
Energy-Delay Investigation of Remote Inter-Process Communication
Technologies
Stefanos Georgioua, Diomidis Spinellisa

aDepartment of Management Science and Technology, Athens University of Economics and Business, Patision 76, Athina 10434

A R T I C L E I N F O
Keywords:
Energy Efficiency
Programming Languages
Remote Inter-Process Communication
System Calls

A B S T R A C T
Most modern information technology devices use the Internet for creating, reading, updating, and
deleting shared data through remote inter-process communication (IPC). To evaluate the energy
consumption of IPC technologies and the corresponding run-time performance implications, we per-
formed an empirical study on popular IPC systems implemented in Go, Java, JavaScript, Python, PHP,
Ruby, and C#. We performed our experiments on computer platforms equipped with Intel and ARM
processors. We observed that JavaScript and Go implementations of gRPC offer the lowest energy
consumption and execution time. Furthermore, by analysing their system call traces, we found that
inefficient use of system calls can contribute to increased energy consumption and poor execution
time.

1. Introduction
The energy consumption,1 for the IT-related products, is

an evergrowing matter that has caught the attention of aca-
demic researchers and industry. This is primarily due to the
increasing costs, as IT-related energy consumption is esti-
mated to reach 15% of the world’s total by 2020 [42]. En-
vironmental impact is another major concern, as IT’s total
greenhouse gas emissions are expected to reach 2.3% by the
same year [11]. Energy consumption of IT systems is partic-
ularly important in two areas. First, the data centres, one of
the vital contributors of IT sector’s global energy consump-
tion and greenhouse gas emissions. These are housing large
number of server nodes communicating with clients through
energy-intensive remote inter-process communication (IPC)
technologies. Second, the blossoming field of IoT, where
low energy performance is critical, has multiple embedded
devices connected with hyper-physical systems to exchange,
share, and transmit data. To this end, providing sustainable
solutions, by reducing energy consumption, to ensure data
centres’ and IoT infrastructures environmental sustainability
and business growth is of paramount importance.

sgeorgiou@aueb.gr (S. Georgiou); dds@aueb.gr (D. Spinellis)
ORCID(s):
Journal of Systems and Software, 162:110506, April 2020.

doi:10.1016/j.jss.2019.110506
This is the pre-print draft of an accepted and published manuscript.

The publication should always be cited in preference to this draft using
the reference in the previous footnote. This material is presented to en-
sure timely dissemination of scholarly and technical work. Copyright
and all rights therein are retained by authors or by other copyright hold-
ers. All persons copying this information are expected to adhere to the
terms and constraints invoked by each author’s copyright. In most cases,
these works may not be reposted without the explicit permission of the
copyright holder. ©2020. This manuscript version is made available
under the http://creativecommons.org/licenses/by-nc-nd/4.0/CC-BY-NC-
ND 4.0 license.

1Although in the physical sense energy cannot be consumed, we will
use the terms energy “consumption”, “requirement”, and “usage” to refer
to the conversion of electrical energy by ICT equipment into thermal en-
ergy dissipation to the environment. Correspondingly, we will use the term
energy “savings", “reduction", “efficiency", and “optimisation" to refer to
reduced consumption.

Researchers have carried out studies on different aspects
and granularity of software artifacts to investigate the en-
ergy consumption of data structures [32, 12, 27, 28, 44],
different programming languages [26, 3, 35, 18], multi-
threaded applications [31, 29, 30], and coding practices [41,
19, 37, 39, 33]. In terms of remote IPC technologies, prior
work [13, 8, 7, 22, 23] focused on investigating the energy
consumption and run-time performance of smart phones and
embedded systems on Java implementations for remote IPC
such as RPC, REST, SOAP, and WebSockets. However, IPC
technologies have not been investigated in terms of energy
consumption and run-time performance for different pro-
gramming language implementations.

In this work, we research computer platforms equipped
with Intel and ARM processors using three different IPC
technologies available in Java, JavaScript, Go, Python, PHP,
Ruby, and C#. We try to identify which programming lan-
guage and IPC technology implementations offer the best en-
ergy and run-time performance when invoking remote pro-
cedures. Furthermore, we focus on pointing out the reasons
behind our results to help software developers, specifically
those concerned with IPC library development, build more
energy and run-time performance-efficient implementations.

To accomplish this, we perform an empirical study on
the selected computer systems on seven popular program-
ming languages that offer implementations of three well
known remote IPC technologies and investigate their energy
and run-time performance cost. Our results highlight the ef-
ficiency of different implementations and libraries. We also
examine whether the energy consumption of IPC technolo-
gies is proportional to the run-time performance or the sys-
tems’ resource usage.

Results reveal that JavaScript and Go implementations of
gRPC offer the most energy-efficient and best run-time per-
formance implementations among the considered IPC tech-
nologies, while Ruby, PHP, Python, Java, and C# perform
most inefficiently, for the most cases. We also found that the
energy consumption and run-time performance is not pro-

S. Georgiou and D. Spinellis: Preprint submitted to Elsevier Page 1 of 16

http://creativecommons.org/licenses/by-nc-nd/4.0/


Energy-Delay Investigation of Remote Inter-Process Communication Technologies

portional for all the examined IPC technology implementa-
tions. Besides, from the extracted system call traces, we
were able to name certain misuse cases of computer re-
sources that can contribute to higher energy demands and
lower run-time performance.

This work is organised as follows. Section 3 presents our
research methods where we discuss the research questions,
the selected subject systems, our experimental approach, and
the threats to validity. Section 4 presents the results based
on the programming language and the IPC technologies that
achieved the best performance with respect to the energy
consumption, execution time, system calls, and resource us-
age. Section 2 discusses prior work and compares it to this
work. Finally, we conclude in Section 5 and discuss future
research directions.

2. Related Work
To the best of our knowledge, this is the first work in-

vestigating the energy consumption, run–time performance,
and resource usage implications of different IPC technologies
implemented in various programming languages. Moreover,
prior work focuses on Java implementations and libraries of
the IPC technologies, while we also investigate energy impli-
cations on Go, Python, and JavaScript, C#, PHP, and Ruby.
Furthermore, most of the existing studies focus on assess-
ing the energy consumption of IPC technologies of smart
phones and embedded systems, while we also explore plat-
forms equipped with Intel processors. We briefly overview
related work associated with energy efficiency on: i) various
fields of software engineering, ii) smart phones and embed-
ded systems IPC, and iii) programming languages.
2.1. Various Studies of Software Engineering

In general, researchers investigated the energy efficiency
on various practices of software engineering. For instance,
Sahin et al. [37, 39] examined how code obfuscation and
refactoring can affect energy and run-time performance.
Pereira et al. [27], Pinto et al. [32], and Pinto et al. [30] per-
formed empirical studies to identify which data structures
can offer the most energy savings for Java applications, while
Lima et al. [18] performed a similar study using Haskell.
Oliveira et al. [44] and Pereira et al. [28] suggested refac-
toring tools that can identify energy inefficient data struc-
tures in Java applications and suggest changes. Aggarwal
et al. [17] examined the energy implications of application
system calls. Specifically, they showed while the number of
system calls between two versions of an application is chang-
ing, this will affect its energy consumption.
2.2. Smart Phones and Embedded Systems IPC

In the context of smart phones, Herwig et al. [13],
Chamas et al. [8], Boven and Hennebert [7], and Mizouni
et al. [22] performed experimental studies to identify the
energy consumption of popular IPC technologies (see Ta-
ble 1). More specifically, Chamas et al. performed an ex-
periment where they investigated the energy consumption of
three sorting algorithms (bubble, insertion, heap sort) using

three different input sizes (1.000, 10.000, and 100.000), per-
formed locally (on an Android phone) and remotely (server
offloading) by using REST, SOAP, WebSocket, and gRPC IPC
technologies. They showed that i) the size of data indeed
affects energy consumption, ii) the complexity of the sort-
ing algorithms significantly affects energy consumption, iii)
local execution can save more energy than remote for small
input sizes, and iv) REST and SOAP are the most energy effi-
cient architecture styles.

Mizouni et al. investigated the energy consumption and
run-time performance of SOAP and RESTful web services.
They showed that a RESTful web service not only has 10%
lower energy consumption against SOAP but has also 30%
better run-time performance. Bovet and Hennebert com-
pared the energy consumption of RESTful and WebSocket
web service in the context of smart phones and also showed
that RESTful web services are far more energy efficient [7].
Similarly, Herwig et al. investigated the energy consump-
tion of REST and WebSockets by sending and receiving data
packets on three different network types i.e., WLAN, 3G, and
Edge. They showed that REST consumes more energy viz-a-
viz the WebSockets; however, this contradicts Chamas et al.,
Mizouni et al., and Boven and Hennebert who proved REST
as the most energy efficient IPC.

To evaluate the run-time performance and energy con-
sumption of RESTful web services built on two well known
frameworks (i.e., Axis2 and CXF), Nunes et al. performed
an experimental study in the context of a Raspberry Pi plat-
form [23]. In their experiment, they compared the marshal-
ing and unmarshaling of different message sizes and also dif-
ferent CPU clock frequencies. Their results illustrate that the
Axis2 framework can offer efficiency in energy consump-
tion and better run-time performance. Also, they found that
CPU overclocking contributes to reduced energy consump-
tion and faster execution time.

