OIKONOMIKO
MANEMIETHMIO
AOHNON

ATHENS UNIVERSITY

OF ECONOMICS
AND BUSINESS

! HE

- “i['i:’..ﬂ n m . ' | "'
mha——

i

A T i3 A

How | hacked my way into = ’IT ‘,,

academia

HACKER [originally, someone who makes furniture with an axe] n.

1. A person who enjoys learning the details of programming
systems and how to stretch their capabilities, as opposed to
most users who prefer to learn only the minimum necessary.

2. One who programs enthusiastically, or who enjoys programming
rather than just theorizing about programming.

. A person capable of appreciating hack value (q.v.).

4. A person who is good at programming quickly. Not everything
a hacker produces 1s a hack.

5. An expert at a particular program, or one who frequently
does work using it or on it; example: "A SAIL hacker".
(Definitions 1 to 5 are correlated, and people who fit them
congregate.)

6. A malicious or inquisitive meddler who tries to discover
information by poking around. Hence "password hacker",
"network hacker".

W

— Guy Steele et al The Hacker’s Dictionary, 1988

Cka@@ewg&ex ane the nule

7 NN/ /| [NOAYKYKANMATIETHE
EPI’A!THPIUN S AO0s

O
e
MMNOPEIZ

xwplg va eloar elbidg
pe tva povov xir
vé oxnuanong

102

AAEXTROVIRG RUKAWUOTG
Biaoxedadovrag

MAGE

ania xal cUxola
nwg Asiroupyody
Kal xaragxkecuaoe
HE YOV MOAUKUKAWRATIO T

* Pabvpwva

* Mounoug

« Evioxurag

* Tahavrwrasg

* Bounrag

+ PabioTnAéypago
+ Inuaroborag

* Sovnras

Kai GAAeg 2

npaKTIkES t@apuoyts

SR

Q4
-

FDUCATIONAL ELECTRONIC LABORATORY

ond 9 pore 99 criy

.

verikon

EPFAZTHP ON SNMSRS N KON

T A N e e, l‘ FSArMOrE R
LR ey ACANS
OTVAL - ARVYFMA (M PONOME T AR As S

!DUCA TONAL
(, T OAYKYKAQMATIETHE no 1002 "‘"".'.’;"é:'é“

IM xuunlmu ME YA AL vmn

DANMARK HF 65

L N

‘ 7 FM sender

R4 Fig.1.
R5 C4
3 I}
R6 T2
C5
] O—
Fig.3.
HF 65, anvendelse: ~ A)
’ /
HP 65 kan anvendes af radiocamatgrer til mikrofonsender p& 144 M Hz,
Det er ngdvendigt at have senderlicens for at anvende senderen
tigt.

llator
HF 65 kan anvendes af sgmand , samt sejlsportsfolk i rum sg uden 1i- powerOSCI a
cens,

HF 65 er forsynet med en fplsom forforstarker
Istedet for en almindelig mikrofon kan man anv
der kun koster f34 kroner i detailhandlen, Tekniske data:
HE 65 kan ogsi anvendes af radiomekanikere som malesender. Den skal T T

83 bygges ind 1 en tat metalkasse, som hindrer ugnsket senderudstriling.

Istedet forat tilslutte en mikrofon

og en kraftig udgang.
ende en greproptelefon,

Un(\nqxuffukt : Max. 1 watt ved 45 Volt ba(tcrispmndan
£il HF 65, kan man tilslutte en U;J;nqsvffckt 3 Max. loo m Watt ved 9 v$}t“bgstorlspmuu1nq
tonegenerator, og vil kunne f£4 lodrette eller vandrette streger p& TV. Frekvensomride : Fra 6o M Hz til Ca. 145 M Hz
Hvis senderen ikke bygges ind i en metalkasse, vil den uden antenne s =Hdinq : 4,5 volt til 45 Volt.
rzkke flere hundrede meter, og derved forstyrre FM eller TV bindene, ZPJ forbrug : lomA til 50 mA max.
Bvilket ikke er tillade, A2 L O«(glgomhvd : Mikrofon, dynamisk, lo mV
Med en stor batterispanding vil senderen kunne rakke mere end lo Km. 1ndganq:il CAATE L 3 MARAE 228K
Udgangstransistoren kan tdle en tabseffekt p& max., 5 Watt. Indgangsimpedans

: Are ‘per - kg¢leplade
: » 1 Watt over en kortere periode uden
HF 65 bgr kun afgive 1l Wa

AN
Ant.
L
+9
2k F'Z 40
47Up =
4.?Hn§ —_ §1Dk§1 20pF
-—
Eing. 6.8F 220K0 b-?uF 1 EB
NF H WAl HI 3pF
gzm |
ZNZZ19
Gnd. Modu- 470pF 0
lation —— gmkﬂ
mm§
BC172

R
,.

Ry

MADE IN DENMARK

\V} Ty TEVXOS 187 - mvmuzjwavz - APX. 70
_ouyxpovn TR

V.U.. METER Hi-
ME LED!

TPO®OAOTIK(
" I'ENIKH3
XPHZEQS

" TEXNIKH

EKAOTH 1

NOMMNOZ XTA

MHNIAIO MNEPIOAIKO ZYMXPONHE HAEKTPONIKHE

- - . OKTQBPOL 1982 N C I0AIKO XPONHZ HAEKTPONI AEKEMBPIOX 1982 Maprioc 1983
N IC D O Iz - MHNIAIO MEPIOAIKO ZYMXPONHE HAEKTPONIKHZ
aPX. 100 A v '~ MHNIAIO MEPIOAIKO ZYMXPONHZ HAEKTPONIKHZ APX. 100 MHNIAIO MEPIOAIKO EYFXPONHE HAEKTPONIKHE APX, 100

To pivi appovio
unoloyiotng T{oZe@oov

70cm transverter OGUVAYEPHOG AUTOKIVATOU

Yia EMKOIVOVIQ -
pEcw Sopupopov “,-,E 5
loviotng argoo@aipiko agpa
Elekterminal
anla nxnuka eQEe
HIKPOG OEKING pEGAIRV
£va peyaio VU

MeTpnTig oTpog@v Nioi peBobol EAaTTOOEWS
MeTpnTng Geiger - Muller 80op8ouv CX xai1 DNR

ENEKTOP... TSN [OP. B ENEWTO

MHNIAIO NEPIOAIKO ZYMXPONHE HAEKTPONIKHE

MHNIAIO MEPIOAIKO EYTXPONHE anx 100 C y MHNIAIO NEPIOAIKO ZYI XPONHE HAEKTPONIKHE

JETPNING ONOOCTAOEWV

1€ UNEPAXOUG
- e «£E10QYWYN OTOUG MIKPOENEEEPYAOTEG
- d Ziotnpa acpalgiag 5
TR pIAC . ‘ «KépBepogr o naigovrag omyv TV
Y ! p g 3 ’ ‘ 4 . \ » EVIOXUTAG TNAE@wvou

-
s Siapoppwtng VHE/UHF
IVGAOYIKEG YPOPPES g

kaBuotepnoswe

HEIPNING OTPOPWY

y1a £MKEG

nedIOpETpO

110%

RETPNTAG YUPWV

: R)
n eAQTTWON QopuBov DN

_ .70 OTA 13600 | L § SuvapIK
. .8&kTng vEpavadpacewg 87 - 180MH:z

LENERY

MAPTIOZ

ETKYKAOTMAIAIKH TEXNIKH EMIOENPHZH APX. 35

arnAn Ylwooqu

i

UM |

N
- {
——
.
»
.
»
»
»
> Vit
.
2
N
:
T
))
’
Ay
_ 1)
. i
’
! ML

| TWV
J unoAoyioTwy |

0 ovowg T repabywan H2 Dodtus i, I
VROQATUY B0 NpOoECOn i YO Lerp oyl ann

¢ TR » Sset et e B oot

™
) L givEr T
AL
) Y (%4
)
- Ly !
Ay
. 1 " Ay
! . At Xt
x
N
A ! !
N
’ Uy i
i YAt sqlie qpnogeg
v
LT oy ANAN A
Wips LA (W STH 45 ! UL
. A A Yo ’ RS 11
W
Mophabdas Xprauonont IWYNeAL NI OnDg

oy J A

OA
0 PN A
W END

C)(/quw(younr lw)ugous

Ir\ DN

: ,‘7_,_\/.,- K["E %QX__LM/AAI<IQ,,QLM-__I§£Q4&:#
>R PR, MT " PRESS K&y WMARKED 1~

SLERIRY iR R e

0 A TIEN R GG 00 S

Dol'T WANT To RESTARTED TH 4*

—— e

@
=
"

B e — =S

4
g R
2}
3¢
4f
5¢
6d
Y

M suussim urlugbe E?S

s§=""

- P"—* nn

rOR =170 e€h) %Z?“’”é“(ﬂ,f,v)

IF qw;mcﬂﬂ(ll‘” THEY 3¢

R vl Ty P§=P$ &%W »4
¥ 6oTO yAS4

Kerofaes Loh Lseueran T2
F$ BARBAA o> CrRs(1B) THEY 119

§7 PR-¢
10 A yp iy

lg o
d
l2¢
(7¢
(4@
\S¢

6y
\Lg

(3¢

AL T4 S3= <#{sy

[F 49> cariC132) THEV |70
PR=0

\F s§<c§ THEX T04

IF 4sc(5$) @\ Thew k34

KNz sted(56,2,255)

GoTo 74 ([WERTY

K- L= § CHRY(AsC(5$))
S§= 566$(5;‘)Z)l 55.)

Ng Gore 130
leg IF C3=cyri(1$2) THEV ¢!
2‘0 gg; ($ lﬁ

214
3¢

Tag

pExr 1
IF 84="" THEs 29p¢
P = 0F Y cHR§(AsC (39))

259 34-secs(s8,2,55)

269 Gove 2f m
71 ¢ s |)

B —

| ot 7

i
(

Ve T

P ROghams can /lecess and ?euelwd'e
othen f»h,ogm,ams

Available online at www.sciencedirect.com

"=, ScienceDirect

2,5 The Journal of
Systems and
Software

ELSEVIER

The Journal of Systems and Software 80 (2007) 11561168 -
www.elsevier.com/locate/jss

A framework for the static verification of ap1 calls

Diomidis Spinellis *, Panagiotis Louridas
Department of Management Science and Technology, Athens University of Economist and Business, Patision 76, GR-104 34 Athens, Greece

Received 20 February 2006; received in revised form 18 September 2006; accepted 30 September 2006
Available online 13 November 2006

Abstract

A number of tools can statically check program code to identify commonly encountered bug patterns. At the same time, programs are
increasingly relying on external aris for performing the bulk of their work: the bug-prone program logic is being fleshed-out, and many
errors involve tricky subroutine calls to the constantly growing set of external libraries. Extending the static analysis tools to cover the
available aprs is an approach that replicates scarce human effort across different tools and does not scale. Instead, we propose moving the
static apr call verification code into the ap1 implementation, and distributing the verification code together with the library proper. We
have designed a framework for providing static verification code together with Java classes, and have extended the FindBugs static anal-
ysis tool to check the corresponding method invocations. To validate our approach we wrote verification tests for 100 different methods,
and ran FindBugs on 6.9 million method invocations on what amounts to about 13 million lines of production-quality code. In the set of
55 thousand method invocations that could potentially be statically verified our approach identified 800 probable errors.
© 2006 Elsevier Inc. All rights reserved.

