling the package. Running PostMark
with the configuration used in Amino was not feasible, because the rapid sequence ofI /O operations
resulted in dropped events. We therefore used a configuration of file sizes 5–100k, a read and write
block size of 64k, 2500 simultaneous files, and 9000 operations (transactions in the benchmark’s
terminology). To test a more substantial workload, we also run an unpacking (tar xzf) of the Linux
kernel version 2.6.28, and the unpacking (tar xzf), configuration (configure), build (make), test (make
test-force), and installation (make install) steps on the version 5.1.30 source distribution of MySQL.

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–18
Prepared usingspeauth.cls

14 D. SPINELLIS

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

CPU�������Elapsed CPU�������Elapsed CPU�������Elapsed

T
im

e
(s

)

MySQL-unpack

Plain Auto-commit Transaction

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

CPU�������Elapsed CPU�������Elapsed CPU�������Elapsed

T
im

e
(s

)

ssh-unpack

Plain Auto-commit Transaction

 0

 20

 40

 60

 80

 100

 120

 140

 160

CPU�������Elapsed CPU�������Elapsed CPU�������Elapsed

T
im

e
(s

)

MySQL-config

Plain Auto-commit Transaction

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

CPU�������Elapsed CPU�������Elapsed CPU�������Elapsed
T

im
e

(s
)

ssh-config

Plain Auto-commit Transaction

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

CPU�������Elapsed CPU�������Elapsed CPU�������Elapsed

T
im

e
(s

)

MySQL-make

Plain Auto-commit Transaction

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

CPU�������Elapsed CPU�������Elapsed CPU�������Elapsed

T
im

e
(s

)

ssh-make

Plain Auto-commit Transaction

 0

 50

 100

 150

 200

 250

CPU�������Elapsed CPU�������Elapsed CPU�������Elapsed

T
im

e
(s

)

MySQL-install

Plain Auto-commit Transaction

 0

 50

 100

 150

 200

 250

 300

CPU�������Elapsed CPU�������Elapsed CPU�������Elapsed

T
im

e
(s

)

Linux-unpack

Plain Auto-commit Transaction

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

CPU�������Elapsed CPU�������Elapsed CPU�������Elapsed

T
im

e
(s

)

PostMark

Plain Auto-commit Transaction Application user
Application system
Daemon user
Daemon system
Elapsed

Figure 3. Time performance measurements.

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–18
Prepared usingspeauth.cls

USER-LEVEL OS TRANSACTIONS 15

Table II. Benchmark configuration.

Item Description

Computer Mac mini model A1103
CPU PowerPC 7447a (G4)

CPU clock speed 1.25GHz
L2 cache 512kB (on chip)

RAM 1GB 333MHz DDR SDRAM

External disk Seagate model ST3320620A
Interface UltraATA 100

Cache 16MB

Average latency 4.16 ms
Spindle speed 7200RPM

Heads 4
Disks 2

Bytes per sector 512

Disk enclosure IB-351U-B-BL
Interface USB 2.0

Kernel version 9.6.0 (xnu-1228.9.59)
ZFS version 119

We run the benchmarks on an (otherwise idle) Apple Mac mini with an external hard disk formatted
as a singleZFSvolume. The configuration’s details appear in TableII . We run each benchmark in three
setups.

Plain involves running the benchmark on theZFS volume without any transaction overhead. This
establishes the base case for the configuration’s performance.

Auto-commit has the benchmark running on aZFS directory on which another (empty) transaction is
running. The benchmark’s operations are auto-committed tothe directory immediately as they
occur. This measurement establishes the overhead that the transaction monitor imposes on a
system’s regular operations.

Transaction has the benchmark running on aZFS file system clone, and then its results copied back
to the clone’s parent file system. This measurement establishes the overhead of performing the
operation as a transaction, which can be committed or aborted.