In our research we observed that gRPC and RPC imple-
mentations are the most energy-efficient for all of the alter-
natives we examined. These results have been observed be-
cause we used different programming languages and com-
puter platforms to perform our experiment. Moreover, gRPC
utilises Protocol Buffers 3 and HTTP/2 uses a persistent con-
nection between clients and servers, multiplexing, and head-
ers compression.
2.3. Programming Languages

Few research studies examined energy and run-time
performance implications that different programming lan-
guages have for various tasks (see Table 2). Pereira et
al. conducted an empirical study on 27 programming lan-
guages from The Computer Language Benchmarks Game
and compared them in terms of energy, time, and mem-
ory performance [26]. In their study, Pereira et al. showed
that compiled, semi-compiled, and interpreted programming
languages such as C, Java, and Hack are the most energy-
efficient. Georgiou et al. performed an analysis over 14
different programming languages to compare the Energy-
Delay-Product of 25 diverse programming tasks from the

S. Georgiou and D. Spinellis: Preprint submitted to Elsevier Page 2 of 16



Energy-Delay Investigation of Remote Inter-Process Communication Technologies

Table 1
Related Work on Smart Phones

Source IPC Applications Platforms Results

Mizouni et al. 2011 SOAP and
REST

Various message
sizes Android REST more energy efficient

Boven and Hennebert 2012
REST and
WebSockets

Various message
sizes Android REST more energy efficient

Nunes et al. 2014 REST Axis2 and CXF RPis Axis more energy efficient

Herwig et al. 2015
REST and
WebSockets

Various message
sizes Android

WebSockets are more en-
ergy efficient

Chamas et al. 2017
REST, SOAP,
WebSockets,
gRPC

Bubble, Insertion,
and Heap sorting Android REST and SOAP are energy

efficient

Table 2
Related Work on Programming Languages

Source PROGRAMMING LAN-
GUAGES

Data-Set Platforms Most Energy Efficient

Pereira et al. 2017

C, Pascal, Go, Rust,
C++, Fortran, Ada, Java,
Chapel, Lisp, Ocaml,
Haskell, C#, Swift, PHP,
F#, Racke, Hack, Python,
JS, Ruby, Dart, TS, Erlang,
JRuby, Perl, Lua

The Com-
puter Language
Benchmarks
Game

Laptop
Compiled: C
Semi-Compiled: Java
Interpreted: Hack

Georgiou et al. 2018
C, C++, C#, Go, Java,
JS, Perl, PHP, Python, R,
Ruby, Rust, Swift, VB.NET

Rosetta Code
Server
Laptop
RPi

Compiled: C
Semi-Compiled: C#
Interpreted: JS

Rosetta Code Repository and executed them on a RPi, lap-
top, and server [10]. Their findings show that different pro-
gramming language implementations are far more Energy-
Delay-Product efficient for specific cases. They showed that
C, Go, and JavaScript are, on average, the most efficient im-
plementations among the compiled and interpreted ones, re-
spectively.

Likewise, we performed our experiment on various IPC
technologies and we found that JavaScript and Go are the
programming languages that offer the best results in terms of
energy consumption and run-time performance in IPC tasks,
that aligns with the study on Rosetta Code [10]. In addition,
we collected system call traces and tried to correlate them
with the energy consumption to find out what makes partic-
ular IPC technologies more energy efficient or inefficient.

3. Methods
In this section, we describe our research work’s objec-

tives and we formulate the research questions. Also, we il-
lustrate the experimental approach we followed to address
our research questions. In the end, we discuss our research
limitations and threats to validity.
3.1. Research Questions

Works carried out in the context of the energy
consumption for IPC technologies are limited to Java

implementations executed on smart phones [8, 13] and
embedded systems [23]. These have shown that REST
implementations offer the best results for these particular
devices. However, IPC technologies are often being used
heavily in other IT-related contexts such as data-centers
and IoT. To this end, we investigate whether the same
pattern exists for computer systems equipped with Intel
and ARM processors by taking into account seven different
programming languages and the platforms’ system calls and
resource usage. Hereby, we define our research questions as
follows:

RQ1. Which IPC technology implementation offers the
most energy and run-time performance efficient results?—
Our objective here is to identify the implications that each
IPC technology has on the energy consumption and run-time
performance for the selected programming languages. This
can help practitioners select among the IPC technologies
implementations that offer the most energy- and run-time
performance-efficient solutions.

RQ2. What are the reasons that make certain IPC
technologies more energy and run-time performance
efficient?—Here, we investigate under the hood how each
of the selected IPC technologies works, by examining the
implementations’ system calls. This can show us which
are the system calls that are mostly used by certain appli-

S. Georgiou and D. Spinellis: Preprint submitted to Elsevier Page 3 of 16



Energy-Delay Investigation of Remote Inter-Process Communication Technologies

Table 3
Experimental Setup Parameters

Programming Compilers & Interpreters IPC Technology Packages and their Versions
Languages Servers RPis REST Version RPC Version gRPC Version

Go 1.9.4 1.9.4 NET/HTTP 1.9.4 NET/RPC 1.9.4 grpc-go 1.17.0
Java 1.8.0 1.8.0 JAX-RS 2.1.0 JAX-WS 2.1.0 grpc-java 1.17.0
JavaScript 10.4.0 10.4.0 Express 4.16.3 Express–RPC 0.0.4 grpc-node 1.17.0
Python 2.7.14 2.7.14 Flask 1.0.2 Flask–RPC 1.0.2 grpc-python 1.17.0
PHP 7.2.12 7.2.12 Laravel 5.7.15 JSON-RPC 2.0 grpc-php 1.17.0
Ruby 2.5.3p 2.5.3p Rails 5.1.6 JSON-RPC 2.0 grpc-ruby 1.17.0
C# 4.8.0 4.8.0 ASP.NET 2.1.5 ASP.NET 2.1.5 grpc-csharp 1.17.0

cations and for most of their execution time, thus possibly
contributing to increased energy consumption and lower
run-time performance.

RQ3. Is the energy consumption of the IPC technologies
proportional to their run-time performance or resource
usage?—For this research question, we investigate a con-
flicting view among researchers: that energy consumption
is proportional to run-time performance. We address this
issue only in the context of IPC technologies. Moreover,
we investigate if energy consumption is in proportion with
resource usage such as maximum memory usage, number
of page faults, and context switches. This can act as an
indication to warn developers regarding their applications
and libraries energy consumption.

We answer the above research questions by using a num-
ber of metrics. For RQ1, we use energy consumption, that
is the product of the total power consumed and time for an
execute task. In addition, we collect run-time performance
measurements, that is the execution time of a task. For RQ2,
we collect system calls, which are API calls of an application
that requests services from the user to kernel space. Finally,
we use the measurements of the RQ1, the maximum mem-
ory set size, context-switches, and page faults to answer the
RQ3. The maximum memory set size indicates the total
memory reserved for task, the number of context-switches
shows the amount of times a system requested services from
the kernel and the associated overhead, while page faults in-
dicate memory pressure during execution time.
3.2. Subject Systems

Experimental Platform: We performed two experi-
ments to consider different context and environments. For
the former, we used two Lenovo ThinkCentre M910t plat-
forms [40], where one was acting as a server and the other
as a client. In a similar way to the above, we utilized two
Raspberry Pis 3B model (RPi), to simulate an IoT test case.
In the context of this study, we will refer to the Lenovo and
RPis platforms as Intel and ARM platforms, respectively. To
retrieve energy consumption, we utilised an external device,
the Watts Up? Pro (WUP) [43]. Also, we used an additional
RPi to fetch the energy measurements, from the WUP’s in-
ternal memory, in real-time with the help of a Linux-based
open source utility interface [5]. We followed this approach

to avoid further overhead on the server and client instances
that could impact their energy consumption. To collect the
run-time performance, we used the Linux time command to
yield the wall-time of our implementations. We used the
wall-time because WUP offers coarse-grained measurements
for the whole computer platform and not only when a process
is utilising the CPU. Figures 1a and 1b depict the platform
connectivity between the subject systems.

Programming Languages: For selecting our program-
ming languages, we employed the GITHUT.INFO [16] and
PYPL [34] web-pages (December 2018). GITHUT.INFO of-
fers information concerning the popularity of various pro-
gramming languages by taking into account the GITHUB ac-
tive repositories, total number of pushes, and so on. PYPL
administers its ranking based on the frequency by which a
programming language tutorial has been searched on Google
every month. To this end, we picked the first six most pop-
ular and active programming languages according to the
GITHUT.INFO and PYPL statistics, which were JavaScript,
Java, Python, PHP, Ruby, and C#. In addition, we covered in
our selection Go, because it is one of the programming lan-
guages that earned the highest popularity the recent years,
according to a Tiobe study [2].