Keywords: Static analysis; apr; Library; Programming by contract; FindBugs

1. Introduction (2) the increasing Ap1 sophistication, and in particular the

embedding of many different domain-specific lan-
Automatic program verification tools have had a signif- guages (DsLs) as strings in the program code.
icant impact on software development, and are more and

more used in practice to eliminate many errors that in Both trends reduce the efficiency of the current

the past would have caused program crashes, security vul-
nerabilities, and program instability (Johnson, 1977; Bush
et al., 2000; Ball and Rajamani, 2002; Das et al., 2002;
Csallner and Smaragdakis, 2005; Cok and Kiniry, 2005;
Barringer et al., 2006). However, two software develop-
ment trends are now hindering the applicability of auto-
mated program verification tools:

(1) the increasing use of binary-packaged components
(for the most part libraries) through their application
programming interface (Apr), and

" Corresponding author. Tel.: +30 210820398 1; fax: +30 2108203370
E-mail addresses: dds@aueb.gr (D. Spinellis), louridas@aueb.gr
(P. Louridas).

0164-1212/8 - see front matter @ 2006 Elsevier Inc. All rights reserved.
doi: 10.1016/j.jss.2006.09.040

approaches. The use of feature-rich libraries in their binary
form handicaps verification programs that require access to
source code, such as esc/Java (Flanagan et al.. 2002), and
also programs that contain a fixed-set of specific bug pat-
terns, like 1154 (Viega et al., 2000). Furthermore, the diver-
sity of the libraries handicaps any tool that depends on a
centralized repository of verification patterns. In addition,
the embedding of psis, like sor and xpath, in strings
appearing in the program’s source code can introduce bugs
that are beyond the reach of the current breed of tools
based on approaches like theorem proving (Flanagan
et al., 2002), dataflow analysis (Jackson, 1995), and finite
state machines (Ball and Rajamani, 2002). To overcome
these difficulties we propose a framework for incorporating
API call verification code within each library containing the
corresponding At implementation. Through the use of
reflection techniques program checkers can invoke this

SHARP

. PROGRAM NO.
- PROGRAM NO. i
Title TREASURE-HUNTING GAME AR Title TREASURE-HUNTING GAME B 1 1
Memory content
[Formula] — All x coordinate of target
9
This is a game in which the location of treasure is 8 2 B | 2| »coordinate of target
decided by random numbers and a player hunts out 8 __»_rT_ i, 1
the treasure. 7 ‘ C | 3| Distance
Your initial position is at (0, 0). Input a distance you " } 1 T } D 4] No of targets found 103 "A®:2260:X=0:Y=0:D=0
want to cover in each of the x and y directions. ; - ﬂ*. l# = 20: INPUT “INITIAL=":H
If you get out of the matrix shown on the right, the 5 | ‘é) 1 Ll E|5 v 30: GOSUB 500
error indication appears, so try again. 4 | ’ T [Fls V/ 40: A=V
A distance between you and the treasure is indicated 5 +‘T‘*F" = f"—:— S R e S 50: GOSUB 500
as a hint by the value of “ABS(x -a)+ ABS(y -b)". S (| B 1__{_ : G|7 Vi 60: B=W
You are allowed an energy of 60 at the start of 2 _<__L—--— ‘*" S H!s v 70: C=ABS (X~=A)+ABS (Y-B)
treasure hunt. The energy decreases by a sum of | ’ [I ‘L 1 | i 75: PAUSE USING "HEHHH";X:Y:C:Z
distances in the x and y directions w\;u'ch)yu -+ T ‘ ’L —+ 1|8 80: PAUSE USING “HHHHH"IX:Y:C:1
make. And when you locate the treasure, T is © | | [| J 10 90: INPUT "DX DY 2",P,0
displayed and the energy increases by 5. Everytime v /0 1 2 3 4 5 6 7 8 9 100: Z=7Z-ABS P-ABS Q
you input. the following indication appears: X Kt 110: IF 0>=ZBEEP 4:PRINT "TARGET",D:END
Example: L |12 120: IF (X+P>=0)*(9>=X+P)* (Y+Q>=0)* (9>=Y+Q)
<>0GOTO 160
4 5 4 51 M|13 150: PAUSE "ERROR":GOTO &0
x coordinate of y coordinate of Distance bet. you Remaining N |14 :?8)I(:X;P;I:Y;QBGOTO 190
present position present position and treasure (Hint) energy o l1s 1802 60T0 70
5, 7 19C: BEEP 2:P SHIT!
Every time the treasure is hunted out, a new location of the treasure is fixed by random P 6 : 203‘ D=D+1?Z=‘Z\E§FGOT(§ 30
numbers. You continue to hunt the treasure until the energy you have exhausts. The number Ql7 g 210: END
of hunted treasures is displayed at the end of the game. ~m S00: E=ABS (439147+E+F)
510: G=E8+1:H=23«E
S |19 520: E=H-INT (H/G)*G
i T |20 530: W=INT (10%E/G)
[Operation] S540: RETURN
CLOAD “X11Y i u |2 367
V|22
W23 \
X |24 v
Input (Display Note Input Display Note Y |25 :
1| swo A [inmaL- | " —4 IR [HIT Z |26 Fnerey
22345781 ©NTER (O 0) 60 12 6 3 6 144
3 DX DY ? 13 :
4 4 ENTER 14 :
5 5 ENTER |4 5 1 51 15 Continue fill energy exhausts
6 DX DY ? 186
7 2 EINTER| % 17
8 2 INTER |2 7 8 17 18
g DX DY * 19
10 1 | Y 20

PP 201

A
vv

'] SERIES
FTWARE DEVELOPMENT .
Effe‘:tl've 20 Scotit Meyers, Consulting Editor

t Reading

Volume 1
The Open Source Perspective

o) £irm X
"30) : ugh we al P~ e
30) XXX uagly R this entire mess must P e
XXX: read keyboard directly SHE recarn 'y Ty,

XXX Actually, if this fails, we- r. ety e .

S, but that’'s not hara t " "~
> just one chax =
lized =/«

oQrmac -
recursive variable
= v N3 - we handle
K Wuninitial i
o t £ ix

??
NULL. ;
This is boc

XXXX NEGATIV
rme

KERNBA

w
’

Diomidis Spinellis

Leann gzy meaa&'u? code
(and 3ﬁ,w(17£u3z 378fem3)
that othen /Jeo/J@e have whitten

computer

¢ TEXAS INSTRUMENTS TI99/4./A

Solid State Software

FHY=SILCHL

JANUAEY

LGIORGOS

KATHIOFPTEZ!

: « SH1IRNETHHNARH

- « IH

: YYSIO0INNSEZ1In
e B o TEXHROAOINIAH

. ATATOFPA

ENITADI HES

730 SUB LOC(E$,H)

770 DATA ASTRONOMIA,BIOLOGIA,GEVGRAFIA,FYSIKH,XHMEIA
780 CALL POSITION(#26,Y,X)

790 R=INT((Y+4)/8)+1 :: C=INT((X+4)/8)+1

800 IF (R>15)OR(R<7)OR(C>23)OR(C<15)THEN H=0:: SUBEXIT
810 IF (C/2=INT(C/2))OR(R/2=INT(R/2))THEN H=0:: SUBEXIT
820 CALL MOTION(#26,0,0)

830 CALL SOUND(100,1000,0)

840 CALL DELSPRITE(#26)

850 CALL SPRITE(#26,42,7,R*8-12,C*8-12)

860 CALL MAGNIFY(2)

862 IF P=1 THEN 870

863 RESTORE 770

865 FOR I=1 TO5 :: READ P$(I):: NEXT | :: P=1

870 E$=P$(INT(R/2)-2):: H=INT(C/2)-6

880 SUBEND

640 SUB WHAT (E$,H)

650 DISPLAY AT(20,4):"EPISTHMH:" :: DISPLAY AT(21,4):"DYSKOLIA:"
660 CALL SPRITE(#26,140,2,32,64)

670 CALL JOYST(L,X,Y)

680 CALL MOTION(#26,05*(Y=+4)-05*(Y=-4),05*(X=-4)-05*(X=+4))
690 CALL KEY(L,RET,STA)

700 IF RET=18 THEN CALL LOC(E$,H)ELSE 670

710 IF H=0 THEN 670 ELSE DISPLAY AT(20,13):E$:: DISPLAY AT(21,13):STR$(H):: SUB EXIT
720 SUBEND

730 SUB LOC(E$,H)

770 DATA ASTRONOMIA,BIOLOGIA,GEVGRAFIA,FYSIKH,XHMEIA
780 CALL POSITION(#26,Y,X)

790 R=INT((Y+4)/8)+1 :: C=INT((X+4)/8)+1

800 IF (R>15)OR(R<7)OR(C>23)OR(C<15)THEN H=0:: SUBEXIT
810 IF (C/2=INT(C/2))OR(R/2=INT(R/2))THEN H=0:: SUBEXIT
820 CALL MOTION(#26,0,0)

830 CALL SOUND(100,1000,0)

840 CALL DELSPRITE(#26)

850 CALL SPRITE(#26,42,7,R*8-12,C*8-12)

860 CALL MAGNIFY(2)

862 IF P=1 THEN 870

863 RESTORE 770

865 FOR I=1 TO5 :: READ P$(I):: NEXT | :: P=1

870 E$=P$(INT(R/2)-2):: H=INT(C/2)-6

880 SUBEND

890 SUB SCR1

900 DEF CTR$(W$)=SEG$(" " 1,(28-LEN(W$))/2)&W$
910 DISPLAY AT(1,1):CTR$("KOKKINOI GIGANTES")

920 DISPLAY AT(2,1):CTR$("ASPROI NANOI")

930 DISPLAY AT(10,1):CTR$("@ 1983 DIOMHDHS SPINELLHS")
940 DISPLAY AT(23,1):CTR$("PATA ENA KOYMPI")

950 DISPLAY AT(24,1):CTR$("GIA NA ARXISEI")

960 CALL KEY(5,RET,STA):: IF STA=0 THEN 960

970 CALL CLEAR :: CALL SOUND(100,1000,0)

980 SUBEND

990 SUB ACC(N1$,N2$,N3$,N4$)

1000 CALL CLEAR

1010 DISPLAY AT(4,1):"OMADA 1"

1020 ACCEPT AT(5,1)VALIDATE(UALPHA)SIZE(10)BEEP:N1$
1030 ACCEPT AT(6,1)VALIDATE(UALPHA)SIZE(10)BEEP:N2$
1040 DISPLAY AT(8,1):"OMADA 2"

1050 ACCEPT AT(9,1)VALIDATE(UALPHA)SIZE(10)BEEP:N3$
1060 ACCEPT AT(10,1)VALIDATE(UALPHA)SIZE(10)BEEP: N4$
1070 CALL CLEAR

1080 SUBEND

1090 SUB MAIN(N1$,N2$,N3$,N4$,E$,H,W)

1100 CALL CLEAR :: CALL DELSPRITE(ALL):: CALL
CHAR(141,"181818181818181818181818FFFF1818"):: CALL HCHAR(9,1,95,32):: CALL VCHAR(1,15,141,24)

1110 CALL VCHAR(9,15,142)

1120 DISPLAY AT(1,4)SIZE(7):"OMADA 1"
1130 DISPLAY AT(1,19)SIZE(7):"OMADA 2"
1140 DISPLAY AT(3,1)SIZE(2):"1:"

1150 DISPLAY AT(3,3)SIZE(10):N1$

1160 DISPLAY AT(3,16)SIZE(2):"1:"

1170 DISPLAY AT(3,18)SIZE(10):N3$

1180 DISPLAY AT(4,1)SIZE(2):"2:"

1190 DISPLAY AT(4,3)SIZE(10):N2$

Pernseverance and c(i&ci/:@iue
CaANn gef you a @ou? way

nite clear code, even when the emvironment

doesn't make t ey ‘foh, you

procedure GeneratelLabel(var Line : Linetype);
{Will remove the Label from the Line and add it to the symbol table}

begin

ConvertUppercase(Line);