We unmounted theZFS volume between each measurement to clear its cache.
The benchmark time results appear in Figure3. As we can see, theunpackandinstall operations is

where the system’s overhead is most pronounced. This happens because these operations mainly create

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–18
Prepared usingspeauth.cls

16 D. SPINELLIS

Table III. Memory performance measurements.

Overhead
Operation Events Objects (MB)

MySQL-unpack (A /C) 0 1,133 1
MySQL-make 8,826 4,264 1
PostMark 25,546 6,994 2
MySQL-install 39,480 4,507 4
MySQL-unpack 6,426 1,133 5
Linux-unpack 107,384 26,846 13

new files, which then have to be copied again from the file system clone back to its parent. This fact
is substantiated by the small percentage of daemon user time. In the CPU-intensiveconfigandmake
operations the daemon’s overhead is barely perceptible, thus showing the practicality of our approach
for various typical workloads. Furthermore, the effect of the transaction daemon on auto-committed
transactions is also minimal; in quick-running tasks the difference stems from the time required to
create and destroy theZFS snapshot and clone. The scalability of our approach is demonstrated by the
fact that the daemon’s userCPU time remains a fixed percentage of the totalCPU time in the twounpack
operations, which differ by an order of magnitude (1s for sshversus 50s for MySQL). The PostMark
benchmark is the operation where the daemon spends a significant amount ofCPU time in user mode.
This is probably the cost of creating and searching objects in a tree data structure containing thousands
of elements.

We also measured the memory performance of the transaction monitor by tracking its virtual memory
size at the end of each commit operation. For most tasks therewas no measurable increase in the
daemon’s memory size. The tasks for which the size of the daemon increased are listed in TableIII .
Only the MySQL-unpack task increased the daemon’s memory size in the autocommit (A /C) operation;
all other tasks refer to committed transactions. The largest increase we measured was 13MB: it occurred
during the unpacking of the Linux kernel. From these resultsone can conclude that the daemon’s
memory requirements are very modest.

6. Related Work

Overviews of the transaction mechanism in the context of database systems can be found in
references [10, 2], while an excellent description behind the motivation forsupporting transactions
as an operating system service and an analysis of related work can be found in reference [12].

Transactions have often been proposed as a service providedby the operating system’s virtual
memory storage pool [21] or a file system. TheXFS file system was designed with internal support for
transactions [3]. An alternative approach involves offering transaction support on top of a rudimentary

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–18
Prepared usingspeauth.cls

USER-LEVEL OS TRANSACTIONS 17

block repository file system, which is explicitly designed to service the implementation of database
management systems [22]. More recently, the Reiser4 file system offered a so-calledtranscrashfacility,
which is an atomic set of operations that can survive a crash [4]. However, the fine-grained granularity
makes it more suitable for use within individual applications, such as a database system, rather than
use in user-level operations that can span the execution of many programs. Furthermore,transcrash
operations do not imply isolation and serializability between operations, nor the ability of a rollback.

TheQuickSilverdistributed operating system uses transactions as a way forproviding applications
with a consistent view of distributed processes. It differsfrom our approach in that it is a complete
operating system, rather an addition to an existing system.This allows for better control on how
transactions are implemented, but renders existing application binaries unusable. To handle this
problem, theAminofile system [11, 12] starts from premises very similar to ours, but implements
transactions by intercepting system calls usingptrace, and recording data in a Berkeley embedded
database (BDB). Amino’s design offers increased flexibility in the design of transaction handling, at
the expense of interposing the transaction monitor on all system processes. This has a cost of about
15% for all applications, but, interestingly, can increaseperformance whenAmino is used instead of
synchronous writes to provide durability.

Some systems, like Microsoft Windows‡ and Juniper’sJUNOS,§ offer a way to rollback a failed
configuration to a version committed at an earlier point. Ourapproach generalizes such a facility by
offering it to both end users and system administrators, andformalizes its functionality by allowing the
distinction between actions that are part of a transaction (those that occur in the file system clone) and
actions that are not.