IPC Technologies: The selected IPC technologies var-
ied among REST, RPC, and gRPC. REST is a stateless archi-
tecture style for distributed systems, widely adopted for of-
fering world-accessible APIs. RPC is a publicly known way
of causing a procedure to execute remotely and many orga-
nizations have developed APIs for it. Therefore, we selected
and used the RPC and REST libraries as shown in the next
paragraph. We also studied gRPC, an RPC technology devel-
oped by Google that uses Protocol buffers 3 and HTTP/2 to
boost its speed and interoperability between services. We se-
lected gRPC since many companies that are using microser-
vices (e.g., Netflix, Cisco, CoreOS) are adopting it in their
production. Also, gRPC offers library implementations in di-
verse programming languages making it a suitable candidate
for our empirical study.

Web Frameworks: We used web frameworks to build
our end-points for the server and client function; however,
for this research, we do not examine their impact. To select
them, we employed the HotFrameworks [9], that provides a
monthly ranking on web frameworks’ popularity based on
the numbers of GitHub stars and STACKOVERFLOW tagged
questions. For JavaScript, we selected Express since the

S. Georgiou and D. Spinellis: Preprint submitted to Elsevier Page 4 of 16



Energy-Delay Investigation of Remote Inter-Process Communication Technologies

Watts
Up? Pro

Server Node Raspberry Pi
3b

SSH

SCP

Micro
USB

Profiling
scripts

Meter 
Utility

Server
Code

Client Node

Client
Code

Ethernet
Connection

Power
Cable

(a) Retrieving energy measurements from the client.

Watts
Up? Pro

Server Node Raspberry Pi
3b

SSH

SCP

Micro
USB

Profiling
scripts

Meter 
Utility

Server
Code

Client Node

Client
Code

Ethernet
Connection

Power
Cable

(b) Retrieving energy measurements from the server.

Figure 1: Experiment setup for Intel and ARM systems

AngularJS started losing popularity after 2017 and React is
mainly used to create user interfaces. Similarly, we excluded
Django and kept Flask for Python. For C#, we used ASP.NET
because it is the most influential web framework. Likewise,
we selected Ruby on Rails and Laravel for Ruby and PHP to
develop the RESTful tasks, respectively. For Ruby and PHP
RPC tasks, we could not find any official implementation of
Laravel and Ruby on Rails; therefore, we wrote the RPC tasks
using the JSON-RPC 2 library. For Go, we selected its built-in
packages since the HotFrameworks does not offer any in its
ranking. We selected JAX-RS and JAX-WS for Java since the
Spring is mostly used for RESTful applications. For gRPC,
we utilized the latest available versions for each of the se-
lected programming languages which are publicly available
on GitHub.2

Test Case: To perform our experiment, we either used
existing or developed missing HelloWorld examples that are
making use of the three IPC technologies discussed in this
section. For gRPC, we could not test a PHP-written server
program because currently there is none available.3 There-
fore, we performed the experiment using a JavaScript server
code as suggested in the official documentation. Likewise,
it was not possible to compile the C#’s gRPC source code
for the ARM platform; therefore, we did not execute the
C#’s gRPC for the corresponding platform. The reason we
selected a straightforward scenario is that we were mainly
concerned with examining only the cost of different remote
IPC technologies when they are invoking remote procedures.
More specifically, the client makes some remote procedure
invocations towards the server’s HelloWorld function, and the

2https://github.com/grpc
3https://grpc.io/docs/tutorials/basic/php.html

server replies with a “Hello World" message. To this end,
Table 3 illustrates the selected programming languages, their
compiler and interpreter versions, and the used IPC technol-
ogy packages and versions for each programming language
implementation.

Execution Scripts: To control our experiment’s work-
flow, we wrote around 1,800 lines of Unix shell scripts, to
automate the execution, data collection, and results plot-
ting process. All scripts are publicly available on GitHub.4
For executing the tasks, we included the basic function, that
makes the remote procedure call, in a loop of 20,000 and
5,000 iterations for the Intel and ARM computer systems, re-
spectively. We took such an action to force the execution
time of a task to take over a second. We did this because
the WUP performs power sampling and reports the collected
energy measurements, on a per second basis.
3.3. Research Approach

To perform our experiment, we followed the experimen-
tal approach described below.

∙ We started our computer systems and stopped unnec-
essary background processes according to suggestions
by Hindle [15] and waited for our system to reach a
stable condition i.e., where the energy consumption
was idle (23 and 1.5 Joules for Intel and ARM proces-
sor, respectively).

∙ Then, we started our execution script that initiates,
through SSH, the i) server instance to receive requests,
ii) the RPi to retrieve energy consumption measure-
ments from WUP’s internal memory, and iii) the client
to perform the tests and collect execution time.

4https://github.com/stefanos1316/Rest_and_RPC_research/scripts

S. Georgiou and D. Spinellis: Preprint submitted to Elsevier Page 5 of 16



Energy-Delay Investigation of Remote Inter-Process Communication Technologies

∙ When any IPC implementation finished with its exe-
cution, we left a small window of a minute, using the
Linux sleep command, to avoid tail power states [6]
and to allow our device to reach the stable condition
before executing the next implementation.

∙ Once the whole experiment was done, all the data
from the nodes (i.e., the client and RPi) were trans-
ferred to the server, using the SCP utility, to sanitise
the energy measurements from the idle time and plot
graphs.

Because we had only a single WUP at our disposal, we
executed the above experiment twice, once for measuring
the Intel’s server instance energy consumption and once for
measuring the client’s consumption. Afterwards, we per-
formed the same experiment for the ARM platforms. To min-
imise measurement noise, we performed each experiment
50 times and obtained statistic results such as the standard
deviation, mean, and median values of energy consumption
and run-time performance. By plotting histograms for each
of the programming language IPC implementations, we ob-
served minor variations between their values. To this end,
we decided to retrieve and depict as results the median val-
ues (shown in Section 4).
3.4. Threats to Validity
Internal validity. Internal validity refers to possible issues
of our techniques that can lead to false results and impreci-
sion. Here, we reveal potential sources of such problems.

Having full control over our operating systems’ workload
and background operations is hard, because, at any time, dif-
ferent daemons may operate. Also, when a task is executing
and enters in a waiting state (e.g., due to an I/O operation) the
WUP will still record the energy consumption of our com-
puter platform. This could affect our calculations, too.

For the Java’s gRPC tasks, we were not able to compile
its native extensions on the embedded systems. However,
because of the JVM we were able to execute the task on the
embedded systems without the need to compile it. There-
fore, we are not aware to which extent these fact can affect
our results.
External validity. External validity refers to the extent to
which the results of our study can be generalised to other
programming implementations. Here, we present the limi-
tations of our study.

According to Sahin et al. empirical studies that use real
applications show different energy consumption results from
studies that use micro-benchmarks (i.e., traditional desktop
software) [38]. Admittedly, since our study’s results are
based on micro-benchmarks, our findings could be different
for real software.

Finally, we evaluate the energy consumption and run-
time performance of three IPC technology tasks written in
seven programming languages, and running on server plat-
forms and embedded systems. Thus, it is currently difficult
for us to generalise our arguments for other programming
languages or platforms.

4. Results and Discussion
Here we discuss the collected results of the energy con-

sumption and run-time performance that the selected com-
puter platforms achieved for each IPC technology implemen-
tation. We also answer our research questions and discuss
the outcomes. Finally, we discuss the significance of our
measurements.
4.1. RQ1. Which IPC technology implementation

offers the most energy and run-time
performance efficient results?

We first present the obtained results for the Intel and
ARM computer platforms. Specifically, we show which
type of IPC technologies and programming language imple-
mentations are the most energy- and run-time performance-
efficient among our scenarios. Tables 4 and 5 illustrate the
median values of the energy consumption (energy in joules)
and run-time performance (time in seconds) for a particu-
lar programming language. Moreover, we compare the cor-
responding implementations viz-a-viz the best implementa-
tion’s results (most efficient case) in the form of the ratio.
Also, Figures 2a and 2b present box plots regarding the pro-
gramming languages results for each IPC technology.
4.1.1. Intel platforms

Comparison among IPC technologies. In the context
of Intel platforms, we can see that, for both server and client,
the gRPC offers the lowest energy consumption and execu-
tion time for all the IPC technology implementations apart
from those of Go and PHP (see Table 4). For Go’s implemen-
tation, gRPC has the highest energy consumption and lowest
run-time performance compared to REST and RPC which are
making use of the built-in net rpc and http libraries. The
results also present that RPC is the IPC technology that has
the next best results, regarding energy consumption and run-
time performance, for all the implementations except from
Java, while it offers the best results for Go. Also, we can
see that REST implementations contribute to the highest en-
ergy consumption and lowest run-time performance among
the implementations.