If Copy(Line,1,1)<>" " then {Label exists}

begin
LabelName:=Copy(Copy(Line,1,Pos("' ',Line)-1),1,SymbolLength);
CharacterizeSymbol(LabelName,PC,False,Relocatable, LabelS);
{Labels become valid only after the directive 1is proved that it does no
change their value i.e. 1t 1s not an EQU directive. This 1s done 1in the

ObjectProcess procedure}
Line:=Copy(Line,Pos(' ',Line),LinelLength);

end
else

LabelName:='$"'; {For no Label § is imlied so it is a nice place holder}
While Copy(line,1,1)=" " do

Line:=Copy(Line,2,LineLength);
end;

Sthucture younr code into small uncts

Document youn code with am/:@e comments

Software development practices

)Ill(
Put source code under revision control i ',“;,l.,,.(,

Perform frequent small commits

~ollow the language’s style guide

Choose precise and consistent identifier names

Code in small units —~—

Write unit tests —

Separate concerns in module

Don’t repeat yourself

Ensure compliance through continuous integration .
Building

10 Release your code as open source software Maintainableﬁ
Software

Clean Code
A Handbook of Agile Software Craftsmanship

OREILLY’ |

> 7%
v,

LN AEWNPE

github.com/DSpinellis/CScout

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.29, NO.11,

NOVEMBER 2008 1019

Global Analysis and Transformations
in Preprocessed Languages

Diomidis Spinellis, Member, IEEE

Abstract—Tool support for code written in

such as C and C++ is currently lacking due to the

the phase that forms part of the C/C++ compilation cycle. The defintion and use of
macros complicates the notions of scope and of identifier boundaries. The concept of token equivalence dasses can be used to bridge
the gap between the hngxaga proper semantic analysis and the nonpreprocessed source code. The CScout toolchest uses the
theory lyze large program families. A Web-based interactive front end allows the precise realization of
rename and remove raiaamng on the original C source code. In addition, CScout can convert programs into a portable obfuscated
format or store a complete and accurate representation of the code and its identifiers in a relational database.

Index Terms—Refactoring, preprocessor, program families, renaming, C, C++, reverse engineering.

1 INTRODUCTION
REFAUORNG program transformations are widely re-

+

precisely mapping a C/C++ program’s semantic informa-

garded as a signifi method for p ing design tion to its preprocessed source code. Furth we
level changes. The complexity of design changes performed demonstrate the application of our methods in the CScout
on an established source code base is often h d by Ichest' that prog can use to perform rename

having incremental refactoring operations performed by
humans assisted by specialized tools. However, tool
support for the mainstream languages C and C++ is
currently lacking, although the theory behind the concept
is clearly understood. The reason behind this state of affairs
is the complexity introduced by the mandatory preproces-
sing phase that forms part of the C/C++ compilation cycle.
The problem, in short, is that macros complicate the notion
of scope and the notion of an identifier. For one,
preprocessor macros and file inclusion create their own
scopes. This is, for example, the case when a single textual
macro using a field name that is incidentally identical
between two structures that are not otherwise related is
applied on variables of those structures. In addition, new
identifiers can be formed at compile time via the pre-
processor’s concatenation operator.

The source code analysis problems introduced by the
C preprocessor can be overcome by considering the scope of
preprocessor identifiers during a program’s language
proper semantic analysis phase. Having performed this
analysis, refactoring transformations can be performed by
tagging all identifiers with their original source code
position and taking into account the identifier equivalence
classes formed by the combined preprocessor and language
proper scopes.

and remove refactorings.

2 WOoRK CONTEXT

Source-to-source transformations [1] in a body of code can
serve a variety of goals. The resulting new code may be
easier to maintain and reuse, be more readable, operate
faster, or require less memory than the old code; many of
the transformations can be described under the general
term of refactoring [2], [3], [4], [5]. Common examples of
refactorings include the encapsulation of fields, the hiding
of hods, the repl of dif Is with poly-
morphism, various rename and removal operations, and the
movement of fields and methods up and down a class
hierarchy. The automation of some of these transformations
is in principle straightforward; it can be impl d by
rearranging a syntactic representation of the code and
generating the new code from that representation. As an
example, the parse tree of a Java or Ada program can be
manipulated in a way that preserves its meaning and then
flattened again to create a new, equivalent source code body
that will rep the prog after the

When the result of these transformations is supposed to be
code that will be read and maintained by humans, an
nmpnrfant goal is the preservation of the nngmal format

In the following sections, we describe the p
introduced by preprocessing and introduce algorithms for

o The author is with the Department of Management Science and
Technology, Athens University of Economics and Business, Patision 76,
GR-104 34 Athina, Greece. E-mail: dds@aueb.gr.

Manuscript eceived 8 Oct. 2002; revised 24 Mar. 2003; accepted 6 Aug. 2003.

Reconmended for acceptance by T. Reps.

For information on obtaining reprints .»/ this article, please send e-mail o

tse@computer.org, and reference IEEECS Log Number 117534,

0098-5589/03/$17.00 © 2008 IEEE

names, and In our p:
this can be accommodated by mmrporahng into each pahe
tree node the whi e surround-

P
ing it and associating the original names with identifier
nodes. Parse trees can also be used to analyze program code
identifying interdependencies between units such as func-
tions, classes, modules, and compilation units, locating
entity definitions, and as a basis for determining program

1. http:/ /www.spinellis gr/cscout

Published by the IEEE Computer Society

Science of Computer Programming 75 (2010) 216-231

Contents lists available at ScienceDirect ience of Com puter
g amming

Science of Computer Programming

v .
ELSEVIER journal homepage: www.elsevier.com/locate/scico

CScout: A refactoring browser for C

Diomidis Spinellis

Athens University of Economics and Business, De of Science and Patision 76, GR-104 34 Athens, Greece

ARTICLE INFO ABSTRACT

Am‘dg history: Despite its maturity and popularity, the C programming language still lacks tool support
Received 30 November 2008 for reliably performing even simple refactoring, browsing, or analysis operations. This is
Received in revised form 14 August 2009 primarily due to identifier scope complications introduced by the C preprocessor. The
Accepted 3 September 2009

CScout refactoring browser analyses complete program families by tagging the original
identifiers with their precise location and classifying them into equivalence classes
orthogonal to the C language’s namespace and scope extents. A web-based user interface

Available online 11 September 2009

lc(eyw ords: provides programmers with an intuitive source code analysis and navigation front-end,
Browser while an sqQL-based back-end allows more complex source code analysis and manipulation.
Refactoring CScout has been successfully applied to many medium and large-sized proprietary and
Preprocessor open-source projects identifying thousands of modest refactoring opportunities.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

C remains the language of choice for developing systems applications, such as operating systems and databases,
embedded software, and the majority of open-source projects [44, p. 16]. Despite the language's popularity, tool support
for performing even simple refactoring, browsing, or analysis operations is currently lacking. Programmers typically resort
to using either simplistic text-based operations that fail to capture the language's semantics, or work on the results of the
compilation and linking phase that - due to the effects of preprocessing - do not correctly reflect the original source code.
Interestingly, many of the tools in a C programmer’s arsenal were designed in the 1970s, and fail to take advantage of the
cpU speed and memory capacity of a modern workstation. In this paper we describe how the CScout refactoring browser,
running on a powerful workstation, can be used to accurately analyze, browse, and refactor large program families written
in C. The theory behind CScout’s operation is described in detail elsewhere [45]; this paper focuses on the tool’s design,
implementation, and application.

CScout can process program families consisting of multiple related projects (we define a project as a collection of C source
files that are linked together) correctly handling most of the complexity introduced by the C preprocessor. CScout takes
advantage of modern hardware (fast processors, large address spaces, and big memory capacities) to analyze C source code
beyond the level of detail and accuracy provided by current IDEs, compilers, and linkers. Specifically, CScout’s analysis takes
into account both the identifier scopes introduced by the C preprocessor and the Clanguage proper scopes and namespaces.

The objective of this paper is to provide a tour of CScout by describing the domain's challenges, the operation of CScout
and its interfaces, the system’s design and implementation, and details of CScout’s application to a number of large software
projects. The main contributions of this paper are the illustration of the types of problems occurring in the analysis of real-
life C source code and the types of refactorings that can be achieved, the demonstration through the application of CScout
to a number of systems that accurate large-scale analysis of C code is in fact possible, and a discussion of lessons associated
with the construction of browsers and refactoring tools for languages, like C and C++, that involve a preprocessing step.

E-mail address: dds@aueb.gr.
URL: http://www.dmst.aueb.gr/dds.

0167-6423($ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.scic0.2009.09.003

JOURNAL OF SOFTWARE MAINTENANCE AND EVOLUTION: RESEARCH AND PRACTICE
J. Softw. Maini. Evol.: Res. Pract. 2009; 21:233-251
Published online 10 June 2008 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/smr.369

Research

Optimizing header file include
directives

Diomidis Spinellis* f

Athens University of Economics and Business, Patision 76,
GR-104 34 Athens, Greece

SUMMARY

A number of widely used programming languages use lexically included files as a way to share and
encapsulate declarations, definitions, code, and data. As the code evolves files included in a compilation
unit are often no longer required, yet locating and removing them is a haphazard operation, which is
therefore neglected. The difficulty of reasoning about included files stems primarily from the fact that the
definition and use of macros complicates the notions of scope and of identifier boundaries. By defining
four successively refined identifier equivalence classes we can accurately derive dependencies between
identifiers. A mapping of those dependencies on a relationship graph between included files can then
be used to determine included files that are not required in a given compilation unit and can be safely
removed. We validate our approach through a number of experiments on numerous large production
systems. Copyright © 2008 John Wiley & Sons, Ltd.

Received 24 July 2007; Revised 29 February 2008; Accepted 11 April 2008

KEY WORDS: C: C++: header files; include directive; preprocessor

1. INTRODUCTION

A notable and widely used [1] feature of the C, C++, and Cyclone [2] programming languages
is a textual preprocessing step performed before the actual compilation. This step performs macro
substitutions replacing, at a purely lexical level, token sequences with other token sequences, condi-
tional compilation, comment removal, and file inclusion [3, Section 3.8]. As program code evolves,
elements of it may no longer be used and should normally be pruned away through a refactoring
[4—6] operation. Detecting unused functions and variables is a relatively easy operation: the scope
where the given element appears is examined to locate references to it. Many compilers will issue

*Correspondence to: Diomidis Spinellis, Athens University of Economics and Business, Patision 76, GR-104 34 Athens,
Greece.
E-mail: dds @aueb.gr

Contract /grant sponsor: European Community Sixth Framework Programme: Software Quality Observatory for Open Source
Software (SQ0-0SS); contract/grant number: IST-2005-033331

Copyright © 2008 John Wiley & Sons, Ltd.