As a production-quality offering, the transactionalNTFS technology available on Windows Vista
provides atomicity, isolation, and rollback.¶ Building on top of the transactionalNTFS, the Windows
Kernel Transaction Manager (KTM) provides anAPI for creating, committing, and rolling back a
transaction.‖ More than one process can participate in a transaction, but,in contrast to our approach,
these processes must be explicitly coordinated by arranging for their code to pass and receive the
transaction’s handle, and have their code call appropriatefunctions. For instance, to create a new file
an application should call the functionCreateFileTransacted, instead ofCreateFile. In our approach
transactions are transparent to applications; the transaction’s handle is only required by the stand-alone
command-line program in order to commit or abort a transaction. On the other hand,KTM offers a wider
range of services, such as anAPI, the ability to write resource managers, and support for distributed
operation [23].

Finally, another related area that influenced our work concerns the merging of a cloned directory’s
contents with those of its parent. Our approach avoids conflicts by using thesnapshot isolationmulti-
version concurrency control algorithm [9]. An alternative approach involvesoptimistic replication[24],
and has been used, among others, in the Coda file system [25] and for the synchronization of mobile
devices [26]. Another approach in the same design space implementsisolation-only transactions

‡Windows System Restore facility:http://support.microsoft.com/kb/306084
§JUNOS commit command:https://www.juniper.net/techpubs/software/junos/junos54/swconfig54
-getting-started/html/cli-summary-configuration-mode4.html
¶http://msdn.microsoft.com/en-us/library/aa365456.aspx
‖http://msdn.microsoft.com/en-us/library/aa366295.aspx

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–18
Prepared usingspeauth.cls

http://support.microsoft.com/kb/306084
https://www.juniper.net/techpubs/software/junos/junos54/swconfig54
-getting-started/html/cli-summary-configuration-mode4.html
http://msdn.microsoft.com/en-us/library/aa365456.aspx
http://msdn.microsoft.com/en-us/library/aa366295.aspx

18 D. SPINELLIS

providing read-write conflict detection and a variety of resolution mechanisms [27]. Our transaction
monitor could be extended to inform users about a transaction’s conflicts, and allow them to override
them by using methods such as the preceding ones.

7. Conclusions and Further Work

Being able to undo all the effects of an operation performed on a system increases the system’s
usability [28, p. 75] and decreases the possibility of catastrophic errors. A file system clone can be
used as a sandbox for experimenting with extensive and riskychanges, but merging those changes
back to the file system’s parent can be an error-prone operation. The concept of a transaction offers a
way to describe these changes as a set that can be atomically committed (or aborted), and as operations
that can potentially conflict with others that are performing concurrently. For many real-world tasks
conflicts between independent actions are rare. Consequently, detecting such conflicts at commit time
through the snapshot isolation multi-version concurrencycontrol algorithm and aborting conflicting
transactions (or allowing the user to handle conflicts) is anattractive design approach: it is easy to
implement, its performance impact is minor, and it avoid deadlocks.

The prototype transaction monitor we designed and implemented can be improved in a number of
ways. Operating system support for locking file systems whena transaction begins or commits, and
for linking a file to an inode will increase the monitor’s reliability and faithfulness. Currently, when
a conflict is detected at commit time, the conflicting file is reported, and the transaction is aborted.
Listing these conflicts with an identifying number, and allowing users to override specific conflicts
(presumably after they have established that they are immaterial, or they have merged the conflicts
by hand) will help users to deal with most conflicts in a productive way. Finally, making transactions
operate within an isolated environment, like a jail or zone,will increase their usefulness for performing
large-scale system administration tasks.