Comparison among programming languages. The re-
sults of Table 4 show that JavaScript is the programming lan-
guage that exhibits the best results for all cases. Plus, we can
see that Go outputs the second most energy- and run-time
performance-efficient results, while C# is following, and last
we observe that Java, Python, Ruby, and PHP offer the lowest
performance.
4.1.2. ARM platforms

Comparison among IPC technologies. Likewise to In-
tel platforms results, the gRPC again contributes to the lowest
energy consumption and execution time, for the most cases,
among the selected IPC technologies in the context of ARM
platforms for the server and client instances. In contrast, Go,
Java, and PHP implementations are having the most ineffi-
cient results while executing the gRPC task (see Table 5). For
RPC scenarios, we observe that our implementations have the

S. Georgiou and D. Spinellis: Preprint submitted to Elsevier Page 6 of 16



Energy-Delay Investigation of Remote Inter-Process Communication Technologies

Table 4
Energy and Run-time Performance Results for Intel Platforms

Nodes’ Collected Measurements Ratio comparison against the most efficient case

IPC Programming Energy (in joules) Time (in seconds) Total Energy Energy (in joules) Time (in seconds)
Names Languages Client Server Both Nodes Consumption Client Server Both Nodes

gRPC Go 99 105.8 28 204.8 3.5 3.9 9.3
Java 451.5 364 35 815.5 16 13.4 11.6
JavaScript 28.2 27 3 55.2 – – –
Python 606.7 588.7 16 1195.4 21.5 21.8 5.3
PHP 11 543.9 1291.3 479 12 835.1 409.3 47.8 159.6
Ruby 139.4 61.6 39 201 4.9 2.2 13
C# 65.6 105.2 55 170.8 2.3 3.8 18.3

RPC Go 84.8 70.4 16 45.2 2.3 2.1 1.6
Java 5224.5 2715.5 855 7940 144.3 84 85.5
JavaScript 36.2 32.3 10 26.5 – – –
Python 319.5 347 73 666.5 8.8 10.7 7.3
PHP 930.5 1214.6 67 25.7 10.2 37.6 6.7
Ruby 458.2 513.5 43 971.7 12.6 15.8 4.3
C# 399.9 364 27 763.9 11 11.2 2.7

REST Go 94.1 79 19 260.3 1 2.5 1.9
Java 687 617.8 42 1304.8 7.7 19.6 4.2
JavaScript 88.1 31.4 10 109.5 – – –
Python 637 370 78 1007 7.2 11.7 7.8
PHP 7003 20 574.5 628 79.4 90 65.2 62.8
Ruby 1988.2 6191.2 304 8179.4 22.5 197.1 30.4
C# 1206.6 789.4 44 1996 13.6 25.1 4.4

Table 5
Energy and Run-time Performance Results for ARM Platforms

Nodes’ Collected Measurements Ratio comparison against the most efficient case

IPC Programming Energy (in joules) Time (in seconds) Total Energy Energy (in joules) Time (in seconds)
Names Languages Client Server Both Nodes Consumption Client Server Both Nodes

gRPC Go 10.8 6.9 10 17.7 4.9 5.3 3.3
Java 83.5 75.6 71 159.1 45.2 58.1 23.6
JavaScript 2.2 1.3 3 3.5 – – –
Python 11.7 16.5 18 28.2 5.3 12.6 6
PHP 348.7 88.7 331 437.4 201.2 68.2 110.3
Ruby 8.3 8.3 12 16.6 3.7 6.3 4
C# – – – – – – –

RPC Go 5.2 6.6 7 11.8 – – –
Java 73.3 40.6 258 113.9 14 6.1 36.8
JavaScript 20.9 20.5 22 41.4 4 3.1 3.1
Python 31 36.5 52 67.5 5.9 5.5 7.4
PHP 7.7 8.8 28 16.9 1.4 1.3 4
Ruby 33 35 42 68 6.1 5.3 6
C# 219.3 290.7 53 510 42.1 44 7.5

REST Go 4.1 3.2 8 7.3 – – –
Java 33.9 43.5 22 77.4 8.2 13.5 2.7
JavaScript 18.3 18.3 22 36.6 4.4 5.7 2.7
Python 60.4 35 75 95.4 14.7 10.9 9.3
PHP 175.8 360.1 153 535.9 42.8 112.5 19.1
Ruby 196 1094 679 1290 47.8 341.8 84.8
C# 45.3 96.5 68 108.5 11 30.1 8.5

next best results after those of Java and C#. Among the IPC
technologies, REST resulted in the least energy- and run-time
performance-efficient results for the ARM platforms.

Comparison among programming languages.
JavaScript also offers the best results for the ARM platforms
when it comes to gRPC task. However, in contrast to
the Intel platforms, Go implementations resulted to the
most efficient results in terms of energy consumption and
run-time performance, while JavaScript is the runner-up for
RPC and REST tasks. Compared to the Intel platforms, the
presented results for the ARM systems do not depict a clear
winner among the remaining language implementations.

4.1.3. Range of results
Figures 2a and 2b illustrate the box plots of the obtained

median energy consumption of each implementations with
confidence interval of 95%. The points located in our box
plots,that are above the maximum values measurements are
highly energy inefficient implementations.

In the case of Intel platforms (see Figure 2a), we no-
tice that only the REST implementations diverge significantly
among the results, for both client and server instances. For
the RPC’s implementations, we can observe small differences
in the implementations energy consumption, which is even
smaller for gRPC results. Also, we observe that some highly
inefficient implementations exist for gRPC and REST which
are those of PHP’s.

In contrast to Intel platforms, for the ARM systems, we

S. Georgiou and D. Spinellis: Preprint submitted to Elsevier Page 7 of 16



Energy-Delay Investigation of Remote Inter-Process Communication Technologies

Cl
ie

nt
 g

RP
C

Cl
ie

nt
 R

PC

Cl
ie

nt
 R

es
t

Se
rv

er
 g

RP
C

Se
rv

er
 R

PC

Se
rv

er
 R

es
t

0

5000

10000

15000

20000

En
er

gy
 c

on
su

m
pt

io
n 

(in
 Jo

ul
es

)

(a) Intel platforms’ client and server results

Cl
ie

nt
 g

RP
C

Cl
ie

nt
 R

PC

Cl
ie

nt
 R

es
t

Se
rv

er
 g

RP
C

Se
rv

er
 R

PC

Se
rv

er
 R

es
t

0

200

400

600

800

1000

En
er

gy
 c

on
su

m
pt

io
n 

(in
 Jo

ul
es

)

(b) ARM platforms’ client and server results

Figure 2: Intel and ARM computer platforms results

see higher divergences in the implementations’ energy con-
sumption (see Figure 2b). Such a fact highlights the neces-
sity of proper selection, of IPC protocol and language imple-
mentation in the context of embedded systems and battery-
restricted devices. Likewise to Intel platforms, PHP imple-
mentation for gRPC has the lowest performance. However,
for the REST and RPC scenarios, Ruby and C#, respectively,
had the most inefficient implementations.

JavaScript and Go are the programming language of-
fering the most energy and run-time performance ef-
ficient library implementations for the Intel and ARM
platforms. In addition, for almost all programming lan-
guage implementations, we found that gRPC is the IPC
technology having the most efficient results.

4.1.4. Interpreting the Findings
From the collected results, JavaScript emerges as the

programming language with the lowest energy consumption
and best run-time performance implementation for gRPC.
All the gRPC libraries, for all the selected programming lan-
guages, are using shared C as their core-library to build their
own implementations on top of it. However, JavaScript’s
gRPC library implementation is using C++ native addons5
to achieve better performance, a pattern that is not applied
for the other implementations. Additionally, Oliveira et al.
showed that combining Java or JavaScript applications with
native programming languages such as C/C++, can offer
up to 100× times less energy consumption and ten times
better run-time performance for devices with ARM micro-
processor [24]. Also, the studies of Georgiou et al. and
Pereira et al. have shown that C++ is among the most energy

5https://nodejs.org/api/addons.html

efficient programming languages for servers and laptops.
Therefore, using C++ with native addons helps JavaScript
to reduce energy consumption.
4.1.5. Accuracy of obtained Results

According to Saborido et al. [36], a low sampling rate
might miss energy consumption measurements appearing
for a short period (energy spikes). Nevertheless, using a de-
vice such as the WUP could output imprecise measurements.

To evaluate if the above statement is true and obtain more
samples, we performed experiments on the RPis with some
JavaScript and Go tasks, that exhibited low energy and run-
time performance. To perform these experiments, we had in
our disposal: 1) an oscilloscope6 connected with a current
probe7 and 2) a multimeter.8 We first connected the multi-
meter and the current probe on an extension cable live, where
a computer system was plugged in. Next, we compared the
oscilloscope’s current measurements (obtained as input from
the current probe) against the multimeter’s. We utilized a
multimeter (as ground truth for current measurements) to en-
sure that its measurements aligned with the current probe’s.
We then made the appropriate settings to the oscilloscope
(input voltage, scaling, and true root mean square measure-
ments) according to the current probe’s specifications. Also,
we measured the average Direct Current (DC) for the tasks
execution time by using the oscilloscope’s between rulers

option (see the dashed lines of Figure 3), which allows to
obtain measurements for a specified period of time.