Pudd systems and tools

Apxein Zrpopy Opsve Emidogec j

—~
['e]
o+
7]
P
M
(=

4 KopPou
4 Medn

ZUvIET.
4 Mikn

NepopoppurerLg

B4

Lo
= o
= N
(Tl
el

[500]

Mexed. X
Mexed. 2

KopPog 135

B(S,0,50

Medoc<KopPoc Mikog

0.68
1.55
Z.20

134

163

136

164
235

100

i

Mextiorte €ve TANKTPO $LX EMLOTPOYT]

EnmideZte to wputo ompeio

KL wetioets HOME

Keedﬁ im contact with imdwstrial /waccﬁce

Echoes from Space:
Grouping Commands with Large-Scale Telemetry Data

Alexander Lattas
Department of Computing
Imperial College London
London, United Kingdom
alexandros.lattas17(@imperial.ac.uk

ABSTRACT

Background: As evolving desktop applications continuously ac-
crue new features and grow more complex with denser user inter-
faces and deeply-nested commands, it becomes inefficient to use
simple heuristic processes for grouping Gur commands in multi-
level menus. Existing search-based software engineering studies on
user performance prediction and command grouping optimization
lack evidence-based answers on choosing a systematic grouping
method.

Research Questions: We investigate the scope of command group-
ing optimization methods to reduce a user's average task comple-
tion time and improve their relative performance, as well as the
benefit of using detailed interaction logs compared to sampling.
Method: We introduce seven grouping methods and compare their
performance based on extensive telemetry data, collected from pro-
gram runs of a cap application.

Results: We find that methods using global frequencies, user-
specific frequencies, deterministic and stochastic optimization, and
clustering perform the best.

Conclusions: We reduce the average user task completion time
by more than 17%, by running a Knapsack Problem algorithm on
clustered users, training only on a small sample of the available data.
We show that with most methods using just a 1% sample of the data
is enough to obtain nearly the same results as those obtained from
all the data. Additionally, we map the methods to specific problems
and applications where they would perform better. Overall, we pro-
vide a guide on how practitioners can use search-based software
engineering techniques when grouping commands in menus and
interfaces, to maximize users’ task execution efficiency.

CCS CONCEPTS

+ Human-centered computing — Interaction design process
and methods; - Software and its engineering — Software evo-
lution; Search-based software engineering;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permi: from permi: MO,

ICSE-SEIP '18, May 27-June 3 2018, Gothenburg, Sweden

@ 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-5650-6/18/05...515.00
hitps://doiorg/10.1145/3183519.3183545

Diomidis Spinellis
Department of Management Science and Technology
Athens University of Economics and Business
Athens, Greece
dds@aueb.gr

KEYWORDS

Command grouping, menu layout, GUI optimization, telemetry,
sampling

ACM Reference Format:

Alexander Lattas and Diomidis Spinellis. 2018. Echoes from Space: Group-
ing Commands with Large-Scale Telemetry Data. In ICSE-SEIP "18: 40th
International Conference on Software Engineering: Software Engineering in
Practice Track, May 27-June 3 2018, Gothenburg. Sweden. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3183519.3183545

1 INTRODUCTION

Computer applications aimed at professional users are deemed to
be at least as complex as the problem they aim to solve. Computer
aided design applications, image and video editors, simulators and
enterprise resource planners are just a few examples of programs
whose interfaces have become unyieldingly complex. As developers
struggle to publish frequent updates that introduce more and more
integrated commands, tools and extensions, their graphical user
interfaces (Guis) become packed with icons impossible to memorize.
Moreover, new, modern but niche features are placed at the center of
auser's attention in order to justify the increasing costs of an update,
while well-known and frequently used commands get buried in
multiple nested hierarchical menus.

In the meantime, parallel efforts to improve the user's experience
often are in vain, as they focus on the aesthetic aspect, or derive
conclusions based on heuristics and small-scale experiments. Com-
mon user experience (Ux) experiments, involving heuristics-based
testing tools focus on specific scenarios that the developers think
important. However, lacking a user-centric approach, the majority
of the users are likely to face mental overhead and require more
time when executing common tasks that involve deep-nested com-
mands. Moreover, new users that are introduced to such complex
applications will need much time to become comfortable in using
them resulting, for example, in longer profitless training sessions.

We propose, evaluate and compare seven methods that exploit
easily accessible program telemetry data to reorganize an appli-
cation’s command tree structure based on actual evidence. These
methods involve a combination of command frequencies, domain-
based heuristics, continuous training, and stochastic optimization.
To train the algorithms, as well as to evaluate them, we use a large
data set of telemetry data, created by real users of a fairly complex
professional application. Additionally, we use experimental data
we produced, to understand the data set and to eliminate the noise
from the data.

The application studied is a cap suite for architects and civil
engineers. The architectural design functionality (TexTON) supports

ICSE-SEIP "18, May 27-June 3 2018, Gothenburg, Sweden

2p and 3p modeling, as well as photo-realistic rendering. On the
civil engineering front (rFesra) the system supports the analysis
and design of steel, concrete, and masonry structures, and also the
evaluation, strenghtening and repair of existing buildings under a
variety of structural design standards, such as the Eurocodes and
the corresponding national annexes.

Figure 1 is a screen dump depicting the application’s salient
characteristics and features. The top two windows show an archi-
tectural drawing floor plan and its photo-realistic rendering, while
the bottom two windows show a civil engineering wood mould
plan and the corresponding beam and column model, which is used
for finite element analysis. The user interaction is based around
entities, such as walls, windows, beam, slabs, columns, text, hatches,
and stairs. Each entity has associated parameters (e.g. dimensions
and material) and commands (e.g. add new, delete, extend, change
properties). The current version of the application supports 13
general-purpose entities (e.g. spline or cross-section), 15 entities
supporting architects (e.g. balustrade or roof), and 18 entities sup-
porting civil engineers (e.g. column or footing). A few so-called
entities relate to groupings of related commands and properties,
without being associated with concrete elements appearing on a
plan. Examples of these are the groupings of commands used for
rendering and for global manipulations. In total, 48 entities are
associated with 627 commands and 3735 properties.

The large number of available commands and properties is man-
aged by having users interact with the application by first selecting
the entity they want to manipulate. The corresponding entity icons
appear in the top toolbars of Figure 1. Once an entity is selected, a
toolbar with the commands associated with it appears on the left,
while a separate dialog (not shown) provides access to the corre-
sponding properties. For example, the toolbar on the left side of the
window shown in Figure 1 contains the commands associated with
the beam entity.

While the organization of commands and properties around
entities provides a way to navigate through their large number,
it also imposes a switching overhead. For instance, an architect
wishing to design a house, might first employ the grid entity to
draw the lines along which the house’s elements will be aligned.
then switch between the wall and the opening entity to add walls
and windows, and then switch to the roof entity to add a tiled
covering. Further adjustments to the drawing’s elements (e.g. to
change a window’s size), would have the architect switch again to
the corresponding entity.

Recently, staff dealing with the application’s user experience (ux)
asked us to explore alternative command arrangements that might
enhance user productivity by reducing the cost of entity switching.
The main idea was to make some commonly-used commands al-
ways accessible on screen. The design of a new arrangement proved
to be controversial. Proposals based on the intuitive understanding
of users’ interactions were criticized as lacking empirical backing.
On the other hand, proposed arrangements based on command fre-
quency counts were considered unrealistic, because they ignored
the sequence in which commands were issued.

Thankfully, in order to help debugging and to improve the users’
experience, recent application versions can log the commands a
user issues in a centralized database. It was obvious that these

Alexander Lattas and Diomidis Spinellis

o G Tosb Gt Gute crawtud Dlree Grociad e e aicet st
FTNY L CEPR Y I 1))
B BBk B R E s AR FPLE "8 BESe FFEE G LS

Figure 1: The CAD application in action.

data could be used to create realistic command grouping optimiza-
tion proposals, and also to evaluate the performance improvement
associated with these proposals.

Within this context we sought to answer the following research
questions.

(1) What is the scope for increasing the cap’s user productivity
through the optimization of command grouping?

(2) What is the relative performance of diverse command group-
ing optimization methods in terms of user productivity?

(3) What, if any, is the benefit of using comprehensive and de-
tailed interaction logs, instead of sampling a few users or
obtaining simple command invocation frequencies in terms
of achievable command grouping performance optimization?

The two main contributions of this study are 1) the evaluation
of seven command grouping optimization methods based on de-
tailed actual interaction data, and, 2) results regarding the effect
of data sampling as part of the evaluation. Our findings can guide
software developers and ux designers on how to use telemetry data
to optimize their applications. We therefore devise specific design
suggestions for cap applications that can be directly applied to
improve user performance.

We begin this study by analyzing the preexisting quantitative
and empirical approaches to command grouping optimization, as
well as the relevant literature on which we are building upon (Sec-
tion 2). Then, in Section 3, we outline how we obtained the data we
used and describe the command optimization methods we propose
in terms of their purpose and the algorithms used for training and
evaluation. In Section 4 we discuss our results, comparing the meth-
ods and mapping them to specific use cases, while also offering
advice regarding sampling and interface design techniques. Sec-
tion 5 concludes the paper with an overview of our findings and
pointers to future work.

static void check joints()
{
register i, j ;
double maxx, minx, maxy, miny ;
int p1, p2, p3 ;
double d, dx, dy, dz, a, b, c ;
int surfcount ;
/* zplane 1s true when the surface contains the z coordinate.
* vert 1s true when a Line from the surface 1s vertical
*/
int zplane ;
double zmin ;
struct surfacestruc *s ;

for(surfcount = 0 ; surfcount < surfacenum ; surfcount++){
s = surfaces[surfcount] ;
/* In partial views eliminated surfaces don't obscure */
if(partial || window)

for(i =0 ; i < s->anglenum ; i++)
if(! (tag[s->joint[i]] & LINE))
goto nextsurface ;
[80 more lines]

Assume lzesdﬁousigi@ihy ‘folz younr @ealuu'uga

Fake (t till you make (t

A Dynamically Linkable Graphics Library

Diomidis D. Spinellis
Department of Computing, Imperial College of Science and
Technology, 180 Queens Gate, London SW7 2BZ, U.K.

SUMMARY

The design issues behind the implementation of an efficient and
portable graphics library are discussed. A description of its
components is given and the constraints leading to dynamic
linking are presented. Techniques allowing the transparent
dynamic linking of library elements are analysed and two
implementations of a system that automatically creates
dynamically linkable code are presented. The one implementation
is based on traditional UNIX tools and the other on the perl
programming language. The two implementations are compared.

KEY WORDS : Dynamic linking Graphics libraries Perl

INTRODUCTION

During the design of an interactive graphics pre- and post-
processor for a finite element analysis system, the problem of
portably displaying the output on a wide variety of graphics
output devices was encountered. The program, initially, had to
run on IBM-PC class machines running the MS-DOS operating system.
In a latter stage it was ported to run under the UNIX operating
system on Sun and microVAX workstations.

The program is used to inspect structures represented by wire
frames containing hundreds of elements in two distinct phases.
First, before input to the finite element analysis program, the
wire frame is examined in order to visually verify its form.
After the analysis the program is used to inspect the distortions
suffered under specific loads. The user may rotate the structure
in three dimensions, view specific parts of it, label its joints
and members and perform various other operations on it. The
interactive nature of the program and the range of machines it
was designed to operate on, made its design focus on a fast
implementation. The main program consists of about 7000 lines of
code written in the C[1] programming language.

MS-DOS does not provide an application graphics interface and the
ROM Basic Input Output System (BIOS) [2] that is available on
these machines does not support devices other than those
manufactured by the machine vendor. In addition the functions it
provides are minimal. Typical functions could display a
character, set a point to a specified colour and set up the

Appz Dizsk Create Edit Locate Framez Words Mumbers Graph Print 721 pm
A Dynamically Linkahle Graphics Library

Diomidi=s D. Spinellis
Department of Computing, Imperial College of Science and
Techno logy, 188 Queens Late, London 507 ZBZ, D K.

