SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Expe2009;00:1-18 Prepared usingpeauth.cls [Version: 2002/09/23 v2.2]

User-level operating system P
transactions &

Diomidis Spinellig*

1 Department Management Science and Technology, Athenstisityvof Economics and Business,
Greece. email: dds@aueb.gr

SUMMARY

User-level operating system transactions allow system adnistrators and ordinary users to perform a
sequence of file operations and then commit them as a group, @bort them without leaving any trace
behind. Such a facility can aid many system administration ad software development tasks. The snapshot
isolation concurrency control mechanism allows transactins to be implemented without locking individual
system calls; conflicts are detected when the transaction igady to commit. Along these lines we have
implemented a user-space transaction monitor that is basedn zFs snapshots and a file system event
monitor. Transactions are committed through a robust and eficient algorithm that merges the operations
performed on a file system’s clone back to its parent. Both theerformance impact and the implementation
cost of the transaction monitor we describe are fairly small

KEY WORDS. User-level transaction; snapshot; ZFS; snapshot isolaincurrency control

1. Introduction

Complex operations consisting of interrelated steps dftarefit from being organized asransaction
an atomic sequence of operations that can succeed or failvesoke. Transactions already play
an important role in a diverse set of fields, such as apptinatiof database systems, 2], the
implementation of file system$] 4], the recording of changes in version control systeBjsdnd,
recently, the memory access in multi-core procesSjrs [

There are many ways in which a system administrator or a softeleveloper end-user could benefit
from an operating system’s transaction support. Firstsiclam complex software installations. Many
types of software, such as MediaWiki, Ruby on Rails, and €ywapr, have very complex installation

Software: Practice & Experienc&9(14):1215-1233, September 2009. (doi:10.1002/spg.93

This is a machine-readable rendering of a working papet thaf led to a publication. The publication should alwaysited in
preference to this draft using the reference in the previoosote. This material is presented to ensure timely digsation of
scholarly and technical work. Copyright and all rights #ierare retained by authors or by other copyright holderspédsons
copying this information are expected to adhere to the temasconstraints invoked by each author’s copyright. In oases,
these works may not be reposted without the explicit periorissf the copyright holder.

Copyright © 2009 John Wiley & Sons, Ltd.

2 D. SPINELLIS

requirements with tens of dependencies on (often specifgiores of) other components. Making a
mistake or encountering a bug on such an installation cagheresm system unusable. Although many
installation systems offer an uninstall facility, thisdei provides the assurance of undoing all the
installation’s side-effects. Furthermore, performingaon upgrade, for instance from the Apache web
server version 1.3 to 2.2, requires the careful manual &dprst of many configuration files. Again,
mistakes can bring down a service for many hours.

Finally, software developer end-users, although they raceeasingly putting their everyday work
under a version control systemds) [7], often perform small (often experimental) steps within a
larger change. Typically programmers, in order to minindkarn and noise, do not wish to put such
small changes under revision control, but they still wanetain the ability to undo their changes.

System administrators currently employ a number of altéresito address the situations we have
described, but each has some disadvantages. Businésaldnistallations often operate a production
and a test system. Changes are first introduced in the tesbement, verified, and then brought
over to the production system. However, as the performedgdmoften have to be re-applied to the
production system by hand, there is always the possibiidy &n error will creep in.

Another approach involves the use of virtual machine teldgyo The production virtual machine
is cloned, the changes are applied on the clone, and therahe switches roles with the production
machine. This approach fails to work when the productiortesyiscontinuously writes data to files
or databases during its operation. In such a case, dateemviitt the clone’s parent between the
original cloning time and the later switchover time wouldlbst. Similar problems occur when using
file system snapshots or backup utilities, such as Appleie tmachine: changes unrelated to the
problematic rolled-back change can be lost. If, for inségaran administrator in order to undo a failed
upgrade rolls back a file system to a previous snapshot, wank by end-users on that file system
since the snapshot’s time will be lost. Furthermore, thedwhbetween a clone and its parent can be
disruptive. For instance, unders promoting a file system’s clone to its parent requires unrtingn
the file systems and therefore interrupting the operatiagh@production system.

System administrators can also put all files of the produactmvironment under version
control [8]. This setup offers the possibility of rolling back a failedange. However, because system
administrators will perform changes in steps and not in amat operation, the production system
will be unstable during its maintenance. A more sophistidatay involves using &Cs to keep a
production and test environment synchronized. This amprdes the advantage of leveraging the
vcs's mature heuristics for resolving conflicting changes. Tognside is that/css typically do
not deal gracefully with large binary files. For instanced@nsuch a scenario each commit in the
production environment would store in thies repository a complete copy of the system’s database
files.

Facilities currently being introduced in mass-market afing systems allow the efficient provision
of transactions at an operating system’s user level. Inpdyger we explore one design approach using
file system snapshots and event monitoring. The main caiitis of the work reported here are

 an overview of the design and implementation space forleset transactions,

» the adoption of the snapshot isolation concurrency cbmtrechanism from the database
community B] as an efficient design choice,

» the proposal to use file system snapshots and event moagdosls for implementing user-level
transactions, and

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-18
Prepared usingpeauth.cls

USER-LEVEL OS TRANSACTIONS 3

* the design and implementation of a robust algorithm forgimegy the operations performed on a
file system’s clone back to its parent (see Secici).

Compared to other work, our approach minimizes the traiwactonitor’'s load by not monitoring
read operations and by having the file system clone faciktyqrm all intermediate write operations.
For many workload scenarios this can result in higher efficye

2. Transactions as User-Level Entities

Transactions in computing systems are defined in terms gbribgerties of atomicity (a transaction
succeeds or fails as a whole), consistency (the transdetwas a consistent store consistent), isolation
(a transaction’s effects are not visible to other transastiuntil it commits), and durability (after a
commit the transaction’s effects persist, even if systesstoes) 1, 10].

The design space we explore seeks to address mainly atgnaicd, to a lesser degree, isolation
at the user space: an application’s view of the system. Inncomwith database systems, we
look at consistency at the application level and assume ithit the user’s responsibility (for
instance an application will not be left in a partially inttd state). Furthermore, we consider
durability a responsibility of the file system, the instiia’s ups, and graceful shutdown procedures.
Others [L1, 12] have taken a lower-level view, looking at the consistenay durability of a file system
as properties that can be guaranteed by transactions.