Figure 3 depicts the server and client waveforms while
executing the gRPC task with a sampling rate of 200,000
units per second. The 𝑋-axis illustrates the sampling du-

6https://www.picotech.com/oscilloscope/3000
7http://www.all-sun.com/EN/d.aspx?pht=1066
8https://www.uni-t.cz/en/p/multimeter-uni-t-ut139c

S. Georgiou and D. Spinellis: Preprint submitted to Elsevier Page 8 of 16



Energy-Delay Investigation of Remote Inter-Process Communication Technologies

Figure 3: Client (top) and server (bottom) waveforms of gRPC task implemented in JavaScript running on ARM platforms

ration in seconds, while the 𝑌 -axis shows the current mea-
surements in Amperes. We present the results obtained from
the waveforms in Table 6. Specifically, we show the related
task, the language it was implemented with, the devices used
to measure its energy consumption and their accuracy, and
the average power consumption for the client and server im-
plementations. For the oscilloscope, we obtained our mea-
surements in current and multiplied it with 5V (RPi’s power
supply) to obtain power consumption. The results indicate
that the WUP’s measurements fall slightly shorter than the
oscilloscope’s (i.e., 2–7.1%). This happens because the os-
cilloscope exhibits measurements with the precision of mil-
lisecond for the tasks execution (e.g., 4.432 seconds), while
the WUP captures per second measurements (e.g, 4 seconds).
Therefore, if a task elapses some milliseconds after the WUP
reports energy consumption then the energy consumption
until the next second will also be added in the average DC,
that is partially idle energy consumption of the RPi.
4.2. RQ2. What are the reasons that make certain

IPC technologies more energy and run-time
performance efficient?

To answer RQ2, we execute the whole experiment one
more time to retrieve and analyse system calls from the In-
tel and ARM platforms. Likewise, Aggarwal et al. [4, 17]
investigated how the energy consumption of applications

is changing according to the number of their system calls.
They showed when the number of system calls between two
applications diverges significantly; it is more likely that the
application’s energy consumption will differ too. However,
what we do here is that we examine the system call traces
produced by our IPC technology implementations qualita-
tively and we try to delineate the reasons behind our results.
Therefore, we first analyse the obtained system call traces
(for the client and server) and then we try to interpret and
discuss our findings.

To collect system call traces, we utilise the strace

command-line tool and we collect data using the flags -c

(provides a summary-like output) and -f (retrieves child pro-
cess traces). Due to the large volume of results, we did not
include the collected system call traces in this paper; how-
ever, they are publicly available in our GITHUB repository.9

4.2.1. Platforms System Calls
On the ARM and Intel platforms system calls we iden-

tify a large number of wait-like system calls such as futex,
waitid, and so on. By investigating the results, we observe
that Go is using the futex, waitid, and epoll_wait system
calls extensively; this is not happening for the JavaScript
implementations. By reading the official documentation of

9https://github.com/stefanos1316/Rest_and_RPC_research/arm/syscalls

S. Georgiou and D. Spinellis: Preprint submitted to Elsevier Page 9 of 16



Energy-Delay Investigation of Remote Inter-Process Communication Technologies

Table 6
Comparison between Watts Up? Pro and Oscilloscopes Measurements

IPC Language Device Accuracy Average Server Power (in Watts) Average Client Power (in Watts)

WUP ± 5% 1.94 2.04gRPC JavaScript Oscilloscope ± 6% 1.90 2.09

RPC Go
WUP ± 5% 1.77 2.00
Oscilloscope ± 6% 1.81 2.13
WUP ± 5% 1.68 1.88REST Go Oscilloscope ± 6% 1.71 2.02

the IPC technology implementations and we found out that
Go, for all the IPC technologies, is using channels;10 a syn-
chronous method to serialize main memory access and in-
crease thread-safety [25]. Therefore, it forces the client to
wait for an answer from the server before invoking the next
remote procedure. This increases execution time and thereby
adds to the energy footprint through the system’s fixed en-
ergy consumption cost.

Likewise, Python implementation system calls are
spread among socket, connect, close, sendto, recvfrom, fcntl,
and stat for the REST and RPC technologies. Although
Python is not using broadly wait-based system calls, it still
has the implementations among with the lowest performance
for both energy usage and execution time. In the case of
gRPC, Python supports both synchronous and asynchronous
methods to interact with the client’s and server’s stubs. How-
ever, in the example, a synchronous method is used and,
thus, the futex system call takes up most of the implementa-
tion’s execution time.

We observe similar behavior, with the above, for C#,
Java, Ruby, and PHP implementations. JavaScript, on the
other hand, due to its asynchronous nature spends most of its
execution time on system calls such as writev, mmap, munmap,

read, brk, socket, connect, and less than 20% of its execu-
tion time on epoll_ctl.
4.2.2. Identifying the Facts

We execute our experiment again by using the -e flag
to sanitise our traces from the wait-like system calls (e.g.,
futex, wait4). We do that since these system calls indi-
cate that an implementation is not using any computing
resource—since it is in a sleeping state—and to diagnose
which system calls might impact its energy consumption and
execution time. Additionally, we remove traces that are re-
lated to the compilation since they do not offer an actual exe-
cution of the tasks. Figures 4a and 4b, illustrate the time that
each of the implementations spend in kernel space (sys time)
against the real time for the associated computer platform
and IPC protocol. The 𝑌 -axis supplies information regarding
the total median time (of 50 executions) that IPC implemen-
tations spent on system calls during their whole execution,
while the 𝑥-axis shows the relevant programming language
implementations.

After obtaining our traces, we compare of the most and
10https://gobyexample.com/channels

least efficient IPC implementation system calls across each
of the programming languages according to the results of
subsection 4.1. Also, we performed an intra-language (in-
stead of inter-language) comparison of the IPC implementa-
tions to be just with languages supporting only asynchronous
or synchronous for the investigated tasks. We did that
separately for the programming languages affected heavily
from the system calls such as C#, Go, and PHP. Moreover,
we analyzed JavaScript’s system calls because it offers the
most energy- and run-time performance-efficient implemen-
tations.

For C#, the results for both platforms suggest that the
server instances are way more affected by the system calls
against the clients. For the RPC implementations, the
sched_yield system calls occupies a major portion of time
causing a large number of context switches which degrades
the implementations performance. This might also be the
reason that places C#’s RPC among the implementations with
the poorest energy and run-time performance, especially for
the ARM platforms (see Table 5).

In contrast to C#, Go’s client implementations are getting
affected more from the system calls, close to 20% of their to-
tal execution time. Also, Go’s RPC is the most energy- and
run-time performance-efficient implementation, while gRPC
gives the weakest results. To this line, the system call traces
are showing that both of them are using mostly the same sys-
tem calls e.g., write, read, and sched_yield. However, for
the Intel platforms, what makes them different is that RPC
makes, in total, at least two times fewer system calls against
gRPC. Therefore, by taking into account the work of Ag-
garwal et al. [4] this can explain the reasons why RPC’s im-
plementation is more energy-efficient than gRPC’s. For the
ARM platforms, the same is not happening since the number
of their system calls are similar.

PHP’s RPC—which has the best energy and run-time
performance among PHP’s implementations for the client
instances—is mainly using system calls such as connect,

close, send, recv, and socket, while the client-side gRPC
is extensively using the openat and mmap2 to map data on vir-
tual memory. For the server instances for both platforms,
REST implementation for PHP suffers from a great number of
system calls.

JavaScript that has gRPC as the most energy- and
performance-efficient implementations makes broad use of
writev system calls that write data into multiple buffers.
Also, JavaScript’s gRPC is using mostly the read, write,

S. Georgiou and D. Spinellis: Preprint submitted to Elsevier Page 10 of 16



Energy-Delay Investigation of Remote Inter-Process Communication Technologies

(a) Intel platforms’ system calls impact

(b) ARM platforms’ system calls impact

Figure 4: Platforms System Calls

writev, and clock_gettime system calls, while its REST im-
plementation (the most efficient one) utilises considerably
the socket, connect, and close system calls for the client
and accept and shutdown for the server.

Our analysis shows the frugal opening, connecting,
closing, accepting, and shutting down connections can
impact the energy consumption and run-time perfor-
mance of the IPC technologies. Moreover, an exten-
sive number of context switches can severe implementa-
tions’ performance. Besides, the usage of writev system
call appears in the most efficient implementations.

S. Georgiou and D. Spinellis: Preprint submitted to Elsevier Page 11 of 16



Energy-Delay Investigation of Remote Inter-Process Communication Technologies

4.2.3. Lessons learned
Each of the selected implementations is making differ-

ent use of the system calls in their lower level of abstrac-
tion. Employing tools such as strace to investigate them
can provide hints to identify reasons behind the increased
energy consumption and the poor run-time performance.
We have also observed that JavaScript had the least wait-
like systems calls because Node.js—JavaScript’s server-side
run-time environment—uses an event-driven, asynchronous
model. Therefore, JavaScript’s server program is not waiting
a function’s or an API’s return data to start serving another
request. However, when a function or API call returns the re-
quest’s data, Node.js uses a notification mechanism to send
immediately back data to the client. Therefore, compared to
all the other implementations, Node.js fully utilizes its exe-
cution time to serve client requests through its asynchronous
nature and having less wait-like system calls during execu-
tion time.