[INTRODUCTION]
During the design of an interactive graphics pre— and post-
proceszor for a finite element analysis system, the problem of
portably displaying the output on a wide variety of graphics
output devices was encountered. The program, initially, had to
run on IBM-PC class machines runming the MS-DOS operating sustem.
In a latter stage it was ported to run under the UNIX operating
system on Sun and microVAX workstations.

The program iz wused to inspect structures reprezented by wire
framez containing hundreds of elementz in two distinct phases.

[THE LIBRARY APPROACH]
[Functions provided]l
AThe portable partl

Mo globhal variablesz are defined by the library. The functions

provided rely on functions from the dewvice specific library. Th
dichotomy of the two librariesz was establiszshed gradually and in
the earlu phases of the development functions tended to migrate

|l s provided.The portable part [Frame: 22

Use com/aufe)z tools
to dM/JQL{% your /Jofeufiaﬁ

The

Elements

of

Computing Style

200+ Tips
for Busy
Knowledge
Workers

Diomidis Spinellis

SOFTWARE

PRACTICE & EXPERIENCE

an international journal
published under the Wiley Interscience imprint
by John Wiley & Sons of Chichester New York Brisbane Toronto Singapore

PROFESSOR JOHN A. CAMPBELL

University College London, England.
PROFESSOR DOUGLAS E. COMER

Purdue University, West Lafayette, Indiana, U.S A,

PROFESSOR JOHN A. CAMPBELL
Department of Computer Science
University College London

Gower Street, London WC1E 68T, England
Telephone (01) 380-7394

Telex 28722 UCPHYS G

13 August 1988

Mr. Diomidis Spinellis,
u

Dear Mr. Spinellis,

I have now received the referees' reports on your manuscript "A dynamically link-
ble graphics library".

ese reports are enclosed.

iew of the referees' comments, | regret to say that I shall not be taking

r offer of this work for publication. With this letter, I am returning all
script material that is presently in my files. Thank you, nevertheless,
idering "Software" as a possible medium for publication.

Yours sincerely,

- (’2:.—)/.4 ('k
.A. Campbell

This paper describes a portable graphics library to run on the IMB-PC
and on UNIX workstations. There 1is an 1SO standard, CGKS, aimed
specifically at this area and implementations exist from a number of
suppliers on both types of systems. The reason for not using it appears
to be that the user base did not use GKS. As it did not use the new
graphics library that was developed either, this seems a weak statement.

The Library produced has a set of primitives which muddle basic
graphical output with the attributes that apply to it. It mixes in a
random set of window management facilities.

My view is that the paper is unacceptable. I doubt if the work needed
to be done. Assuming the need was there, it should have followed
accepted graphical methodology.

REPORT
The idea of a dynamically linkable graphics library is nice but what is
presented here is no solution.

The first part of the paper looks at the design of a graphics library and
comes to the same conclusions as most implementators (eg NAG and NCAR)
that it is necessary, to aid portability, to design a small device
dependent set of primitives. The details given in Tables 1, 2 and 3 are

unnecessary.

The author mentions (p 10) that "a portable windowing library is under
consideration”, it looks as though X-windows has beaten him to it!

- The underlying theme of the paper is the need for portability and an easy
- Solution to multiple devices (relinking is considered arduous and multiple
. itable modules difficult to maintain). The solution provided is
: rating system dependent (bottom p 12), 'highly compiler specific' (top
V(the code presented in this section even has embedded magic
1), linker dependent (p 14) and macro assembler dependent (p 19).

'solution' can only be described as a 'hack' which has been partially
mated using the UNIX tools awk and sed. Apparently even the automation
ts interfaces are unclear and much of the work is done in a
1id highly involved way!'

arison with perl promised in the summary is very
compressed into under a page.

Continued ® 9 090 9 0000000000

Publish o‘ffeu, be /Jne/quLeo(to ‘fai@,

.. untdl you succeed

ADDNESS REGISTER LA s FETCN EXKC

EE—— Eee——— . S SN ess—

OATA DESTIATION

Unix PDP-11 Emulator
(Asll & Emll)
User’s Guide

Duncan White
Jan-Simon Pendry
Diomidis Spinellis

ABSTRACT

As1] and eml] form an emulated PDP-11* environment which can be used on
UNIXT systems to design and develop simple PDP-11 assembly language programs. The
emulated PDP-11 includes 16K bytes of store, a screen, a keyboard, a line printer, and
two random access disks.

1. Filename Conventions

Just as Modula-2 uses standard suffixes such as .def and .mod to identify files as belonging to Modula-2, so
the PDP-11 system uses the suffixes .al7 for an assembly language file, and .eJJ for an emulator input file.

2. The Assembler
Asll 1s a free-format assembler, accepting all the standard PDP-11 mnemonics and operand types. It is
invoked by:

asll file
The action of the assembler 1s to translate the single .q/7 file named on the command line [you may omit
the .all suffix] into the corresponding .el7 file.

Error messages and warnings during assembly are reported on the standard error stream. These are
intended to be self-explanatory.

The assembler continues after a warning, but aborts after a fatal error.

* PDP-11 is a registered trademark of DEC
T Unix 15 a registered trademark of AT+T Bell Labs

Version 1.3.3 6th Jan 1989

2.1. An Example Assembly Language Program

To make the following discussion clearer, here 1s a sumple example of a PDP-11 Assembly Language pro-
gram

N An Example PDP-11 Assembly Language Program

: A useful ASCII char, newline
nl = 12

Make space for the stack
.org 500

then declare the startpoint:
org 1000

mitialise the stack ptr
mov #stack sp

#greeting, -(sp)
pe, scr_mesg
#2,sp

Dbyte nl. nl, "hello there everyone"
Dbyte /1sn’t 1t a lovely day ? /, nl, nl
byte 0

-even

For the moment, let us not worry about the scr_mesg routine. Accept that it simply displays a null termu-
nated message whose starting address is passed on the stack.

2.2. The Format of Assembly Language Programs

Most of the lines m the above program contain a single PDP-11 mstruction. Some lines, however, declare
labels, or perform assembler directives [known as pseudo-ops].

Any line may be terminated by a comment, introduced by a semi-colon which acts until the end of the cur-
rent line. A line, if so desired, can contain nothing except a comment.

Between the various constituents of a line, you may place any number of tabs and blanks which act as sep-
arators.

The assembler 1s not sensitive to upper and lower case.
2.3. Basic Concepts

2.3.1. Symboals

A symbol is the assembler equivalent of a Modula-2 constant. That 1s, 1t 1s a name which is used to repre-
sent a particular numeric value, increasing the readability of a program.

It 15 an error to redefine a symbol.

The assembler accepts indefinite-length symbols, which are sequences of alphanumeric and underscore
characters, where the first character 15 not numernic.

Partner with an e)(/Jelu'eucea(mentonh

= In the Ads SRE FE team at Google: Mark Bean, Carl Crous,
Alexandru-Nicolae Dimitriu, Fede Heinz, Lex Holt, Thomas Hunger.
Thomas Koeppe, Jonathan Lange, David Leadbeater, Anthony Len-
ton, Sven Marnach, Lino Mastrodomenico. Trevor Mattson-Ham-
ilton, Philip Mulcahy, Wolfram Pfeiffer. Martin Stjernholm. Stuart
Taylor, Stephen Thorne, Steven Thurgood, and Nicola Worthington.

= At CQS: Theodoros Evgeniou. Vaggelis Kapartzianis, and Nick
Nassuphis.

= In the Department of Management Science and Technology at the
Athens University of Economics and Business, current and former
research and lab associates: Achilleas Anagnostopoulos, Stefanos
Androutsellis-Theotokis, Konstantinos Chorianopoulos, Marios
Fragkoulis, Vaggelis Giannikas, Georgios Gousios, Stavros Grigora-
kakis, Vassilios Karakoidas. Maria Kechagia, Christos Lazaris.
Dimitris Mitropoulos, Christos Oikonomou, Tushar Sharma, Sofo-
klis Stouraitis, Konstantinos Stroggylos., Vaso Tangalaki, Stavros
Trihias, Vasileios Vlachos, and Giorgos Zouganelis,

In the General Secretariat for Information Systems at the Greek
Ministry of Finance: Costas Balatos, Leonidas Bogiatzis, Paraskevi
Chatzimitakou, Christos Coborozos, Yannis Dimas, Dimitris Dimi-
triadis, Areti Drakaki, Nikolaos Drosos, Krystallia Drystella, Maria
Eleftheriadou, Stamatis Ezovalis, Katerina Frantzeskaki, Voula
Hamilou, Anna Hondroudaki, Yannis loannidis, Christos K. K.
Loverdos, Ifigeneia Kalampokidou, Nikos Kalatzis, Lazaros Kaplan-
oglou, Aggelos Karvounis, Sofia Katri, Xristos Kazis, Dionysis Kefal-
linos, Isaac Kokkinidis, Georgios Kotsakis, Giorgos Koundourakis,
Panagiotis Kranidiotis, Yannis Kyriakopoulos. Odyseas Kyriakop-
oylos, Georgios Laskaridis, Panagiotis Lazaridis, Nana Leisou,
loanna Livadioti, Aggeliki Lykoudi, Asimina Manta, Maria Mara-
velaki, Chara Mavridou., Sofia Mavropoulou, Michail Michal-
opoulos, Pantelis Nasikas, Thodoros Pagtzis, Angeliki Panayiotaki,
Christos Papadoulis. Vasilis Papafotinos, Ioannis Perakis, Kanto
Petri, Andreas Pipis. Nicos Psarrakis. Marianthi Psoma. Odyseas
Pyrovolakis, Tasos Sagris, Apostolos Schizas, Sophie Sehperides,
Marinos Sigalas, George Stamoulis, Antonis Strikis, Andreas Svo-
los, Charis Theocharis, Adrianos Trigas, Dimitris Tsakiris, Niki
Tsouma, Maria Tzafalia, Vasiliki Tzovla, Dimitris Vafiadis, Achil-
leas Vemos, loannis Vlachos, Giannis Zervas, and Thanasis
Zervopoulos.

At the FreeBSD project: John Baldwin, Wilko Bulte, Martin Cra-
causer, Pawel Jakub Dawidek, Ceri Davies, Brooks Davis, Ruslan
Ermilov, Bruce Evans, Brian Fundakowski Feldman, Pedro Gif-
funi, John-Mark Gurney, Carl Johan Gustavsson, Konrad Jan-
kowski, Poul-Henning Kamp, Kris Kennaway, Giorgos Keramidas,
Boris Kovalenko, Max Laier, Nate Lawson, Sam Leffler, Alexander
Leidinger, Xin Li, Scott Long, M. Warner Losh, Bruce A. Mah, David
Malone, Mark Murray, Simon L. Nielsen, David O’Brien, Johann
‘Myrkraverk’ Oskarsson, Colin Percival, Alfred Perlstein, Wes
Peters, Tom Rhodes, Luigi Rizzo. Larry Rosenman, Jens Schweik-
hardt, Ken Smith, Dag-Erling Smoergrav, Murray Stokely, Marius

Strobl, Ivan Voras, Robert Watson, Peter Wemm, and Garrett
Wollman.