Acknowledgements

I was extremely lucky to benefit from the brilliant advice of anumber of colleagues in the course
of this work. Pawel Jakub Dawidek suggested the possibilityof using ZFS clones, an approach that
shielded me from messing with a file system’s internal structures. Georgios Gousios proposed the use
of theFseventsfacility and the provision of a way for users to merge conflicting changes. This made
me decide to implement the transaction monitor in user space, thus further simplifying the system’s
implementation to a degree that I could realistically handle. Damianos Chatziantoniou prompted me to
search for related approaches in the database literature, where I discovered the—key to this work—
snapshot isolation concurrency control mechanism. I wouldalso like to thank Georgios Gousios,
Panagiotis Louridas, Alexios Zavras, and the paper’s anonymous reviewers for their helpful comments
and suggestions on earlier versions of this work.

Software Availability

The source code for the software described here is availablefor download under aBSD license from
http://www.spinellis.gr/sw/ostran.

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–18
Prepared usingspeauth.cls

http://www.spinellis.gr/sw/ostran

USER-LEVEL OS TRANSACTIONS 19

REFERENCES

1. K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. Thenotions of consistency and predicate locks in a database
system.Communications of the ACM, 19(11):624–633, 1976.

2. Theo Haerder and Andreas Reuter. Principles of transaction-oriented database recovery.ACM Computing Surveys,
15(4):287–317, 1983.

3. Adam Sweeney. xFS transaction mechanism, 1993. Available online athttp://oss.sgi.com/projects/xfs/design_docs/xfsdocs93_ps/
Accessed December 2008.

4. Joshua MacDonald and Hans Reiser. Reiser4 transaction design document, 2001. Available online at
http://lwn.net/2001/1108/a/reiser4-transaction.php3. Accessed December 2008.

5. Huzefa Kagdi, Shehnaaz Yusuf, and Jonathan I. Maletic. Mining sequences of changed-files from version histories. In
MSR ’06: Proceedings of the 2006 international workshop on Mining software repositories, pages 47–53, New York, NY,
USA, 2006. ACM.

6. Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support for lock-free data structures. InISCA
’93: Proceedings of the 20th Annual International Symposium on Computer Architecture, pages 289–300, New York, NY,
USA, 1993. ACM.

7. Diomidis Spinellis. Version control systems.IEEE Software, 22(5):108–109, September/October 2005.
8. Ray Miller. Configuration management with Subversion, YAML and Perl template toolkit. In Alexios Zavras, editor,

Proceedings of the 5th International System Administration and Network Engineering Conference SANE 06. NLUUG,
Stichting SANE, May 2006.

9. Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick O’Neil. A critique of ANSI SQL
isolation levels. InSIGMOD ’95: Proceedings of the 1995 ACM SIGMOD international conference on Management of
data, pages 1–10, New York, NY, USA, 1995. ACM.

10. Jim Gray. The transaction concept: Virtues and limitations. InVLDB ’1981: Proceedings of the seventh international
conference on Very Large Data Bases, pages 144–154. VLDB Endowment, 1981.

11. Charles P. Wright, Richard Spillane, Gopalan Sivathanu, and Erez Zadok. Amino: Extending ACID semantics to the file
system. InFAST 2005: 2nd Usenix Conference on File and Storage Technologies. USENIX Association, April 2005. Work
in progress report.

12. C. P. Wright, R. Spillane, G. Sivathanu, and E. Zadok. Extending ACID semantics to the file system.ACM Transactions
on Storage, 3(2):1–42, June 2007.

13. Stuart I. Feldman. Make—a program for maintaining computer programs.Software: Practice & Experience, 9(4):255–
265, 1979.

14. Amit Singh. Mac OS X Internals: A Systems Approach. Addison-Wesley, Boston, 2007.
15. Jeff Bonwick, Matt Ahrens, , Val Henson, Mark Maybee, andMark Shellenbaum. The zettabyte file system. InFAST

2003: 2nd Usenix Conference on File and Storage Technologies. USENIX, USENIX Association, April 2003. Work in
progress report.

16. Richard McDougall, Jim Mauro, and Brendan Gregg.Solaris Performance and Tools: DTrace and MDB Techniques for
Solaris 10 and OpenSolaris. Prentice Hall PTR, Upper Saddle River, 2006.