By examining only the system calls of IPC implementa-
tions, we can not always have a clear picture of their energy
and run-time performance implications. For instance, Go
implementations spend an important amount of time in ker-
nel space; nevertheless, they are among the most energy and
run-time performance efficient implementations. This sug-
gests that the type of system calls can affect the energy and
run-time performance of IPC implementations.
4.3. RQ3. Is the energy consumption of the IPC

technologies proportional to their run-time
performance or resource usage?

In RQ3, we aim to identify if the energy consumption
of different programming language implementations, in the
context of IPC technologies, have proportional i) run-time
performance and ii) resource usage. To this line, a similar
research question to ours was answered by Pereira et al. [26]
where they compared the energy consumption, run-time per-
formance, and memory usage of 27 different programming
languages and showed that energy consumption is not pro-
portional to the memory usage, while in some cases it is
proportional to the execution time. Therefore, we perform
a similar experiment in the context of IPC technologies and
we examine resource usage as illustrated below. To answer
RQ3, we break it down into two sub-questions and we an-
swer separately as follows.
4.3.1. Energy consumption and run-time performance

Initially, we collected the median values of the energy
consumption and run-time performance of each implemen-
tation from our experiment as shown in Tables 4 and 5 and
we rendered scatter plots. This offers a complete picture re-
garding the proportionality of measurements for each of our
platforms. In Figures 5a and 5b the 𝑋-axis presents the IPC
language implementations, while the 𝑌 -axis depicts the me-
dian energy consumption, for the server or client instance,
and their run-time performance.

From the outcome, we observe cases where lower execu-
tion time is not associated with reduced energy consumption.

For instance, for the Intel platform, the C#’s REST client and
server implementations have execution time 1.2 times lower
than the C#’s gRPC; however, the REST implementations en-
ergy consumption is 7.5 times higher than the gRPC’s. Sim-
ilarly, Java’s RPC implementations are 1.3 times slower than
PHP’s REST; nevertheless, PHP’s client and server consume
1.3 to 7.5 times more energy, respectively. Also, Ruby’s
REST server uses more energy than PHP’s gRPC server but
still Ruby’s implementation is 1.5 times faster. Go’s server
and client RPC instances have the same execution time as
Python’s server and client; however, Python’s implemen-
tations consume almost three times more energy (see Fig-
ure 5a).

For the ARM platforms a similar behavior is observed
with the Intel’s platforms. Some cases depict that energy
consumption is proportional to execution time, while other
not (see Figure 5b). For example, C#’s client and server im-
plementations for RPC results to 1.2 times lower execution
time than C#’s REST implementations. However, C#’s REST
server and client instances are 4.8 and 3 times, respectively,
more energy-efficient than C#’s RPC. Additionally, C#’s RPC
server and client implementations are 1.3 times faster than
Java’s gRPC server and client; nevertheless, Java’s imple-
mentations are 2.6–3.8 times more energy-efficient than C#’s
RPC implementations. Also, PHP’s REST implementations
are 1.6 times faster than Java’s RPC; but, Java’s implementa-
tion uses 2.3 and 8.8 times less energy than PHP REST client
and server, respectively.

In the context of IPC technologies, almost all the se-
lected programming language implementations have
proportional median values for the energy consumption
and run-time performance. However, we found many
cases where fast execution time did not resulted to en-
ergy savings.

4.3.2. Energy consumption and resource usage
In this sub-research question, we are trying to see when-

ever the resource usage of the different implementations is
proportional to the energy consumption. To this line, we
used the Linux /usr/bin/time -v command (version 1.9),
which offers information regarding the implementations’ re-
source use, such as context switching, page faults, and main
memory usage. In this way, we can have a deeper under-
standing of the way each implementation is allocating mem-
ory and different operations that are causing peculiar system
calls.

Tables 7 and 8 illustrate the Maximum Resident Set Size
(MRSS), the Minor Page Faults (MPF), and the Voluntary
Context Switches (VCS) for the client and server, respec-
tively. We show the peak main memory usage for our imple-
mentations’ processes by using the MRSS that is showing the
portion of memory occupied by a process in the main mem-
ory. Additionally, we select the MPF since it can show the
number of cases when our implementations are trying to ac-
cess particular memory pages that are not currently mapped
in the virtual address space. Also, we ignored the Major

S. Georgiou and D. Spinellis: Preprint submitted to Elsevier Page 12 of 16



Energy-Delay Investigation of Remote Inter-Process Communication Technologies

C# gRPC

C# RPC

C# Rest

Go gRPC

Go RPC

Go Rest

Java gRPC

Java RPC

Java Rest

JS gRPC

JS RPC

JS Rest

PHP gRPC

PHP RPC

PHP Rest

Python gRPC

Python RPC

Python Rest

Ruby gRPC

Ruby RPC

Ruby Rest

0

1000

2000

3000

4000

5000
En

er
gy

 (i
n 

Jo
ul

es
) a

nd
 R

un
-T

im
e 

(in
 S

ec
on

ds
)

Energy-Delay Investigation of Remote Inter-Process Communication Technologies
Client Energy
Server Energy
Nodes Run-Time

(a) Intel platforms’ Energy and Run-Time Performance Comparison

C# gRPC

C# RPC

C# Rest

Go gRPC

Go RPC

Go Rest

Java gRPC

Java RPC

Java Rest

JS gRPC

JS RPC

JS Rest

PHP gRPC

PHP RPC

PHP Rest

Python gRPC

Python RPC

Python Rest

Ruby gRPC

Ruby RPC

Ruby Rest

0

200

400

600

800

1000

En
er

gy
 (i

n 
Jo

ul
es

) a
nd

 R
un

-T
im

e 
(in

 S
ec

on
ds

)

Energy-Delay Investigation of Remote Inter-Process Communication Technologies
Client Energy
Server Energy
Nodes Run-Time

(b) ARM platforms’ Energy and Run-Time Performance Comparison

Figure 5: Platforms Energy and Run-Time Performance Comparison

Page Faults because only a few instances occurred in our re-
sults. Finally, we use the VCS to observe the number of times
an implementation’s processes were context-switched while
waiting for resources that were unavailable at that time. For
the sake of simplicity, results reported in Tables 7 and 8 have
been divided by 1,000 in order to improve readability.

For the Intel platforms we observed, for the gRPC and
RPC, that the most energy- and performance-efficient imple-
mentations which are C#, Go, Java, and JavaScript tend to
have high MRSS, while PHP, Python, and Ruby have the low-
est MRSS and overall performance among the implementa-
tions (see Table 7). We observe similar behavior for the REST
implementations apart from Ruby that has the highest MRSS
but still the poorest performance. Regarding the MPF met-
rics we found a significant divergence within the program-

ming language implementations. Therefore, finding an as-
sociation between our results, it is not possible. Likewise to
MPF, the number of VCSs do not affect the energy efficiency
of the selected IPC implementations. We identified some of
the most energy-efficient implementations having a very low
VCS, while the same holds for inefficient implementations.

For the ARM platforms we observed for the MRSS there
is not a clear indication regarding the proportionality of
memory usage for the most energy-efficient implementa-
tions against the least efficient ones. However, in Table 8
we observe that the implementations with high MRSS, such
as Go and JavaScript, are the most energy- and run-time
performance-efficient. Regarding the MPF and VCS for the
ARM platform’s implementations, we did not find any asso-
ciation with energy consumption as the results tend to be

S. Georgiou and D. Spinellis: Preprint submitted to Elsevier Page 13 of 16



Energy-Delay Investigation of Remote Inter-Process Communication Technologies

Table 7
Intel platforms’ MRSS (in KB), MPF, and VCS

Server Client
IPC Data Name C# Go Java JS PHP Python Ruby C# Go Java JS PHP Python Ruby

gRPC MRSS 92 161 328 357 47 27 23 90 117 329 407 28 26 21
MPF 81 55 90 86 51 4 5 77 216 95 99 4192 7 5
VCS 167 137 121 0.5 41 266 42 25 136 125 1 470 20 40

RPC MRSS 143 124 171 98 22 22 21 102 88 168 467 26 22 26
MPF 128 45 50 21 1 26 6 83 34 50 113 1 6 6
VCS 151 86 85 0.6 32 366 76 85 82 65 4 40 59 84

REST MRSS 213 100 6 98 40 22 487 51 72 142 457 26 19 20
MPF 114 38 2 21 5208 6 128 179 30 40 110 1 7 5
VCS 174 121 0.05 0.6 29 215 119 824 149 48 4 45 58 113

Table 8
ARM platforms’ MRSS (in KB), MPF, and VCS

Server Client
IPC Data Name C# Go Java JS PHP Python Ruby C# Go Java JS PHP Python Ruby

gRPC MRSS 0 93 66 79 34 17 12 0 91 66 94 20 16 10
MPF 0 35 15 17 5 2 17 0 34 15 21 7974 2 16
VCS 0 78 180 0.08 0.04 84 20 0 66 267 0.1 10 5 10

RPC MRSS 84 68 32 67 15 18 12 84 69 30 94 20 17 13
MPF 243 26 6 15 1 5 13 213 26 5 22 1 5 17
VCS 243 33 4 0.4 8 24 13 108 27 17 3 10 14 26

REST MRSS 82 57 2 70 31 18 126 49 57 29 96 20 20 14
MPF 77 25 2 16 15 4 328 46 24 5 22 1 5 2
VCS 81 37 0.03 0.4 8 5 57 146 50 11 3 18 19 36

sparse among the most and least efficient implementations.
Neither the Minor Page Faults nor the Voluntary
Context-Switches can be used to justify the energy con-
sumption results in terms of IPC technologies. However,
the number of Maximum Resident Set Size tends to be
proportional to most of the cases. Therefore, drawing
clear conclusions regarding energy consumption and
resource usage is challenging.