Transaction conflicts can be detected at various levelsedfigion. For instance, we can define as a
conflict when two separate transactions modify the sameofilee could be more precise and look for
overlaps between the lines changed by the two transactersthe practice in manycss. In addition,
we can take into account or ignore the side-effects of a#@ion’s changes, such as the updating of a
directory’s modification time when a new file is created inf@.match the profile of the problems we
seek to address we decided to work at the level of files. Facaypcenarios, conflicting changes are
either rare (e.g. simultaneous installations of packdgasall change the installed package manifest)
or irrelevant (e.g. writes to the same cache file). Furtheeqmorrectly handing such conflicts requires
tricky and error-prone heuristics.

We decided to ignore second-order changes to file metadath,as directory modification times
and file access times. For aborted transactions this metadkinot be affected, but for committed
transactions many directory modification and file accesgdgimill differ from their original time,
ending up close to the transaction’s commit time. Handlinghschanges as part of a transaction
would significantly increase the chance of conflicts, withany important corresponding gains in
the system’s utility. Moreover, the handling of such changeuld make the system more difficult to
implement. In contrast to file modification times, which ased by tools such arake[13] in order to
track build artifact dependencies, few if any tools depemgerfectly accurate file access and directory
modification times. In fact, in many systems these times auérrely changed outside the end-user’s
control by systems like file name and content indexers.

An alternative approach would be to consider changes toyfdeem blocks, instead of files. This
was our initial approach, because it matched closely the fileysystem snapshots and clones are
implemented using copy on write mechanisms. Implementiaguld require extensive file system—
specific changes to a system’s kernel. In addition, unddr an@approach it would be difficult to report

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-18
Prepared usingpeauth.cls

4 D. SPINELLIS

to the user the conflicts in a meaningful way. Once we realihatiuser-level transactions could be
efficiently implemented (mostly) through user-space psees tracking files, we adopted the file-level
approach as an elegant, modest-effort implementatiorcetibat would be worth exploring.

In database systems isolation can be achieved throughetyafiapproaches: two-phase locking,
the association of read and write timestamps with each ghfecmaintenance of multiple versions of
each object, or through the adoption of an optimistic corenay control.

Two-phase locking involves a phase where locks are acgbiredot released, and a second phase
where locks are released, but no new locks are acquiredsth&me does not fit our purpose, because
it requires modifications in existing applications to felldts protocol, it adds a locking overhead to
each operating system operation, and it can also lead tdatdad

A timestamp-based approach has the advantage of being@blm tincrementally. However, it
requires monitoring both read and write operations, whah fose an expensive proposition. This can
be overcome by maintaining multiple versions for each dbjeach with its own timestamps, thus
providing the advantage that reads are never blocked.

Optimistic concurrency control matches the profile of thgidgsl use cases we envision, and can
also offer the advantage of allowing the user to consolidat&licting changes. On the other hand,
it requires an expensive validation step, which has to bedas recording the read and write times
for all actions. An alternative approach involves the cakens user involvement can be tolerated, and
each time only a single transaction is allowed to executewaantly with other operations performed
outside its scope. In such a case the validation step camplaeesl by a three-way-merge between the
data: in its original form, as modified by the transactiordg as modified by other changes that have
occurred outside the transaction.

In the end, what guided our design was the fact ttreg supports the efficient creation of live
snapshots of a file system, named clones, and Esaventsthe event monitoring framework we
chose (see Sectioh 1), monitors changes but not reads. We thus chose to base signdm these
technologies, running a variant of the multi-version canency control mechanism called in the
database worldnapshot isolatioif9].

3. System Design

Our design is based on a daemon that controls all transaaimha command-line utility that interfaces
with the daemon to perform the following actions.

Begin a new transaction. The user specifies as parameters the dtlensy that are to be put under
transaction control. The tool reports back the transastionique identifier and the names of
file system clones (live snapshots of the specified file systemnere the operations of the
transaction should be executed.

Commit an existing transaction. The daemon verifies that the clsamgele by the transaction do not
conflict with the changes made by other committed transastior changes made by processes
running in parallel with the transaction. If conflicts aretetgted, they are reported, and the
transaction is aborted. Otherwise, the changes in the fiesyclones are merged back to their
parent (the file systems from which the clones were deriat) the clones are destroyed. After
a commit the transaction cannot be rolled back.

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-18
Prepared usingpeauth.cls

USER-LEVEL OS TRANSACTIONS 5

Abort a specified transaction, or all transactions. An abort céylmperformed on transactions that
have not yet been committed. The daemon simply destroytinesponding file system clones.
Non-root users can abort a specific transaction, or all &retiens they have initiated, while root
can also abort all transactions. When multiple transastare aborted, an informative message
is displayed on the terminal from which each transactioniwisisited.

List active transactions, events, and monitored file systemis.fability can be used for debugging
the daemon’s operation.

The transaction monitoring daemon accepts requests fadbeution of user-initiated commands,
and also monitors changes performed on all file systems &ztdennflicts. It maintains a global list of
objects (absolute file names) that are modified while traimacare in progress, as well as state data
and a modification log related to each transaction.

When a transaction begins, the monitor first obtains exatuatcess to the file systems that will
be placed under transaction control. It then creates a boapsthose file systems, and subsequently
a clone: an exact duplicate of the file system’s data that isnteal under the file system’s root and
can be independently modified. The monitor also timestame@dransaction’s start time, and, if no
other transactions are running at the time, starts to mofiiéosystem events (otherwise, monitoring
is already taking place). Finally, it releases the exclkisiecess it obtained and reports back the
transaction’s unique identifier.

The monitoring of file system events is used for two purposedetect conflicts between various
transactions, and to merge in an efficient way a transasticmanges into the file system from which
it was cloned. When a new event arrives, the transaction torodetermines whether the event is
associated with a file system clone, (i.e. part of an exegutansaction), with a corresponding parent,
or with a file system that is not under transaction controkriEs of the third category can be safely
ignored. File systems from which transactions start, iagept file systems, notionally operate under
what is called in the database world asto-commitmode. This means that changes to them are
immediately considered to be committed, since there isarstction running on them that will commit
at a later point. Therefore, if an event is associated witlaremt file system, the object associated
with the event is immediately marked with a commit timestaofighe current time. On the other
hand, events associated with a file system cloned for a tasasimply associate the object with the
corresponding transaction, without however setting theails commit time. Furthermore, these events
are also stored in the transaction’s log, so that they caeflayed when a transaction commits. Note
here that although a clone and its parent file system are radwrider differing paths, the objects
associated with them are normalized to always refer to theenaf the parent file system. Some
events, like that occurring after a rename operation, ssecited with two objects; in such a case
the transaction housekeeping is performed for each olfjaatvent can also signal that the kernel was
unable to deliver all events to the transaction monitohi$ happens the transaction monitor cannot
function reliably, and will therefore abort all transactio

Aborting a transaction is simply a cleanup operation. Thenitoo will first verify the user
credentials, so that only a transaction’s owner or root ¢emtat. It will then clear the data associated
with the transaction, like file systems that required mamipand objects that were not committed, and
destroy the snapshots and clones associated with it. lisaptint no other transactions are running,
event monitoring can also cease.