17. Marshall Kirk McKusick and George V. Neville-Neil.The Design and Implementation of the FreeBSD Operating System.
Addison-Wesley, Reading, MA, 2004.

18. Marshall Kirk McKusick and Gregory R. Ganger. Soft updates: A technique for eliminating most synchronous writes in
the fast filesystem. In Jordan Hubbard, editor,Proceedings of the USENIX 1999 Annual Technical Conference, Freenix
Track, Berkeley, CA, June 1999. USENIX Association.

19. Margo I. Seltzer, Gregory R. Ganger, M. Kirk McKusick, Keith A. Smith, Craig A. N. Soules, and Christopher A. Stein.
Journaling versus soft updates: Asynchronous meta-data protection in file systems. InUSENIX ’00: Proceedings of the
Usenix Annual Technical Conference, pages 6–21, Berkeley, CA, USA, 2000. USENIX Association.

20. Jeffrey Katcher. Postmark: A new file system benchmark. Technical Report 3022, NetApp, Sunnyvale, CA, 1997. Avail-
able online athttp://communities.netapp.com/servlet/JiveServlet/download/2609-1551/Katcher97-postmark-netapp-
Accessed December 2008.

21. M. Satyanarayanan, Henry H. Mashburn, Puneet Kumar, David C. Steere, and James J. Kistler. Lightweight recoverable
virtual memory. ACM Transactions on Computer Systems, 12(1):33–57, 1994.

22. Jason Evans. Design and implementation of a transaction-based filesystem on FreeBSD. InProceedings of the USENIX
1999 Annual Technical Conference, Berkeley, CA, June 1999. Usenix Association. Freenix track.

23. Pradeep Jnana Madhavarapu, Shishir Pardikar, Balan Sethu Raman, Surendra Verma, Jon Cargille, and Jacob Lacouture.
Method and system for transacted file operations over a network. United States Patent 7,231,397, 2007.

24. Yasushi Saito and Marc Shapiro. Optimistic replication. ACM Computing Surveys, 37(1):42–81, 2005.
25. Puneet Kumar and M. Satyanarayanan. Log-based directory resolution in the Coda file system. InPDIS ’93: Proceedings

of the 2nd International Conference on Parallel and Distributed Information Systems, pages 202–213, Washington, DC,

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–18
Prepared usingspeauth.cls

http://oss.sgi.com/projects/xfs/design_docs/xfsdocs93_ps/trans.ps
http://lwn.net/2001/1108/a/reiser4-transaction.php3
http://communities.netapp.com/servlet/JiveServlet/download/2609-1551/Katcher97-postmark-netapp-tr3022.pdf

20 D. SPINELLIS

USA, 1993. IEEE Computer Society.
26. Tancred Lindholm, Jaakko Kangasharju, and Sasu Tarkoma. A hybrid approach to optimistic file system directory tree

synchronization. InMobiDE ’05: Proceedings of the 4th ACM International Workshop on Data Engineering for Wireless
and Mobile Access, pages 49–56, New York, NY, USA, 2005. ACM.

27. Qi Lu and M. Satyanaranyanan. Isolation-only transactions for mobile computing.Operating Systems Review, 28(2):81–
87, 1994.

28. Ben Shneiderman.Designing the User Interface: Strategies for Effective Human-Computer-Interaction. Addison-Wesley,
Boston, MA, third edition, 1998.

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Exper.2009;00:1–18
Prepared usingspeauth.cls

	1 Introduction
	2 Transactions as User-Level Entities
	3 System Design
	4 Prototype Implementation
	4.1 Event Monitoring
	4.2 ZFS Interface
	4.3 File System Monitoring
	4.4 File System Locking
	4.5 Event Replay
	4.6 Interprocess Communication
	4.7 Data Structures and Resource Management
	4.8 Limitations

	5 Performance Evaluation
	6 Related Work
	7 Conclusions and Further Work