4.4. Significance of Measurements
In this section, we demonstrate the significance of our

measurements by illustrating the possibilities of energy sav-
ings while selecting a particular IPC implementation. Later
on, we justify its feasibility for software practitioners to
utilise our findings and gain a more energy-conscious de-
velopment.

According to the work of Hindle [14], even minor op-
timizations on the energy consumption of smart phones for
four million users per hour can result in significant world-
wide energy savings equivalent to an American household’s
monthly power use per hour. According to WEBFX,11 there
are more than 4.5 billion of Facebook posts from various ICT
products on a daily basis, where clients use IPC implemen-
tations to interact with servers. If we consider that Face-
book is built on PHP then we can assume—through rough
calculations—that the energy cost of 20,000 post requests
through gRPC can cost up to 22,560.9 and 12,834.4 Joules
for an Intel server and client, respectively (see Table 4). That
is translated to 1.39 and 0.76 Mega-Watt hours for 4.5 bil-
lion Facebook daily post requests for a server and client in-

11https://www.webfx.com/internet-real-time/

stance, respectively. However, switching to the most energy-
friendly implementation of gRPC (i.e, JavaScript) that con-
sumes 28.2 and 27 Joules for 20,000 post requests, leads
to 0.0017 and 0.0016 Mega-Watt hours for an Intel server
and client to server the daily post requests of Facebook, re-
spectively. The PHP IPC implementation of Facebook daily
amount of post requests is a bit more than the monthly power
use of an American’s household [1], while using JavaScript
reduces power consumption significantly.

Another challenge here is convincing companies and de-
velopers to switch to more eco-friendly implementations,
which requires further training and migration to different
programming languages. To this end, Meyerovich and
Rabkin [21] have identified a set of factors that facilitate lan-
guage adoption by analyzing a data-set of 200,000 Source-
Forge and 590,000 Ohloh projects and by performing mul-
tiple survey studies on 1,000–13,000 software practition-
ers. The results suggest that small companies and software
practitioners are willing to switch to a programming lan-
guage if the latter offers more libraries and better perfor-
mance. Regarding energy consumption as a performance
metric, Manotas et al. [20] have shown in the context of a
survey study, that software practitioners are willing to adopt
energy-conscious development, and they consider it essen-
tial in the context of data centers and mobile devices.

5. Conclusions
We performed an empirical study over diverse remote

IPC technologies implemented in different programming lan-
guages to appraise their energy and run–time performance.
Our results highlight JavaScript’s and Go’s implementations
as the most energy- and run–time performance-efficient

S. Georgiou and D. Spinellis: Preprint submitted to Elsevier Page 14 of 16



Energy-Delay Investigation of Remote Inter-Process Communication Technologies

compared to PHP, Java, C#, Python, and Ruby. Practition-
ers can benefit from our study by noting the following.

∙ Energy consumption and run-time performance can
vary significantly among different programming lan-
guage implementations; therefore, making the right
selection of IPC can benefit the applications’ energy
consumption.

∙ The use of writev system calls is more energy and run-
time performance efficient because it makes, in total,
fewer system calls.

∙ Neither the memory usage nor number of context-
switches can indicate the energy or run-time perfor-
mance of a library’s efficiency.

Researchers can build on our study by comparing differ-
ent web frameworks, using more test cases, and applying our
findings in real-world micro-services application is to eval-
uate their performance.

References
[1] , . How much electricity does an American home use? - FAQ - U.S.

Energy Information Administration (EIA). URL: https://www.eia.

gov/tools/faqs/faq.php?id=97.
[2] , 2017. TIOBE Index | TIOBE - The Software Quality Company.

URL: https://www.tiobe.com/tiobe-index/.
[3] Abdulsalam, S., Lakomski, D., Gu, Q., Jin, T., Zong, Z., 2014. Pro-

gram energy efficiency: The impact of language, compiler and imple-
mentation choices, in: Green Computing Conference (IGCC), 2014
International, pp. 1–6.

[4] Aggarwal, K., Hindle, A., Stroulia, E., 2015. GreenAdvisor: A tool
for analyzing the impact of software evolution on energy consump-
tion, in: 2015 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME), pp. 311–320.

[5] Bailey, P., 2017. Watts Up Pro power meter interface utility for Linux.
URL: https://github.com/pyrovski/watts-up.

[6] Bornholt, J., Mytkowicz, T., McKinley, K.S., 2012. The model is not
enough: Understanding energy consumption in mobile devices, in:
2012 IEEE Hot Chips 24 Symposium (HCS), pp. 1–3.

[7] Bovet, G., Hennebert, J., 2012. Communicating With Things - An
Energy Consumption Analysis, in: 2012 IEEE Tenth International
Conference on Pervasive Computing (Pervasive ’2012).

[8] Chamas, C.L., Cordeiro, D., Eler, M.M., 2017. Comparing REST,
SOAP, Socket and gRPC in computation offloading of mobile appli-
cations: An energy cost analysis, in: 2017 IEEE 9th Latin-American
Conference on Communications (LATINCOM), pp. 1–6.

[9] Frameworks, H., 2018. Web framework rankings | HotFrameworks.
URL: https://hotframeworks.com/.

[10] Georgiou, S., Kechagia, M., Louridas, P., Spinellis, D., 2018. What
Are Your Programming Language’s Energy-Delay Implications?,
in: 15th International Conference on Mining Software Repositories
(MSR), ACM, New York, NY, USA. p. 11.

[11] GeSI, 2018. Gesi smarter 2030. URL: http://smarter2030.gesi.org.
[12] Hasan, S., King, Z., Hafiz, M., Sayagh, M., Adams, B., Hindle, A.,

2016. Energy Profiles of Java Collections Classes, in: Proceedings
of the 38th International Conference on Software Engineering, ACM,
New York, NY, USA. pp. 225–236.

[13] Herwig, V., Fischer, R., Braun, P., 2015. Assessment of REST and
WebSocket in regards to their energy consumption for mobile applica-
tions, in: 2015 IEEE 8th International Conference on Intelligent Data
Acquisition and Advanced Computing Systems: Technology and Ap-
plications (IDAACS), pp. 342–347.

[14] Hindle, A., 2015. Green mining: a methodology of relating software
change and configuration to power consumption. Empirical Software
Engineering 20, 374–409. doi:10.1007/s10664-013-9276-6.

[15] Hindle, A., Wilson, A., Rasmussen, K., Barlow, E.J., Campbell,
J.C., Romansky, S., 2014. GreenMiner: A Hardware Based Mining
Software Repositories Software Energy Consumption Framework, in:
Proceedings of the 11th Working Conference on Mining Software
Repositories, ACM, New York, NY, USA. pp. 12–21.

[16] Info, G., 2018. GitHut - Programming Languages and GitHub. URL:
http://githut.info/.

[17] Karan Aggarwal, 2014. The Power of System Call Traces: Predicting
the Software Energy Impact of Changes. URL: http://archive.org/
details/Cascon2014.

[18] Lima, L.G., Soares-Neto, F., Lieuthier, P., Castor, F., Melfe, G., Fer-
nandes, J.P., 2019. On Haskell and energy efficiency. Journal of Sys-
tems and Software 149, 554–580. doi:10.1016/j.jss.2018.12.014.

[19] Linares-Vásquez, M., Bavota, G., Bernal-Cárdenas, C., Oliveto, R.,
Di Penta, M., Poshyvanyk, D., 2014. Mining Energy-greedy API Us-
age Patterns in Android Apps: An Empirical Study, in: Proceedings
of the 11th Working Conference on Mining Software Repositories,
ACM, New York, NY, USA. pp. 2–11.

[20] Manotas, I., Bird, C., Zhang, R., Shepherd, D., Jaspan, C., Sadowski,
C., Pollock, L., Clause, J., 2016. An Empirical Study of Practitioners’
Perspectives on Green Software Engineering, in: Proceedings of the
38th International Conference on Software Engineering, ACM, New
York, NY, USA. pp. 237–248. doi:10.1145/2884781.2884810.