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-18
Prepared usingpeauth.cls

6 D. SPINELLIS

Table I. Representative transactions in action.

Time User Action Transaction Logic File System Changes
12 transaction begin transaction«d 1239; start_time— 12 create clone-1239
13 toucha commit_time[a}- 13 (auto-commit)

14 touch clone-1239/b commit_time[b} O (pending commit)

15 transaction begin transaction«d 1240; start_time— 15 create clone-1240

16 transaction commit 1239 OK (commit_time[b] < start_tjme copy clone-1239/b b
commit_time[b«— 16 destroy clone-1239

17 touch clone-1240/b commit_time[b] = 16 (unchanged, pendommit)

18 touchc commit_time[c} 18 (auto-commit)

19 transaction begin transaction«d 1241; start_time— 19 create clone-1241

20 transaction commit 1240 Conflict (commit_time[b] > stdrhe) destroy clone-1240

21 touch clone-1241/c commit_time[c] = 18 (unchanged, pandommit)

22 transaction commit 1241 OK (commit_time][c] < start_fjme copy clone-1241/cc
commit_time[cl« 22 destroy clone-1241

23 transaction begin transaction«d 1242; start_time— 23 create clone-1242

24 touch clone-1242/c commit_time[c] = 22 (unchanged, pendommit)

25 touchc commit_time[c} 25 (auto-commit)

26 transaction commit 1242 Conflict (commit_time[c] > stéirhe) destroy clone-1242

The committing of a transaction is the most delicate openatAfter the user’s credentials are
verified, the transaction monitor obtains again an exctukiek on the file systems associated with
the transaction. It then sets the transaction’s commit timestamp and checks for conflicts using the
snapshot isolatiomulti-version concurrency control algorithm. Specifigafbr each object that the
transaction modified, the monitor checks if the object’'s ootitime is larger than the transaction’s
start time. If this is the case, a conflict has arisen and thiesaction is aborted. (In sectighwe
describe that these occurrences can be gracefully handlatiowing the user to explicitly deal with
conflicts.) Otherwise, the transaction can safely comntie Tse of the multi-version concurrency
control algorithm allows for the efficient detection of caci$ and a fast merging of changes. The
actual commit involves setting the commit time of all obgethat the transaction modified to the
transaction’s start time, and replaying the event log aasedt with the transaction on its parent file
system. Finally, exclusive access to the file systems careleased, and the cleanup operation we
described on abort can be performed.

Tablel shows some cases of successful and failed transactionssohmmandcmdis assumed to
run in the same directory, modifying various files; the diogiesclone-nnnnare the clones created
for the corresponding transaction. Transactl@39succeeds, and is allowed to commit, because the
change in the transaction’s clone file system and in its parféect two different filesg andb). When it

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-18
Prepared usingpeauth.cls

USER-LEVEL OS TRANSACTIONS 7

commits, the file it modifiedd) gets timestamped with the transaction’s commit time (I&nsaction
1240is not allowed to commit, because at time step 17 it also nmexi#i file named. At commit
time it is found that fileb is timestamped after the transaction started. Transatfdi modifies file

c (at time step 21) that is also modified outside the transadtb time step 18). However, because
the timestamp of is earlier than the transaction’s start time the transadti@llowed to commit (the
changed version af was already included in the transaction’s cloned file syst&imnally, transaction
1242gives rise to a conflict, because the transaction modifies itdime step 24, and at time step 25
the file is also modified outside the transaction while it is@xing. Thus, at its end the commit time
of cis greater than the transaction’s start time.

4. Prototype Implementation

By shopping around for an operating system platform thatccoeadily provide most of the facilities
we needed, we put together a research prototype of the sysibtnmodest implementation effort.
The system runs under Mags x modified with the installation of writablers functionality. It
uses thezrs snapshots and clones, and also relies heavily on Appleé&ventdile system event
functionality [L4, Section 11.8.2]. The system comprises less than 2000dinesde. The command-
line interface, the daemon startup code, and the file systemt enonitoring are written in C, while the
transaction processing logic is written in C++. The robumst efficient data structures provided by the
C++ standard template librargét map string, vectol greatly simplified the implementation of the
transaction processing logic.

The transaction processing monitor is implemented as desprgcess, single-threaded server. A
selectcall is used to multiplex between the monitoring of eventd #me processing of user-sent
commands. Avoiding multiple processes or threads enshecisitegrity of the monitor's (non-trivial)
data structures and algorithms. Although this implemémdtmits the monitor’s throughput, we do
not think that this will be a problem in practice, because weision transactions to be few large-
grained operations.

4.1. Event Monitoring

From the two facilities required for implementing our syste a versatile event monitoring mechanism
turned out to be the most difficult to locate. File system e®as implemented by Suress [15] are
currently available under the Solaris, Fes®, Mac 0s X (as a downloadable module), and Linux
(underrusg) operating systems. On the other hand, the file system nromgtéacilities available
under Linux and FreesD (theinotify andkeventinterfaces) could not statisfy our needs, because they
require registering every directory for which changes aoaitored. A simple experiment showed that
simply locating all available directories in a typicer partition in the most efficient manner could take
three minutes, and therefore these interfaces were ubiiftar our purpose. Furthermore, at the time
of writing the file event monitoring facility of SolarisEMm) lacked a userlandpi. Using DTrace 16|
was not an option, because it might silently drop eventsaliinwe feared that the cost of injecting a
monitor for all file-system calls, using thptracemechanism17, pp. 129-131] would be prohibitively
intrusive and expensive. This left Appléseventdacility and Macos x as the only contender.

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-18
Prepared usingpeauth.cls

8 D. SPINELLIS

Fseventds a file system event monitoring framework that is part of EfgpSpotlight: a system
that allows the efficient harvesting and searching of fileadata. UndeFseventone can register
an event monitor through a special fillelév/fseven)s From that point onward the kernel will send
to the monitor packets describing the operations and argtsrier any performed file changes. The
arguments include the file’'s path name as well as the corngipg device and inode numbers. As
we shall see these turned out to be crucial for the systenydemmentation. The facility’s official
documentation is minimal, but having access to the opeyatyistem’s source code worked out as a
perfectly adequate alternative.