At LH Software and SENA: Katerina Aravantinou, Michalis
Belivanakis, Polina Biraki, Dimitris Charamidopoulos, Lili Chara-
midopoulou, Angelos Charitsis, Giorgos Chatzimichalis, Nikos
Christopoulos, Christina Dara, Dejan Dimitrijevic, Fania Dorkof-
yki, Nikos Doukas, Lefteris Georgalas, Sotiris Gerodianos, Vasilis
Giannakos, Christos Gkologiannis, Anthi Kalyvioti, Ersi Kara-
nasou, Antonis Konomos, Isidoros Kouvelas, George Kyriazis,
Marina Liapati, Spyros Livieratos, Sofia Livieratou, Panagiotis
Louridas, Mairi Mandali, Andreas Massouras, Michalis Mastoran-
tonakis, Natalia Miliou, Spyros Molfetas, Katerina Moutogianni,
Dimitris Nellas, Giannis Ntontos, Christos Oikonomou, Nikos
Panousis, Vasilis Paparizos. Tasos Papas. Alexandros Pappas, Kan-
tia Printezi, Marios Salteris, Argyro Stamati, Takis Theofanopoulos,
Dimitris Tolis, Froso Topali, Takis Tragakis. Savvas Triantafyllou.
Periklis Tsahageas, Nikos Tsagkaris. Apostolis Tsigkros, Giorgos
Tzamalis, and Giannis Vlachogiannis.

At the European Computer Industry Research Center (ECRC): Mire-
ille Ducassé, Anna-Maria Emde, Alexander Herold, Paul Martin,
and Dave Morton.

At Imperial College London in the Department of Computer Science:
Vasilis Capoyleas, Mark Dawson, Sophia Drossopoulou. Kostis
Dryllerakis, Dave Edmondson, Susan Eisenbach, Filippos Fran-
gulis Anastasios Hadjicocolis, Paul Kelly, Stephen J. Lacey, Phil
Male, Lee M. J. McLoughlin, Stuart McRobert, Mixalis Melachrin-
idis, Jan-Simon Pendry, Mark Taylor, Periklis Tsahageas, and
Duncan White.

In the Computer Science Research Group (CSRG) at the University
of California at Berkeley: Keith Bostic.

At Pouliadis & Associates: Alexis Anastasiou, Constantine Doko-
las, Noel Koutlis, Dimitrios Krassopoulos, George Kyriazis. Giannis
Marakis, and Athanasios Pouliadis.

At diverse meetings and occasions: Yiorgos Adamopoulos, Dimitris
Andreadis, Yannis Corovesis, Alexander Couloumbis, John
loannidis, Dimitrios Kalogeras, Panagiotis Kanavos, Theodoros
Karounos, Faidon Liampotis, Elias Papavassilopoulos, Vassilis Pre-
velakis, Stelios Sartzetakis, Achilles Voliotis, and Alexios Zavras.

Document eve)uyflu'ugz you im/J@emeuf

TM

open source

Open Source Software Contributions

Port Perl to MS-DOS

Re-implement sed(1) for BSD Unix (now in macOS, FreeBSD)

Trace tool for MS-DOS
RCS utility functions

zopen(3) compression interface
NetPBM tools

www.spinellis.gr/sw/

Gains

* Fought boredom by working on challenging problems
* Honed coding skills

* Learned how to read/implement standards (POSIX)
 Networking (people)

e Established (a tiny) reputation

Contnibute to / initiate
o/Jeu SOUNRCe 3061%6(72,6 /lejecfs

Programming Paradigms as Object Classes:

A Structuring Mechanism for
Multiparadigm Programming

by
Diomidis D. Spinellis

May 1993

A thesis submitted for the degree of
Doctor of Philosophy of the University of London
and for the Diploma of Membership of Imperial College

Department of Computing
Imperial College of Science, Technology and Medicine
University of London
London SW7 2BZ
United Kingdom

Chapter 2

Related Work: Multiparadigm
Programming

In this chapter we begin our exploration of the area of multiparadigm programming by
examining the work that has been done up to now. Research in the area of multipara-
digm programming can be divided in three different areas:

1. Programming paradigms: work in this area examines the notion of programming
paradigms, their relationship to language design. and their effect on the software
production environment.

2. Multiparadigm languages: during the literature research for this thesis we found
more than 90 languages supporting more than one programming paradigm. Al-
though not all languages were explicitly directed towards multiparadigm pro-
gramuning per se we believe that there were lessons to be learned from their
collective study.

3. Multiparadigm programming frameworks: some researchers have come up with
suitable abstractions and systems that support multiparadigm programming in
general without targeting specific programming paradigms. Again in this case
at least one of the systems covered was not the result of explicit multiparadigm
research effort although it supports programming in multiple programming para-
digms.

Our approach is geared towards producing a multiparadigm design methodology.
a prototype system based on that methodology, and multiparadigm programming envi-
ronment built upon that system. Therefore, the two last research areas are directly rele-
vant to our research. We also examine the first area. because we believe that the notion
of a programming paradigm is central to the theme of this thesis. Mixed language pro-
gramming environments which only deal with languages based on a single paradigm
(such as [Ein84]). and generic concurrent, distributed. heterogeneous systems, and
module interface languages [Tic92] that could potentialy be used as multiparadigm
frameworks (such as [Bea92]) are not examined. A thorough survey of distributed
system languages can be found in [BST89]. and of concurrent logic programming lan-
guages in [Sha89]: a set of articles on concurrent object-oriented programming can be
found in [CAC93]. and a survey of specific concurrent Smalltalk implementations in

Name References Implementation

ALF [Han90a. Han91] WAM extension

ALICE [CST87] Meta-interpreter on top of 3-Lisp

Applog [Coh86] Interpreter written in Prolog

Bong87 [Bong7] Meta-interpreter on Scheme

EqL.E [TSG86. JS86] Language

FGL+LV [Lin85] Extension to the graph reduction language FGL

FPL [BDLS82] Extension to TEL functional language

Fresh [Smo86] Extensions to functional

Funlog [SY86] Interpreter implemented in Prolog

HASL [Abr86] Tmplemented in C-Prolog

HCPRVR [Cheg0] Tmplemented on top of Lisp

HHTS2 [HHTS82] Extension to Prolog

Han90 [Han90b] Theoretical framework

Id Nouveau [TP91] Operational Semantics

LML [BMPT90] Extension to functional

LOGLISP [RS82] Extension to Lisp

Leaf [BBLMS6, Plan for hardware implementation
BBLMS&4]

Nar85 [Nar85] Technique

Qute [SS86a] Implemented in Prolog as a translator to Prolog

SProlog [Smo84] Implemented on top of Prolog

SchemeLog [Bon91] Meta-interpreter on Scheme

TABLOG [MMW84, Language implemented in Lisp
MMWE6]

Term Desc. [Nak85] Prolog extension

YS86 [YS86] Semantic framework

Table 2.4: Implementations combining the functional and logic paradigms

Name Characteristics Control
BR|| |R|RT|U |DT|RT

2.PAK v VIV E

C with Rule | / VIVIVIVIVERX

Extensions

Ledz.l v VIivVIVI]V] V| SLD.X

Logicon v VIivVIv]v]|V | XSLD

Modula- v VIV IV V]V | SLD.X

Prolog

PIC ' JIvIv]v|v|spx

Paslog v VIV V]V | SLD.X

Planlog v VIV IV V] V| SLD

Predicate v VIiVIVI] V]V | SLD.X

Logic in

APL

Strand \,-/ \,-/ \,-/ \,-" \,-/ \,-'/ \,-/ SLD

Table 2.7: Characteristics of imperative and logic paradigm combinations

Language Unification | Backtracking | I/O extensions
Modula-Prolog N4 N4 v
Planlog v v

Predicates in APL v v

Paslog Explicit v v

C with Rules ? v v

PIC N v

Leda 1 level v

Table 2.8: Language characteristics

Name Characteristics Control
BR|DT | f |A]] R |RT | U | DT | RT

ALF v IV VIivVIivI] Y SLD. narrowing

ALICE Vv VI vIivv SLD,ER

Applog VvV VIVIIV Y SLD.FR

Bon87 N, v NARN, FR. SLD

EqL.E N IRV RVE VS *

FGL+LV NERVERY v |V FR

FPL v v Vv *

Fresh N RVE RV NARYARY FR.SLD

Funlog N RVE RV VIiVIvVI] Y FR

HASL \,/ \["‘ \["‘ \,/ \,"‘ FR

HCPRVR N v VIV N IRV RYA Y SLD

HHTS2 N VIVIVI] Y *

Han90 VARV RV IV N IRV RVE VS SLD. narrowing

Id Nouveau NV BV NERY v | *

LML NE VAV NARVE VAR TR

LOGLISP NEVARN NENARY FR

Leaf v VIvVIv v *

Nar85 Vv I vIivv SLD, FR

Qute VIV Vo FR

SProlog N NA IRV RVE RV SLD

SchemeLog NARY v VARV *

TABLOG v VIVIVI]V #

Term Desc. v v N IRV RVE VS SLD

YS86 N I VIV *

Table 2.5: Characteristics of functional and logic paradigm combinations

2.PAK [Mel75] Block structured language offering user-defined pattern matching and
backtracking.

C with Rule Extensions [MS90]Based on the C programming language [KR78] with
an extended syntax. a richer set of data types, a flexible input/output system and
a forward chaining [Ric83. p. 56] execution strategy.

Leda [Bud91] Language with syntax similar to that of Pascal. with an additional code
abstraction facility. the relation. The data-space for all entities contains the wn-
defined value. Relations are coded as Prolog rules, and allow backtracking.

Functional . .| . .
Imiperative s | .
Object-Oriented .| o .|
Logic e« | o . oo |e
Distributed .
Constraint .

|Numberoflanguages ‘ 24| 10 ‘ 9‘ 8‘ 11| 7| 5| 4| 5|

Table 2.26: Number of languages for the conmunon paradigm combinations

Name References Implementation
DSM [Rum87] Extension to C
Echidna [HSS792] Implemented on top of Lisp
Educe [Boc86] Prolog DBMS
Enhanced C [Kat83] Compiler producing C
Fooplog [GM8T] Language
Icon [OGS87, Gri84, | Language
GG83]

KEg88 [KES88] LOOPS and Prolog
Kaleidoscope [FBB92] Language interpreter
Lex [Les75] C preprocessor
ML-Lex [AMTS9] C preprocessor
ML-Yace [TA90] ML preprocessor
SB86 [SB8s] Meta-interpreters on Prolog
SPOOL [FiHS86, Yok86] Implemented on top of Prolog VM
Uniform [Kah86] Implemented on top of Lisp
Yace [Joh75] C preprocessor

Table 2.24: Implementations combining the various paradigms
Name Characteristics Control

BR|DT | f|IN|A|MI|O|R|RT|U |DT|ERT

DSM \’/ \‘/ \‘/ \,/‘ \r/
Echidna v v NERVERY, *
Educe N VIiVIivVIiY SLD
Enhanced C | / v [X
Fooplog VIIVIVIY VIV VI VIV *
Icon N v NERVED.¢
KES8 JIVIvIvIy JIVIVIVI]Y FR.SLD.X
Kaleidoscope| / | / Vv N Vv | X
Lex v Vv | XF
ML-Lex \,/ \," \,/ \,/ \,/ * FR
ML-Yace N v v v | *.FR
IBS6 v VIivVivv *
SPOOL N v VIVIVIVIY] V]| SLD
Uniform N R N RV NV *
Yace N Vo XE

Table 2.25: Characteristics of various paradigm combinations

%N Modula-Proclog

%R Mul8e

%C UN RL RT nDT BR (SLD,EX) BR nRT
%I Run-time library for Modula-2
%P Logic Imperative

%

The facilities of a Prolog interpreter are provided to a
Modula-2 programmer through a library. Predicates, that can be
called from the Prolog interpreter, are written in Modula-2.
The library includes term handling procedures.

| Program | Implementation | Lines |
chars Sh 13
chartabl | Perl 59
dbgrep Perl 27
desclist Perl 17
imptable | Perl 38
linesort Perl 19
llinesor Perl 26
maketext | Perl 117
pars Sh 13
partable | Perl 27
Total Perl 697