[21] Meyerovich, L.A., Rabkin, A.S., 2013. Empirical Analysis of Pro-
gramming Language Adoption, in: Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Program-
ming Systems Languages & Applications, ACM, New York, NY,
USA. pp. 1–18. doi:10.1145/2509136.2509515. event-place: Indianapo-
lis, Indiana, USA.

[22] Mizouni, R., Serhani, M.A., Dssouli, R., Benharref, A., Taleb, I.,
2011. Performance Evaluation of Mobile Web Services, in: 2011
IEEE Ninth European Conference on Web Services, pp. 184–191.

[23] Nunes, L.H., Nakamura, L.H.V., Vieira, H.d.F., Libardi, R.M.d.O.,
Oliveira, E.M.d., Estrella, J.C., Reiff-Marganiec, S., 2014. Perfor-
mance and energy evaluation of RESTful web services in Raspberry
Pi, in: 2014 IEEE 33rd International Performance Computing and
Communications Conference (IPCCC), pp. 1–9.

[24] Oliveira, W., Oliveira, R., Castor, F., 2017. A Study on the Energy
Consumption of Android App Development Approaches, IEEE Press,
Piscataway, NJ, USA. pp. 42–52.

[25] org, G., 2019. Go synchronization. URL: https://golang.org/pkg/

sync/.
[26] Pereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J., Fernandes, J.,

Saraiva, J., 2017. Energy efficiency across programming languages:
how do energy, time, and memory relate?, in: Proceedings of the 10th
ACM SIGPLAN International Conference on Software Language En-
gineering, ACM. pp. 256–267. doi:10.1145/3136014.3136031.

[27] Pereira, R., Couto, M., Saraiva, J., Cunha, J., Fernandes, J.P., 2016.
The Influence of the Java Collection Framework on Overall Energy
Consumption, in: Proceedings of the 5th International Workshop on
Green and Sustainable Software, ACM, New York, NY, USA. pp. 15–
21.

[28] Pereira, R., Simão, P., Cunha, J., Saraiva, J., 2018. jStanley: Plac-
ing a Green Thumb on Java Collections, in: Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engi-
neering, ACM, New York, NY, USA. pp. 856–859. doi:10.1145/
3238147.3240473.

[29] Pinto, G., 2013. Refactoring Multicore Applications Towards Energy
Efficiency, in: Proceedings of the 2013 Companion Publication for
Conference on Systems, Programming, & Applications: Software for
Humanity, ACM, New York, NY, USA. pp. 61–64.

[30] Pinto, G., Canino, A., Castor, F., Xu, G., Liu, Y.D., 2017. Under-
standing and overcoming parallelism bottlenecks in ForkJoin appli-
cations, in: 2017 32nd IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE), pp. 765–775. doi:10.1109/ASE.
2017.8115687.

[31] Pinto, G., Castor, F., Liu, Y.D., 2014. Understanding Energy Be-
haviors of Thread Management Constructs, in: Proceedings of the

S. Georgiou and D. Spinellis: Preprint submitted to Elsevier Page 15 of 16

https://www.eia.gov/tools/faqs/faq.php?id=97
https://www.eia.gov/tools/faqs/faq.php?id=97
https://www.tiobe.com/tiobe-index/
https://github.com/pyrovski/watts-up
https://hotframeworks.com/
http://smarter2030.gesi.org
http://dx.doi.org/10.1007/s10664-013-9276-6
http://githut.info/
http://archive.org/details/Cascon2014
http://archive.org/details/Cascon2014
http://dx.doi.org/10.1016/j.jss.2018.12.014
http://dx.doi.org/10.1145/2884781.2884810
http://dx.doi.org/10.1145/2509136.2509515
https://golang.org/pkg/sync/
https://golang.org/pkg/sync/
http://dx.doi.org/10.1145/3136014.3136031
http://dx.doi.org/10.1145/3238147.3240473
http://dx.doi.org/10.1145/3238147.3240473
http://dx.doi.org/10.1109/ASE.2017.8115687
http://dx.doi.org/10.1109/ASE.2017.8115687


Energy-Delay Investigation of Remote Inter-Process Communication Technologies

2014 ACM International Conference on Object Oriented Program-
ming Systems Languages & Applications, ACM, New York, NY,
USA. pp. 345–360.

[32] Pinto, G., Liu, K., Castor, F., Liu, 2016. A Comprehensive Study
on the Energy Efficiency of Java Thread-Safe Collections, in: 32nd
IEEE International Conference on Software Maintenance and Evolu-
tion, IEEE Computer Society, Raleigh, North Carolina, USA.

[33] Procaccianti, G., Fernández, H., Lago, P., 2016. Empirical evalua-
tion of two best practices for energy-efficient software development.
Journal of Systems and Software 117, 185–198.

[34] of Programming Language, P.P., 2018. PYPL PopularitY of Program-
ming Language index. URL: http://pypl.github.io/PYPL.html.

[35] Rashid, M., Ardito, L., Torchiano, M., 2015. Energy Consumption
Analysis of Algorithms Implementations, in: 2015 ACM/IEEE Inter-
national Symposium on Empirical Software Engineering and Mea-
surement (ESEM), pp. 1–4.

[36] Saborido, R., Arnaoudova, V., Beltrame, G., Khomh, F., Antoniol, G.,
2015. On the impact of sampling frequency on software energy mea-
surements. PeerJ PrePrints 3, e1219. doi:10.7287/peerj.preprints.
1219v2.

[37] Sahin, C., Pollock, L., Clause, J., 2014a. How Do Code Refactorings
Affect Energy Usage?, in: Proceedings of the 8th ACM/IEEE Inter-
national Symposium on Empirical Software Engineering and Mea-
surement, ACM, New York, NY, USA. pp. 36:1–36:10. doi:10.1145/
2652524.2652538.

[38] Sahin, C., Pollock, L., Clause, J., 2016. From benchmarks to real
apps. Journal of Systems and Software 117, 307–316.

[39] Sahin, C., Tornquist, P., Mckenna, R., Pearson, Z., Clause, J., 2014b.
How Does Code Obfuscation Impact Energy Usage?, in: 2014 IEEE
International Conference on Software Maintenance and Evolution
(ICSME), pp. 131–140. doi:10.1109/ICSME.2014.35.

[40] lenovo thinkcentre, 2018. ThinkCentre M910 Tower | Power Your
Business | Lenovo Australia. URL: https://www3.lenovo.com/au/en/
desktops-and-all-in-ones/thinkcentre/.

[41] Tonini, A.R., Fischer, L.M., Mattos, J.C.B.d., Brisolara, L.B.d., 2013.
Analysis and Evaluation of the Android Best Practices Impact on the
Efficiency of Mobile Applications, pp. 157–158.

[42] Van Heddeghem, W., Lambert, S., Lannoo, B., Colle, D., Pickavet,
M., Demeester, P., 2014. Trends in worldwide ICT electricity con-
sumption from 2007 to 2012. Computer Communications 50, 64–76.

[43] WattsUpMeter, 2017. Watts up? Products: Meters. URL: https:

//www.wattsupmeters.com/secure/products.php?pn=0.
[44] Wellington, O., Renato, O., Fernando, C., Benito, F., Gustavo, P.,

2019. Recommending energy-efficient java collections, in: Proceed-
ings of the 16th International Conference on Mining Software Reposi-
tories, MSR 2019, 26-27 May 2019, Montreal, Canada., pp. 160–170.

Stefanos Georgiou is a PhD Candidate in the De-
partment of Management Science and Technology
at the Athens University of Economics and Busi-
ness, Greece. He holds a BSc in Networks and Sys-
tems Programming from the University of Cyprus
and a MSc in PERvasive Computing and COMmu-
nications for sustainable development (PERCCOM).
In his PhD he aims to reduce applications energy
consumption by using software engineering tech-
niques and practices.

Diomidis Spinellis is a Professor in the Depart-
ment of Management Science and Technology at
the Athens University of Economics and Business,
Greece and director of the University’s Business
Analytics Laboratory. He is the author of two
award-winning books, Code Reading and Code
Quality: The Open Source Perspective. His most
recent book is Effective Debugging: 66 Specific
Ways to Debug Software and Systems. He has con-

tributed code that ships with Apple’s MACOS and
BSD Unix, and is the developer of CScout, UML-
Graph, dgsh, and other open-source software pack-
ages, libraries, and tools. He served as the Editor
in Chief for IEEE Software over the period 2015–
2018.

S. Georgiou and D. Spinellis: Preprint submitted to Elsevier Page 16 of 16

http://pypl.github.io/PYPL.html
http://dx.doi.org/10.7287/peerj.preprints.1219v2
http://dx.doi.org/10.7287/peerj.preprints.1219v2
http://dx.doi.org/10.1145/2652524.2652538
http://dx.doi.org/10.1145/2652524.2652538
http://dx.doi.org/10.1109/ICSME.2014.35
https://www3.lenovo.com/au/en/desktops-and-all-in-ones/thinkcentre/
https://www3.lenovo.com/au/en/desktops-and-all-in-ones/thinkcentre/
https://www.wattsupmeters.com/secure/products.php?pn=0
https://www.wattsupmeters.com/secure/products.php?pn=0