As the kernel uses a fixed-size buffer for storing packefs, ilnportant for applications using the
monitor to constantly retrieve all events. When the buffls,fthe operating system will coalesce
events and finally also drop them. Dropped events are seghtdithe monitoring applications through
a special event type, and applications receiving such antev#l not take the issue lightly. Our
transaction monitor will abort all executing transactiomile Spotlight will reportedly rescan all
disks [L4, p. 1420]. In order to minimize the chance of missing eventsturnoff event monitoring
while a transaction is committing. A commit can take consathée time, during which the transaction
monitor cannot process file change events. However, duriognamit the file systems on which
transactions are executing are locked, and therefore evemitoring can be safely turned off.

4.2. ZFS Interface

Interfacing withzrs for creating clones and snapshots is performed by invokiegcorresponding
zrFscommands. On our system these commands can sometimes tek¢éhauo a second to complete,
especially if a file system is stored in flash memory. To miaenihe impact of this delay, we let
the commands that destroy the snapshot after a transaation the background. Unfortunately, the
command for setting up a clone must be executed synchronaunsl therefore the user experiences a
small delay when initiating a transaction.

Another issue concerned the mapping between Hsalataset names, which the user specifies as the
targets for a transaction, and the integer device identfi¢heir corresponding mount points, which
the system receives as part of the file system change evamtanktely,zFs provides a command
(zfs get -H -0 value mountpoidatasetname) for programs to query values and obtain thég@s a
format that is easy to parse. We used this to create the pomdag map.

4.3. File System Monitoring

As we described in Sectid) file system events are divided among those that belong tmadction’s
file system, those that belong to its parent, and those thde#nored. Making this distinction based
on a file’s name can be very difficult, if one takes into accdhatvarious ways in which file systems
can be mounted. Luckilyzrs allocates a different device identifiedgv_} for each file system and

“After implementing the transaction monitor we came acrosmtter facility, Apple’s file system eventapi
(http://devel oper. appl e. conmf docunent at i on/ Darw n/ Concept ual / FSEvent s_Pr ogCQui de/

FSEvent s_ProgGui de. pdf). It is unclear whether using thispi instead of directly tapping into the event monitor
file would have been a better implementation choice.

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-18
Prepared usingpeauth.cls

http://developer.apple.com/documentation/Darwin/Conceptual/FSEvents_ProgGuide/
FSEvents_ProgGuide.pdf

USER-LEVEL OS TRANSACTIONS ~ 9

clone. We were thus able to implement an efficient map fromeasfistem’s identifier to the type of
monitoring required for that file system.

4.4. File System Locking

Although our system requires the ability to obtain exclasiccess to file systems when a transaction
begins and ends, Maxs x does not provide this functionality, and we did not impleriedue to lack

of support for a standalone Darwin kernel derivafivieack of file system locking means that, under
our current implementation, conflicting changes performvbde a transaction is committing will not
be detected. In practice we do not think that this will be aigant problem: conflicts will be rare and
the value of transactions will mainly lie in the ability toa@i flawed changes and commit successful
ones.

Nevertheless, the implementation of this facility seembecstraightforward. It has already been
described and implemented in the context of performing sinais in the 4.8sD FFS[18, Section
6], [17, p. 350]. This involves suspending activity on the correspog file system (by calling
vfs_write_suspendand allowing system calls writing to the file system to fmighe facility is
implemented by inserting a gate at the top of each systenthadltan write to the file system. The gate
counts the processes using the file system, and can alsodsel¢tosuspend them while a transaction
is in a critical region. All that is missing is a system callgeslock that will take as arguments an
array of file system names, its length, and a flag of the redwpeeration (lock or unlock). When
implementingslock care must be taken to avoid deadlocks; allowing onlyfsteekcall to execute at
a time seems to be a reasonable approach.

4.5. Event Replay

Replaying a transaction’s event log on its parent file systenot trivial. The complexity arises from
the fact that for the sake of efficiency we store in the evegtdoly the metadata of each operation
(operation type, file path, file type), and not the actual fdtacontents, permissions, owners, extended
attributes, andcLs). Instead, we rely on the availability of this information the cloned file system
to copy it to its parent when it is required. Unfortunatelgngly accessing a file’s contents through its
name is not always possible because subsequent renaméapenaay change the name under which
its contents are stored.

Initially we attempted to solve this problem by associativith each file's unique identifier (the
device and inode number pair) its updated path. A first pasaigfh the event log would setup this
map, which could then be used for accessing a file’s conténtsigh its identifier. This scheme is
relatively efficient; for a transaction comprisihgevents of whichM are rename operations and a map
stored in a data structure with a retrieval dO$logN) the algorithmic cost of replaying the eventlog is
O(N + (N+M)logN). However, although this scheme handles correctly the remaof a file path’s
last component (the file name), it will fail when an intermegdipart of the path is renamed or moved.

Thtt p: // web. ar chi ve. or g/ web/ 20070409155747/ ht t p: / / www. opendar wi n. or g/ en/ news/ shut down. ht m

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-18
Prepared usingpeauth.cls

http://web.archive.org/web/20070409155747/http://www.opendarwin.org/en/news/shutdown.html

10 D.SPINELLIS

Complete Rename / delete
event log event log
Create file a

v

Content modified a

v

Delete b ——» Delete b

v

Chown a

v v

Rename a b ——| Rename a b

v

Create dir ¢
Content modified b » Empty

placeholder

Figure 1. Example of the full and compressed event logs.

To address this deficiency, we implemented an alternatikgisn, based on a rename log. This is
a list of all rename operations performed during the coufgbetransaction. When the event log is
replayed in order to transfer the effects of the transadtiom the clone to its parent, each source
file name is first transformed by applying to it all recordedamme operations. Note that the target
file name does not need to be transformed, because it will ireatty renamed or moved when the
corresponding events are processed on the parent file syStem transaction comprisirg events of
which M are rename operations, the algorithmic cost of replayiegtfent log iO(N + N x M). This
approach also failed, when the same (typically temporalg/ntame is reused and renamed multiple
times during the course of a transaction.