A [
tockuachany

€ o Rl Exeasboms[81590] B o e C eogessaing bapuge [KRS] with

+ e chani i), . 6] execaion weses:

Automate
data collection, auaeiﬁsis, /Jb,eseufc(ﬁou

% Ize‘fem gu[@aﬂug /J@um@iugﬂ to /Job,ce@au'u
Wnite small tools that do one flu'uga well

Function Paradigm | Module | Lines
Symbolic integration || btrack sint.pb 127
Lexical analysis regex scan.pl 47
Expression parsing bnf parse.py 76
Numeric integration || fun aint.pt 75
Interfacing term uipt 131
Graph creation imper main.c 51
‘ Total H blueprint ‘ 507 ‘
Paradigm | PDF | imper | bnf | regex | term | fun Total %
imper 43 70 1.6
ferm 70 1192 119 84 666 2269 533
btrack 60 316 554 13.0
fun 140 305 59 237 43 840 19.7
bnf 95 121 43
regex 379 405 9.5
Total 787 1192 424 143 1219 43 4259 100.0
% 18.5 28.0 | 10.0 34 286 | 1.0 100.0

Multiparadigm

Integrator
. , Multiparadigm
[z*sinzdr = —z“cosx + 2xsine + 2cosz + K Application
J{ 1 da = 0.785398 + —0.001
\ Written in ...
Blueprint
Multiparadigm
imper p :
rogramming
/ \ Environment
term bnf regex
btrack fun
\ Implemented using ...
MPSS
protect wrap pdc Environment
Generator
mpld instancev

@@cuy on younr 51‘7161&3&1%3

TRANSACTIONS ON INFORMATION THEORY, VOL 49, NO. 1, JANUARY 2003

2] T.Kaida, S. Uehara. and K. Imamura, “Computation of the k-error linear
complexiry of binary sequences with period 2" in Concurrency and
Paralielism, Programming, Networking (Lecture Notes in Compuier Sci-
ence), J. Jaffar and R. H. C. Yap, Eds. Berlin Germany: Springer-
Vkrlag 1996, ol 1179, pp. 182-101

13] —— “Analgorithm for the k-error linear complexity of sequences over
GF(p'“) with period p" . p a prime.” Inform. Comput.. vol. 151, pp.
134147, 1999.

14] K Kurosawa, F. Sato, T. Sakata, and W Kishimoto, “A relationship be-
tween linear complexity and k-error linear complexity.” IEEE Trams
Inform. Theory, vol. 46, pp. 694698, Mar 2000

15] I L Massey, “Shift register synthesis and BCH decoding ™ JEEE Trans
Inform. Theory, wol. TI-15, pp. 122-127, Jan. 1969.

16] 1 L Massey. D.] Costello, and T Justesen. “Polynomial weights
and code constructions,” JEEE Trans. Inform. Theory, vol. IT-19, pp.
101-110, Jan. 1973.

17] I L Massey and S. Serconek, “Linear complexity of periodic se-
quences: A general theory,” in Advances in Crypiology—CRIPTO 06
(Lecnure Notes im Computer Science). N. Koblitz, Ed. Berlin, Ger-
many: Springer-Verlag, 1996, vol. 1100, pp. 358371

18] H Niederreiter, “Some computable complexity measures for binary
sequences” in Sequences and Their Appiications—Proc. SETA9S,
C. Ding, T. Helleseth, and H. Niederreiter, Eds. Berlin, Germany:
Springer-Verlag. 1999, pp. 6778

19] K G. Paterson. “Perfect maps.” [EEE Trans. Inform. Theory, vol. 40,
pp. 743-753, May 1004,

20] M. 1. B. Robshaw, “On evaluating the linear complexity of a sequence

of least period 2", Des., Codes Cryptogr. vol. 4, no. 3, pp. 263260

1004

21) R A Rucppel. dnalsis and Design of Sream Ciphers. Berlin, Ges-
‘many: Springer-Verlag, 19

22] M Stamp and €. F. Martm, “An algorithm for the k-error finear com-
‘plexity of binary scquences of period 2", JZEE Trans, Inform. Theory.,
ol 39, pp. 1388-1401, July 1003,

Reliable Identification of Bounded-Length
Viruses Is NP-Complete

Diomidis Spinellis, Member; [EEE

Abstract—A virus is a program that replicates itself by copving its code

0 other files. A common virus-protection mechanism involves scanning
es to detect code patterns of known viruses. We prove that the problem
reliably identifying a bounded-length mutating virus is NP-complete by
owing that a virus detector for a certain virus strain can be used to solve
e satisfiability problem. The implication of this result is that virus iden-
ication methods will be facing increasing strain as virus mutation and
sting strategies mature, and that different protection methods should be
veloped and employed.

Index T Buffer overflow, ity, detection,
ntation, NP-complete, securiry, virus.

1. INTRODUCTION

One often-used defense against computer viruses is the execution of
anfi-virus program that detects and cleans programs that appear to

Manuscript received June 14, 2002; revised August 22, 2002 This work was
pported by the 15T Project mEXPRass (IST-2001-33432), which s faded in
1t by the European Commission

The author is with the Department of Management Science and Technology,
hens University of Economics and Busiacss, GR 104 34 Athens, Greeee
mail: dds@auch.gr)

Commwaicated by N. I Koblitz, Associate Editor for Complexity and Cryp-

oraphy. .
Digital Object Identifier 10.1109/TIT 2002 806137
© 2003 TEEE

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 49, NO. 1, JANUARY 2003

be infected. Virus writers respond to this defense by trying to thwart
anti-virus software through targeted attacks. mutations. or social engi-
neering. Mutating viruses are a particularly insidious threat, because
detection algorithms need to be constantly updated and to spend in-
creasing processing time to identify new mutation types. The question
of whether complexity theory is on the side of virus writers or the pro-
tection vendors could have important practical implications. In this cor-
respondence we will prove that there exist realistic viruses whose re-
liable detection is of NP-complete complexity [1] and that, therefore,
the general problem of reliable bounded-length virus identification is
NP-complete.

II. VIRAL SOFTWARE

Intentionally created malicious software [2]—often termed mal-
sware—is typically classified into Trojan horses. viruses. and worms
[3]. A Trojan horse is a program that exploits the rights of ifs user to
perform an action its user does not intend, a virus is a Trojan horse that
replicates itself by copying its code into other program files [4], while
a2 worm is an independently running program that replicates through a
network exploiting security weaknesses to invade other computers.

A number of virus-j prel':ntmn and -detection methods have been pro-
posed and are [5]. [6]. Refe [7] contains
an annotated bibliography of malware analysis and detection papers.
Prevention methods involve limiting the flow of information between
programs through the use of appropriate hardware and software pro-
tection domains, coupled with self-defense mechanisms. instrumenta-
tion. and fault-tolerance. Since the above methods will typically inter-
fere with many (such as the of new
software or the correction of an existing version) they need to be coor-
dinated through carefully designed and executed security procedures.
Unfortunately, current practice in system administration often renders
these methods useless. A large percentage of users typically administer
their personal workstations on their own. in most cases exercising the
full rights of the system administrator, without sufficient training and
diligence

Therefore. as a secondary line of defense. detection measures are
often employed to locate virus instances and infections. Two often used
detection measures involve cither the comparisen of the system’s pro-
grams against known-good versions (typically condensed in the form of
a checksum or a eryptographically secure signature [8]) or the compar-
ison of files against pattcrns of known viruses. Since the first method
depends on a known-clean system and cannot be used to check software
of unknown origin, the second, scanning, method is the one most com-
menly employed. A number of software vendors provide virus-scan-
ning software that can search new and existing system files for patterns
of all known viruses. The vendors regularly distribute updated versions
of the virus patterns to keep the virus detection process up to date.

Virus writers however. have developed a series of-

281

III. IDENTIFICATION COMPLEXITY

A virus is formally defined [13] by reference to a Turing Machine
[14]

M (Sar. L. Ours Sarox g =

Dags Sae o Iy — o) (1)

with a given set of states 5./ set of input symbols ./ and maps
(. Ny, Do) that, based on its current state s € S, and input
symboli € [,; coming from a semi-infinite tape. determine: the output
symbol o € [,/ to write on the tape, the machine’s next state s’ € Sy,
and the tape’s motion «/ € {~1. 0. 1}

Given the machine 1/, a sequence of tape symbols : . € L1/ can
be considered as a virus for that machine iff processing the sequence
© at time (sequence point) { implies that at a future time point ' a
sequence ' —not overlapping with v —will exist on r.he tape. and that
thesaqueﬁcer will have been written by)/ atapoint/”’ lying between
¢ and '

V0w VY
Sur(t) = Surg A

"D..'lf.ﬁi§l'§MIII:f‘ =

@

where

« ¢ & I stands for the number of times the machine has performed
its basic operation—“move™:

« Pis1t) € N represents the machine’s tape cell position number
at time {;

* Sigy is the machine’s initial state;

« Our(f. ¢) € Lis represents the content of cell - at time /.

Note that in the original seminal reference [13]. the above virus def-
inition appears in the context of a viral set 175 = (1. 1)z a tuple
conslslmg of a Turing Machine 1/ and 2 set of symbol sequences
V: oo o' € V. From the virus definition it is clear that the notion of
a virus is mnmanely associated with its interpretation in a given con-
text—environment. It has been shown [13] that “any self-replicating
tape symbol sequence is a one element 15 that there are countably
nfinite 1 and non-1"5"s. that machines exist for which all tape se-
quences are viruses and for which no tape sequences are viruses, and
that any finite sequence of tape symbols is a virus with respect to some
machine.” The same reference also proves that in the general case de-
termining whether a given tuple (1/, X ;0 X, € £1 is viral is an un-
decidable problem (i.e.. that there is no algorithm that can reliably de-

Even early academic examples of viral code were cleverly engineered
to hinder the detection of the virus [9]. Since the actual task of writing
a virus is relatively simple [10]. [11]. modem virus code focuses on
employing platform independence. stealth, effective replication. and
detection countermeasures. Three pattern-matching detection counter-
measures typically employed are the encryption of the virus body with
a bl hic key. the polymorphic ion of the decryp-
tion routine using equivalent code instructions, and, more recently, the
metamorphic generation of the whole virus body through the addition.
removal, and of code Viruses that
employ these techniques, such as W32/Simile [12], can be very difficult
to identify. In the following section we establish that reliably detecting
instances of such viruses is a problem of NP-complete complexity.

tect all viruses) through a reasoning sinular to that employed te prove
the undecidability of the Halting Problem [14]. Other researchers have
shown that there are also virus types (viruses that evolve to contain an
instance of the virus detection program) that cannot be detected by any
error-free algorithm [15].

As is often the case. current practice differs from theory. Typical
pattern-based virus-detection software scans a (relatively) known envi-
renment (processor architecture and operating system) to locate one of
several (thousands in practice) a priori known viruses. In the following
paragraphs, we will therefore establish the complexity of the more re-
stricted problem of locating an instanee of a known finite-length virus
1n a given execution environment. For instance. the virus programs we
provide in the appendixes are only viral in the context of compila-

tion and execution following the rules of Haskell and ANSI C/POSIX,
respectively.