In the end, we had each event follow the name’s rename opasdtiom that event’s start until the
end of the event log (or the file’s deletion). Normally, thestcof this operation i©O(N(N — 1)/2),
which proved expensive: in a transaction comprising halfilian events the daemon spent t&U
minutes in user mode, most of it presumably recalculatiregriimes. We therefore optimized the
search by keeping in a separate list only the renames antésledend associating with each event the
corresponding start position of the list (see FiglirdBecause the future first rename or delete operation

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-18
Prepared usingpeauth.cls

USER-LEVEL OS TRANSACTIONS 11

to be associated with an event is not known when an event cepsed, the list always contains at its
end a dummy placeholder event. Once a rename or delete eventountered, the placeholder is
updated to match the contents of that event, and a new plaleehes appended to the list. Assuming
that theM rename operations are uniformly distributed among\teents, the total cost of calculating

file names during an event replay is

o<% X 7M(M2_1)) _o(w)

The cost of this revised scheme is not prohibitive, becagisame operations are typically only a small
percentage of the total number of operations, didis likely to dominate the cost of merging the
committed files to a clone’s parent directory.

A final stumbling block for the implementation of the eveng leeplay seemed to be the correct
transfer of all the file’s metadata, including permissiaangended attributes, access control lists, and
finder data, from the clone file system to its parent. ForelgaMac 0s x provides acopyfile(3)
library function, which is designed to handle all these sagdthough our design does not depend on
the existence of theopyfilefunction, its availability simplified the implementation.

4.6. Interprocess Communication

The transaction monitoring daemon communicates with tihencand-line control tool through a Unix
domain socket. This allows the command-line tool to pasabisi to the daemon the user’s credentials
and a descriptor associated with its standard error stresing tuhe socket’s out-of-band message
communication facility. The user’s credentials are stam@ti each associated transaction, and ensure
that only its user (or root) can commit or abort it. They asoalsed for setting the daemon’s effective
user id, when replaying the event log to each parent file sys@ne could argue that this is not
required, because the daemon is playing back events thatah@ady succeeded, and, as there were
no conflicting events, one could assume that the user wile lsafficient privileges to execute the
corresponding actions. This however ignores situationsreviduring the course of a transaction the
permissions of a directory change.

The file descriptor associated with the command-line tost#sdard error stream is also stored
as part of a transaction’s data. This is used to notify thestation’s owner when the transaction is
forcibly terminated by the administrator or due to a systerareln such cases the correspondirs
clones are destroyed, and therefore subsequent systesrot#tie transaction’s processes related to
its file systems will fail; emitting a message with the unglieny cause is a reasonable user interface
design choice.

4.7. Data Structures and Resource Management

The system’s data structure schema is illustrated in FigQuifach transaction maintains a list of
associated events: operations on files located in the clileezystem. When the transaction commits,
these are replayed (as described in Seati&hto replicate the cloned file system on its parent.
Transactions are also associated with transacted obfiéessand directories that are modified by a
transaction. These objects are always identified by the e corresponding object in the parent
file system. They can come to life either when a transactiodifies an object in a cloned file system,

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-18
Prepared usingpeauth.cls

12 D.SPINELLIS

MonitoredFilesystem

device

transaction
mountpoint
other_mountpoint
number_of_references

1.*

0..1

Transaction

id

error_fd

uid

start_time
monitored_filesystems
events
transacted_objects

begin()
commit()

* 1
.

*
Event

TransactedObject
type
name name
commit_time name2
dev

Figure 2. Logic schema of the maintained data.

or when another process modifies an object on a cloned filesistparent; such a modification
is immediately auto-committed. Every transaction mamgaa set of the objects it has modified. A
transacted object can be associated with more than onattéors but the link from the object to the
transaction is not maintained. Instead, the object’s cdnimie is used to detect conflicts during a
transaction’s commit. Transacted objects are garbageatetl when all transactions commit.

Finally, the system also maintains a bidirectional linkvibetn transactions and the file systems that
each transaction monitors. Every transaction needs totoranie or more cloned file systems. The link
from the cloned monitored file systems to the correspondangstaction is used by the event monitor
to update the transaction with the transacted objects ia¢sedavith each event. In addition, the system
also monitors the corresponding parent file systems. Thises by the event monitor to auto-commit
objects that are modified in those file systems.

Monitoring a file system is an expensive operation, becausgrdens the transaction monitor with
some processing for every operation performed on that fétegy. A map between device numbers
and monitored file systems allows the event monitor to efittyedetermine when an event requires

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-18
Prepared usingpeauth.cls

USER-LEVEL OS TRANSACTIONS 13

further processing. In addition, each monitored file systeaintains a reference count. When this
count drops to zero the object is deleted, and monitoringhenfite system ceases. When no file
systems are monitored (i.e. when no transactions are inrgse)) the event monitor is completely
disabled, thus zeroing thePu load of a quiescent transaction monitor.

4.8. Limitations

As implemented, the command-line tool provides a relagilel-level interface, allowing a user
to perform transacted operations on file system clones.lygde@e would want a transaction to
transparently provide a complete environment where ojpeimtan take place in isolation, and later
committed or aborted. This may involve performinglaooton a specially crafted file system that
includes the appropriate clones, or setting up an appdicatntainer throughzone(under Solaris) or
jail (under Freesp). Additional complications of a more comprehensive apphoaclude a scheme
for specifying which users can use transactions (currevglallow any user to start a transaction), and
the handling of changes that are not mirrored in a file systemgettimeofday

Currently the system doesn’t perform the requisite file @ystocking (see Sectiof.4), and also
fails to handle correctly hard links, mirroring them to thargnt file system as a copy of the linked
file. The transaction monitor sees hard links as file creatigants for a specific inode. As it is very
expensive to map from an inode to a file name, and the systesradprovide a system call to directly
link a file name to a given inode, a more faithful implemematof hard links requires an operating
system extension.

Finally, the transaction monitor is not integrated with tiperating system startup and shutdown
operations. The requirements for addressing this defigieoitdown to prohibiting a shutdown while a
transaction is committing, aborting all active transatsisvhen a shutdown commences, and cleanning
up file system clones left by an ungraceful shutdown. If aesyiss equipped with @ps, so that it will
not shut down on a power failure while a transaction is coringjf satisfying these requirements will
address the transactiolrability property.

5. Performance Evaluation

To measure the performance of our system we usedshevorkload [L9] and the PostMark synthetic
benchmark 20]. In common with the tests performed by the developers ofAh@no transaction
system 2] we used version 4.2p1 of th&esH package, and we split the workload into three phases:
unpack which involves decompressing and untarring the distidoufile, configure which involves
running the configuration script, amdake which involves compiling the package. Running PostMark
with the configuration used in Amino was not feasible, beedhs rapid sequence oo operations
resulted in dropped events. We therefore used a configarafifile sizes 5-100k, a read and write
block size of 64k, 2500 simultaneous files, and 9000 operatitransactions in the benchmark’s
terminology). To test a more substantial workload, we alsoan unpackingtér xzf) of the Linux
kernel version 2.6.28, and the unpackitay (xzf), configuration ¢onfigurg, build (make, test fnake
test-forcg, and installationrfake install steps on the version 5.1.30 source distribution ofikdy.

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-18
Prepared usingpeauth.cls

SRE

ssh-unpack

D. SPINELLIS
MySQL-unpack

14

0 © 0
o™ N

(s) awnp

200
180
160
140
120
100

80

(s) awiL

CPU Elapsed
Transaction

CPU Elapsed
Auto-commit
ssh-config

CPU Elapsed
Plain

TR
—

CPU Elapsed
Transaction

CPU Elapsed
Auto-commit
MySQL-config

CPU Elapsed
Plain

60
40
20

CPU Elapsed
Transaction

CPU Elapsed
Auto-commit

CPU Elapsed
Plain

(s) swiL

CPU Elapsed
Transaction

CPU Elapsed

Auto-commit

CPU Elapsed
Plain

() awiL

ssh-make

MySQL-make

o
@
@
Q
©
w
2
o
(@]
o
[
0
a
o
w
RRRRRRRRRR KRR
OoSeoatstotesetetetotesets i)
s
odeteteletototetetetetetets gt
o
@
1%}
2
©
w
FRXRIIXKIKKK KKK
SIBRIRKRKY D
SRR @
KRRXRRRRRRRIRRKY O
e |
coogogo
LI O
(s) owny
o
|
NN caens i}
RO R NI =
Soememeemeey 8
w
S IIIIIISS
RS D
QRN B
o
[
0
o
©
w
RIS
SIRRRLIKLL D
Sasan?
XXX XXX RIXXAXX o
=
@
. <N < ~—| @O
RO I =X
SN 3 o
o
o
(@]
[

Transaction

Transaction
Daemon system

mmm— Daemon user

CPU Elapsed

B Application system

EZZ3 Elapsed
KX Application user

Auto-commit
Linux-unpack
CPU Elapsed
Auto-commit
Softw. Pract. Expe2009;00:1-18

Plain

Plain
CPU Elapsed

50

Transaction
CPU Elapsed

Transaction
CPU Elapsed

Transaction

Figure 3. Time performance measurements.

MySQL-install
CPU Elapsed
PostMark
CPU Elapsed
Auto-commit

Auto-commit
Auto-commit

Plain

CPU Elapsed
Plain

CPU Elapsed
Plain

Prepared usingpeauth.cls

Copyright © 2009 John Wiley & Sons, Ltd.

USER-LEVEL OS TRANSACTIONS

15

Table Il. Benchmark configuration.

Iltem Description
Computer Mac mini model A1103
cPU PowerPC 7447a (G4)
cpuclock speed 1.2BHz

L2 cache 512k (on chip)

RAM 1GB 333MHz DDR SDRAM

External disk Seagate model ST3320620A
Interface UltraatA 100
Cache 1@

Average latency 4.16 ms
Spindle speed 7200PMm

Heads 4
Disks 2
Bytes per sector 512
Disk enclosure IB-351U-B-BL
Interface usB2.0
Kernel version 9.6.0 (xnu-1228.9.59)
ZFsversion 119

We run the benchmarks on an (otherwise idle) Apple Mac mithan external hard disk formatted
as a singlegFsvolume. The configuration’s details appear in Tadbl&Ve run each benchmark in three

setups.

Plain involves running the benchmark on tkzes volume without any transaction overhead. This
establishes the base case for the configuration’s perfaean

Auto-commit has the benchmark running orzas directory on which another (empty) transaction is
running. The benchmark’s operations are auto-committédealirectory immediately as they
occur. This measurement establishes the overhead thatatieattion monitor imposes on a

system’s regular operations.

Transaction has the benchmark running orzas file system clone, and then its results copied back
to the clone’s parent file system. This measurement edtalslithe overhead of performing the
operation as a transaction, which can be committed or athorte

We unmounted thersvolume between each measurement to clear its cache.
The benchmark time results appear in FigBrés we can see, thenpackandinstall operations is
where the system’s overhead is most pronounced. This hafyeeause these operations mainly create

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-18

Prepared usingpeauth.cls

16 D.SPINELLIS

Table Ill. Memory performance measurements.

Overhead
Operation Events Objects MB)
MysqQL-unpack A/C) 0 1,133 1
MysQL-make 8,826 4,264 1
PostMark 25,546 6,994 2
MysQL-install 39,480 4,507 4
MysqQL-unpack 6,426 1,133 5
Linux-unpack 107,384 26,846 13

new files, which then have to be copied again from the file systione back to its parent. This fact
is substantiated by the small percentage of daemon user liintlee CP U-intensiveconfigand make
operations the daemon’s overhead is barely perceptihle,showing the practicality of our approach
for various typical workloads. Furthermore, the effectlod transaction daemon on auto-committed
transactions is also minimal; in quick-running tasks thifedénce stems from the time required to
create and destroy tteEs snapshot and clone. The scalability of our approach is dstrated by the
fact that the daemon’s useputime remains a fixed percentage of the tatabtime in the twounpack
operations, which differ by an order of magnitude (1s forestsus 50s for MgQL). The PostMark
benchmark is the operation where the daemon spends a sagnifimount oPu time in user mode.
This is probably the cost of creating and searching objacistiee data structure containing thousands
of elements.

We also measured the memory performance of the transactinitanby tracking its virtual memory
size at the end of each commit operation. For most tasks thaseno measurable increase in the
daemon’s memory size. The tasks for which the size of the dadntreased are listed in Tablk.
Only the MysQL-unpack task increased the daemon’s memory size in the@utaoi (A/C) operation;
all other tasks refer to committed transactions. The ldigesease we measured wasMi it occurred
during the unpacking of the Linux kernel. From these resoite can conclude that the daemon’s
memory requirements are very modest.

6. Related Work

Overviews of the transaction mechanism in the context ofilulge systems can be found in
references 10, 2], while an excellent description behind the motivation $mpporting transactions
as an operating system service and an analysis of relatddoaarbe found in referencé?).
Transactions have often been proposed as a service prolidéide operating system’s virtual
memory storage pooPfl] or a file system. The&Fs file system was designed with internal support for
transactions3]. An alternative approach involves offering transactiapsort on top of a rudimentary

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-18
Prepared usingpeauth.cls

USER-LEVEL OS TRANSACTIONS 17

block repository file system, which is explicitly designedservice the implementation of database
management systendd]. More recently, the Reiser4 file system offered a so-cditmuscrastacility,
which is an atomic set of operations that can survive a cd{shipwever, the fine-grained granularity
makes it more suitable for use within individual applicaspsuch as a database system, rather than
use in user-level operations that can span the executioraafmrograms. Furthermorganscrash
operations do not imply isolation and serializability betm operations, nor the ability of a rollback.

The QuickSilverdistributed operating system uses transactions as a wagydeiding applications
with a consistent view of distributed processes. It diffiecsn our approach in that it is a complete
operating system, rather an addition to an existing systms allows for better control on how
transactions are implemented, but renders existing agif@it binaries unusable. To handle this
problem, theAminofile system L1, 12] starts from premises very similar to ours, but implements
transactions by intercepting system calls ugmicace and recording data in a Berkeley embedded
databasegpB). Aminds design offers increased flexibility in the design of tractton handling, at
the expense of interposing the transaction monitor on allesy processes. This has a cost of about
15% for all applications, but, interestingly, can increpseformance whedminois used instead of
synchronous writes to provide durability.

Some systems, like Microsoft Windovand Junipersiunos® offer a way to rollback a failed
configuration to a version committed at an earlier point. @pproach generalizes such a facility by
offering it to both end users and system administratorsfamadalizes its functionality by allowing the
distinction between actions that are part of a transacttorsg that occur in the file system clone) and
actions that are not.

As a production-quality offering, the transactiomatrs technology available on Windows Vista
provides atomicity, isolation, and rollbaékBuilding on top of the transactionalTrs, the Windows
Kernel Transaction Managekt{m) provides anApi for creating, committing, and rolling back a
transactiorl. More than one process can participate in a transactionjrbagntrast to our approach,
these processes must be explicitly coordinated by arrgnigintheir code to pass and receive the
transaction’s handle, and have their code call appropfigtetions. For instance, to create a new file
an application should call the functid@@reateFileTransactednstead ofCreateFile In our approach
transactions are transparent to applications; the tréinsé&chandle is only required by the stand-alone
command-line programin order to commit or abort a traneactdn the other hand;Tm offers a wider
range of services, such as anl, the ability to write resource managers, and support fdritdiged
operation 23].

Finally, another related area that influenced our work corethe merging of a cloned directory’s
contents with those of its parent. Our approach avoids @sfly using thenapshot isolatiomulti-
version concurrency control algorithi®][An alternative approach involveptimistic replicatior] 24],
and has been used, among others, in the Coda file sy&grarid for the synchronization of mobile
devices P6]. Another approach in the same design space implemisotation-only transactions

*Windows System Restore facilityit t p: / / support . mi crosof t . cond kb/ 306084

8Junos commit commandht t ps: / / www. j uni per . net/t echpubs/ sof t war e/ j unos/ j unos54/ swconf i g54
-getting-started/ htm/cli-summary-configuration-node4. ht m

Thttp://medn. m crosoft. conf en-us/ | i brary/ aa365456. aspx

Ihttp://nmsdn. nicrosoft.cont en-us/|ibrary/ aa366295. aspx

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-18
Prepared usingpeauth.cls

http://support.microsoft.com/kb/306084
https://www.juniper.net/techpubs/software/junos/junos54/swconfig54
-getting-started/html/cli-summary-configuration-mode4.html
http://msdn.microsoft.com/en-us/library/aa365456.aspx
http://msdn.microsoft.com/en-us/library/aa366295.aspx

18 D.SPINELLIS

providing read-write conflict detection and a variety ofalesion mechanisms2[7]. Our transaction
monitor could be extended to inform users about a transasttmnflicts, and allow them to override
them by using methods such as the preceding ones.

7. Conclusions and Further Work

Being able to undo all the effects of an operation performedacsystem increases the system’s
usability 28, p. 75] and decreases the possibility of catastrophic eriifile system clone can be
used as a sandbox for experimenting with extensive and ghlanges, but merging those changes
back to the file system’s parent can be an error-prone opetdthe concept of a transaction offers a
way to describe these changes as a set that can be atomaralhgitted (or aborted), and as operations
that can potentially conflict with others that are perforgh@oncurrently. For many real-world tasks
conflicts between independent actions are rare. Consdyuggtecting such conflicts at commit time
through the snapshot isolation multi-version concurrecmytrol algorithm and aborting conflicting
transactions (or allowing the user to handle conflicts) isatiractive design approach: it is easy to
implement, its performance impact is minor, and it avoiddiieeks.

The prototype transaction monitor we designed and impléeadecan be improved in a number of
ways. Operating system support for locking file systems wdéansaction begins or commits, and
for linking a file to an inode will increase the monitor’s @ility and faithfulness. Currently, when
a conflict is detected at commit time, the conflicting file ipaged, and the transaction is aborted.
Listing these conflicts with an identifying number, and ailog users to override specific conflicts
(presumably after they have established that they are ismmjtor they have merged the conflicts
by hand) will help users to deal with most conflicts in a praducway. Finally, making transactions
operate within an isolated environment, like a jail or zomid,increase their usefulness for performing
large-scale system administration tasks.

Acknowledgements

| was extremely lucky to benefit from the brilliant advice ohamber of colleagues in the course
of this work. Pawel Jakub Dawidek suggested the possikilitysing zFs clones, an approach that
shielded me from messing with a file system’s internal stmest. Georgios Gousios proposed the use
of the Fseventdacility and the provision of a way for users to merge confligtchanges. This made
me decide to implement the transaction monitor in user sghos further simplifying the system’s
implementation to a degree that | could realistically hanBlamianos Chatziantoniou prompted me to
search for related approaches in the database literattierew discovered the—key to this work—
snapshot isolation concurrency control mechanism. | waldd like to thank Georgios Gousios,
Panagiotis Louridas, Alexios Zavras, and the paper’s ammug reviewers for their helpful comments
and suggestions on earlier versions of this work.

Software Availability

The source code for the software described here is avaifabownload under &sD license from
http://ww. spinellis.gr/sw ostran.

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-18
Prepared usingpeauth.cls

http://www.spinellis.gr/sw/ostran

USER-LEVEL OS TRANSACTIONS ~ 19

REFERENCES

1. K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. Twions of consistency and predicate locks in a database
system. Communications of the ACM9(11):624-633, 1976.

2. Theo Haerder and Andreas Reuter. Principles of tramseotiented database recoverACM Computing Surveys
15(4):287-317, 1983.

3. Adam Sweeney. XFS transaction mechanism, 1993. Avaitailine aht t p: / / 0ss. sgi . conl pr oj ect s/ xf s/ desi gn_docs/ xf sdocs93_ps/
Accessed December 2008.

4. Joshua MacDonald and Hans Reiser. Reiser4 transacti@igndedocument, 2001. Available online at
http://1wn. net/ 2001/ 1108/ a/ rei ser4-transacti on. php3. Accessed December 2008.

5. Huzefa Kagdi, Shehnaaz Yusuf, and Jonathan |. Maleticnirldisequences of changed-files from version histories. In
MSR '06: Proceedings of the 2006 international workshop amifdj software repositoriepages 47-53, New York, NY,
USA, 2006. ACM.

6. Maurice Herlihy and J. Eliot B. Moss. Transactional meynéwrchitectural support for lock-free data structures.ISCA
'93: Proceedings of the 20th Annual International Sympoesian Computer Architectur@ages 289-300, New York, NY,
USA, 1993. ACM.

7. Diomidis Spinellis. Version control systemHEE Software22(5):108-109, September/October 2005.

8. Ray Miller. Configuration management with Subversion MMAand Perl template toolkit. In Alexios Zavras, editor,
Proceedings of the 5th International System Administraod Network Engineering Conference SANE REUUG,
Stichting SANE, May 2006.

9. Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, EHih O’Neil, and Patrick O’'Neil. A critique of ANSI SQL
isolation levels. InNSIGMOD '95: Proceedings of the 1995 ACM SIGMOD internatiocenference on Management of
data pages 1-10, New York, NY, USA, 1995. ACM.

10. Jim Gray. The transaction concept: Virtues and linotegi InVLDB '1981: Proceedings of the seventh international
conference on Very Large Data Baspages 144-154. VLDB Endowment, 1981.

11. Charles P. Wright, Richard Spillane, Gopalan Sivathand Erez Zadok. Amino: Extending ACID semantics to the file
system. INFAST 2005: 2nd Usenix Conference on File and Storage Tegbieal USENIX Association, April 2005. Work
in progress report.

12. C. P. Wright, R. Spillane, G. Sivathanu, and E. Zadok.ekgling ACID semantics to the file systetACM Transactions
on Storage3(2):1-42, June 2007.

13. Stuart I. Feldman. Make—a program for maintaining cot@pprograms.Software: Practice & Experiencé(4):255—
265, 1979.

14. Amit Singh. Mac OS X Internals: A Systems Approackddison-Wesley, Boston, 2007.

15. Jeff Bonwick, Matt Ahrens, , Val Henson, Mark Maybee, dhark Shellenbaum. The zettabyte file system.FAST
2003: 2nd Usenix Conference on File and Storage TechnaoGiSENIX, USENIX Association, April 2003. Work in
progress report.

16. Richard McDougall, Jim Mauro, and Brendan Gre@&plaris Performance and Tools: DTrace and MDB Techniques fo
Solaris 10 and OpensSolarisPrentice Hall PTR, Upper Saddle River, 2006.

17. Marshall Kirk McKusick and George V. Neville-NeilThe Design and Implementation of the FreeBSD OperatingeByst
Addison-Wesley, Reading, MA, 2004.

18. Marshall Kirk McKusick and Gregory R. Ganger. Soft ugdatA technique for eliminating most synchronous writes in
the fast filesystem. In Jordan Hubbard, edifmceedings of the USENIX 1999 Annual Technical Conferdfenix
Track Berkeley, CA, June 1999. USENIX Association.

19. Margo |. Seltzer, Gregory R. Ganger, M. Kirk McKusick,itkeA. Smith, Craig A. N. Soules, and Christopher A. Stein.
Journaling versus soft updates: Asynchronous meta-dataqpion in file systems. IWSENIX '00: Proceedings of the
Usenix Annual Technical Conferengmges 6-21, Berkeley, CA, USA, 2000. USENIX Association.

20. Jeffrey Katcher. Postmark: A new file system benchmasgchifical Report 3022, NetApp, Sunnyvale, CA, 1997. Avail-
able online aht t p: // conmuni ti es. net app. conf servl et/ Ji veSer vl et/ downl oad/ 2609- 1551/ Kat cher 97- post mar k- net app-
Accessed December 2008.

21. M. Satyanarayanan, Henry H. Mashburn, Puneet Kumaid@avSteere, and James J. Kistler. Lightweight recoverable
virtual memory. ACM Transactions on Computer Systefi?(1):33-57, 1994.

22. Jason Evans. Design and implementation of a transaatised filesystem on FreeBSD. Pnoceedings of the USENIX
1999 Annual Technical Conferendgerkeley, CA, June 1999. Usenix Association. Freenixkirac

23. Pradeep Jnana Madhavarapu, Shishir Pardikar, Balan 8etman, Surendra Verma, Jon Cargille, and Jacob Lacouture
Method and system for transacted file operations over a metwidnited States Patent 7,231,397, 2007.

24. Yasushi Saito and Marc Shapiro. Optimistic replicatidé@M Computing Survey87(1):42—-81, 2005.

25. Puneet Kumar and M. Satyanarayanan. Log-based diyeewolution in the Coda file system. RDIS '93: Proceedings
of the 2nd International Conference on Parallel and Distitibd Information Systempages 202-213, Washington, DC,

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-18
Prepared usingpeauth.cls

http://oss.sgi.com/projects/xfs/design_docs/xfsdocs93_ps/trans.ps
http://lwn.net/2001/1108/a/reiser4-transaction.php3
http://communities.netapp.com/servlet/JiveServlet/download/2609-1551/Katcher97-postmark-netapp-tr3022.pdf

20 D.SPINELLIS

USA, 1993. IEEE Computer Society.

26. Tancred Lindholm, Jaakko Kangasharju, and Sasu Tarkoflaybrid approach to optimistic file system directory tree
synchronization. IiMobiDE '05: Proceedings of the 4th ACM International Worlpton Data Engineering for Wireless
and Mobile Accespages 49-56, New York, NY, USA, 2005. ACM.

27. QiLuand M. Satyanaranyanan. Isolation-only tranesastifor mobile computingOperating Systems Revie28(2):81—
87,1994,

28. Ben ShneidermarDesigning the User Interface: Strategies for Effective ldarComputer-Interaction Addison-Wesley,
Boston, MA, third edition, 1998.

Copyright © 2009 John Wiley & Sons, Ltd. Softw. Pract. Expe2009;00:1-18
Prepared usingpeauth.cls

	1 Introduction
	2 Transactions as User-Level Entities
	3 System Design
	4 Prototype Implementation
	4.1 Event Monitoring
	4.2 ZFS Interface
	4.3 File System Monitoring
	4.4 File System Locking
	4.5 Event Replay
	4.6 Interprocess Communication
	4.7 Data Structures and Resource Management
	4.8 Limitations

	5 Performance Evaluation
	6 Related Work
	7 Conclusions and Further Work