The complexity of detecting a known fixed virus pattern of length
Al in a program of length \' is hamessed by the Boyer-Moore string-
searching algorithm [16] which never uses more than v + 1/ steps and
under many circumstances (a small pattern and a large alphabet) can
use about \'/1f steps. Unfortunately, as we saw in the previous section,
virus writers are seldom thus accommodating: fixed search patterns
are not any more a viable virus detection method. We will prove that
the problem of reliably identifying a bounded-length mutating virus is
NP-complete. Our proofis based on showing that a virus detector [for
a certam virus strain 1" can be used to solve the satisfiability problem,
which is known to be NP-complete [17]. (This approach works in the
same way for any similar NP-complete problem: the satisfiability of
the problem we are examining is not a special case.)

The virus 17 is 2 mutating self-replicating program. We assume that
the virus detector 1) can reliably determine in P-time whether a given
candidate program ("' is a mutation of the virus 1”. We will use the virus
detector as an oracle for defermining the satisfiability of an NV -term
Boolean formula 5 of the following type:

S= (ay,y Vitay, V=

/-
01,8 V A

A @

v v - s
wpy W g g ¥ Ty 5 Vo /

(ag,q ") /

0<a, <N @
and thereby show that a P-time reliable virus detector 1s equivalent to
a P-time solution to the satisfiability problem.
We will use the satisfiability formula S to create a virus archetype
1 and a possible instance of a virus phenotype £ The virus is a triple
(f. s ¢ [©]
where
« f is the virus processing and replication function:
* s 15 a Boolean value indicating whether an instance of the virus
has found a solution to .5
« ¢ is an integer encoding the candidate values for 5.
The function / maps a triple (/. 5. ¢) mto a new triple (/. 5. ¢
and is defined as follows:
AF s o) (¢ sV S, ife=2" thenc else ¢ 4 1))
Each § term -, is calculated from c through the expression

_L mod 2=1. @
A new generation of the virus is generated by applying / to the current
generation.

Expressed in words_each new virus generation

2) evaluates 5 by extracting successive Boolean value combina-
tions from

3) increments - until it reaches 2" -

4) passes the result of the 5 evaluation to the next generation

We can now ask) whether the virus archetype .1

(f. False. 0) ®
will ever result in a virus mutation phenotype
(. True. 2% ©)

that is, whether one of the virus mutations will satisfy 5
We have thus proven that a reliable virus detector 1) operating in
P-time can be used as a P-time satisfiability oracle and that therefore
reliable virus detection is NP-complete
As an example for the operation of the virus consider the satisfia-
bility of the formula 5

(ro V) A-rg. (10)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 1, JANUARY 2003

The virus replication function [—after omitting for simplicity of ex-
pression the conditional, which only serves to limit the number of virus
mutations—will be

AMFsoeh(f sV (2o Van

A=z, e+ 1) an
the corresponding archetype -1

(AL 000 (fe sV (ag Vo) A =g, @ =F.0) (12)
and the phenotype I indicating satisfiability
(AMfos.e)dfos Vg Va) Amrg, e 1), =T, 4). (13)

This particular virus will generate a mutation /’—and thereby indi-
cate that 5 is satisfiable—in four generations through the following
sequence:

fff1A
FIA. s o) Vi) Ao, e 4 1

(A(f. s sV S c+1),F. 0)
FIFAfos.) fosV S.e+1).FV (EVFE
FEFOMS 5. c)df. sV S, e4+1), F. 1
0s ¢+ 1)

sV (g

FRMS s el(fo sV lao V)
(A(f.s el(f sV S c+1)F. 1

JosV (g Vo
(A(fusoel(f sV S et
W sV S e+l
.\\f‘w:vi
(S sV (o Vi
(A(f.s.cpf.svS e .
(Mf. 5 e)(f. sV S c41). TV(TVT)A=T. 3
(Mf. s c)df. sVS c+1). T.4) = P.

a4

IV. IMPLICATIONS

The creation of metamorphic viruses is a relatively recent phenom-
enon that places a considerable threat on our information system infra-
structures. From a theoretical point of view, the viruses bear remarkable
similarities to the virus we have examined and the examples depicted
in the appendixes to this correspondence. Virus detection programs,
however, need not be 100% correct. Users can tolerate the (typically re-
‘mote) possibility of some “noise” (false positives). because in practice
itis quite rare for anonviral program to match the detection pattern of a
known virus. As an example, a virus detector that detected the viruses in
this correspondence and also detected as a virus all triplets of the form
(F. 5. 1): V5% 1 (even cases where [is a nonsatisfiable formula and
« is true) would probably be tolerated as a functioning “good-enough™
virus detector. although strictly speaking it detects some false positives
Such a virus detector can be implemented to terminate in linear time
and is not NP-complete.

Thus, given the difference between the theoretically perfect detec-
tion (which is in the general case undecidable, and for known viruses,
as we demonsirated, NP-complete) and the practically sufficient iden-
tification (which is the basis for a number of working virus scanner
implementations) two questions arise.

2) How can the notion of “sufficiently good detection” be formal-

ized in information theory terms?

3) Can the increasmg ability of metamerphic viruses to mutate
move the identification threshold currently used by virus de-
tection programs to the point where either numerous legitimate
data sequences are falsely detected as viruses. or real viruses
fail to be detected?

IEEE TRANSACTIONS ON INFORMATION THEORY. VOL. 49, NO. 1, JANUARY 2003

An interesting phenomenon affecting the above topics concerns the
currently permeable boundary between code and data. Bufier averflow
attacks [18] are based on data that overwrites a carclessly written pro-
gram’s return stack address lying at the end of a data buffer to cause
the program to exccute part of that data. This renders all data files
(documents, images, music, video—many of them highly compressed)
stored on a computer into potential carriers of viral code, and dramat-
ically increases the data a virus defector has to scan and discriminate
Few viruses currently propagate through buffer overflows: these weak-
nesses have traditionally been mainty exploited by worms and Trojan
horses [19]. However, once such viruses are released, the current virus
detection approach will come under increasing strain, faced with the
short pattera vectors of mutatig viruses and orders of magninide more
data to scan: as an example a 18-Gbyte disk filled with MP3 files is
likely to contain any 4-byte (virus) pattern. In the medium and long
term, hardening our security defenses and developing sofiware, proce-
dures, and work practices that will stem the spread of malware scem to
be the only reasonable alternatives

APPENDIX T
“VIRUS CODE IN HASKELL

The following code defines the virus replication function and the
respective archetype and candidate phenotype. for determining the sat-
isfiability of the expression

(g V g ¥ =) A (=i Voes) A (). 15)
The sati i didate values are en Haskell's
arbitrary precision integers.

module Virus where

replicate :: (replicate, Bool, Integer)—>>
(replicate, Bool, Integer)

replicate (v, b, 4) = (v, b |

(((bit 0) || (bit 2 3) ||
not (bit ¢ @) &&
(not (bit 1 4) || (bit 54)) &&
(it 2 4)))

, if i==64 then i else i+ 1)

-- Extract bit b out of the Integer n
bit :: Integer —> Integer —> Bool
bit bn=mn "div’ (2 " b) ‘rem 2=

virus_archetype = (replicate, False, 0)
virus_phenotype = (replicate, True, 64)

APPENDIX I
VIRUS CODE IN C

The following code is the virus archetype, again for determining the
satisfiability of (15). The satisfiability fuaction candidate values are
encoded as elements of the array %

#include estdio.h>
#include <ctype.h>

/* Number of variables to satisfy %/
4define N 6

int @[N] = {

0, 0,0, 0,0 0,

b

void

advance (void)

283

void
print_vector (FILE xf)
{
int 4;
for (=0; i<N; i++)
Eprintf£(f, "%¢,”, ®[d] 2 'l : '0);

fpute(™\n', £);

main()

{
char buff[1024];
FILE# fi = fopen(_ FILE , "r"};
FILEx fo = fopen(’new’ _ FILE _,"w");
if ((@0] || @3] || taf4]) &&

Gefl] | | =[5 && (@[2]))
fprintf(fo, "/ Satisfied ¥/\n");
advance () ;
while (fgets(buff, sizeof (buff)., fi))
if (isdigit (buff(0]))
print_vector(fo) ;
else
fputs (buff, fo);
fclose (fi); fclose(fol;
system("cc news __FILE);
return 0;

}
The candidate virus phenotype begins as follows
/* satisfied x/
[}
int @[N] = {1,1,1,1,1,1,

Y

ACKNOWLEDGMENT

The author acknowledges the valuabl ions of
referces on an carlier version of this correspondence

REFERENCES

[1] M. R Garey and D. S. Johnson, Computers and Inractability: A Guide
w0 iha Theory of NP-Completeness. San Francisco, CA: Freeman,
197

P c EI_andwehlARB\m TP McDermott, and W. . Choi. “A tax-
onomy of computer program secusity flaws.” ACM Comput. Surv., vol.
26.n0. 3. pp. 211-254, Sept. 1994

[3] P. J. Denning. “Computer viruses.” Amer. Scientist. pp. 236-238.
May-June 1988

[4] E. Coben, “Computer viruses: Theory and experiments,” Comput. Secii-
rity. vol. 6. no. 1. pp. 22-35, Feb. 1987

[5) E'H Spafford. K A. Heaphy. and D. J. Ferbrache. “A computer virus
pincs”in Computers Under dttac: Intruders, Vo, v Vs,

J. Denniny ding, MA: Addison-Wesley, 1990, ch. 20, pp.
s

[6] V. Prevelakis and D. Spinellis. “Sandboxing applications.” in USENLY
2001 Tchnieal Conf Proc., FreeNLX Track, . Boston, Ma: Usenix
Assoc., T

Annals of Operations Research 93 (2000) 373-384 373

A Simulated Annealing Approach for Buffer Allocation in

Reliable Production Lines

*

Diomidis D. Spinellis &** Chrissoleon T. Papadopoulos P

¢ Department of Mathematics, GR-832 00 Karlovasi, University of the Aegean, Greece
E-mail: dspin{@aegean.gr
b Department of Business Administration, GR-821 00 Chies Island, University of the Aegean, Greece
E-mail: hpap(@aegean.gr

‘We describe a simulated annealing approach for solving the buffer allocation problem in
reliable production lines. The problem entails the determination of near optimal buffer alloca-
tion plans in large production lines with the objective of maximizing their average throughput.
The latter is calculated utilizing a decomposition method. The allocation plan is calculated

subject to a given amount of total buffer slots in a computationally efficient way.

Keywords: Simulated annealing, production lines, buffer allocation, decomposition method

1. Introduction and Literature Review

Buffer allocation is a major optimization problem faced by manufacturing systems
designers. It has to do with devising an allocation plan for distributing a certain amount
of buffer space among the mtermediate buffers of a production line. This 1s a very
complex task that must account for the random fluctuations i mean production rates of
the individual workstations of the lines. To solve this problem there is a need of two
different tools. The first is a tool that calculates the performance measure of the line
which has to be optimized (e.g.. the average throughput or the mean work-in-process).

* This is a machine-readable rendering of a working paper draft that led to a publication. The publication
should always be cited in preference to this draft using the reference in the previous footnote. This
material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all
rights therein are retained by authors or by other copyright holders. All persons copying this information
are expected to adhere to the terms and constraints invoked by each author’s copyright. In most cases.

these works may not be reposted without the explicit permission of the copyright holder.
** Corresponding author.

N+K-2\ (N+D)(N+2)--(N+K-2)

K -2

My By M;
M, | : Stationi
B | :Bufferi

Mk

(K —2)!

SOFTWARE—PRACTICE AND EXPERIENCE . — [

Softw. Pract. Exper. 2002; 32:57-71 (DOI: 10.1002/spe.428) . YUFC elements | _ (O] x]

Visual Component GUI element Glue component Connector Filter component
Tjﬁght Text input
Unix tools as visual & e R e — E
. . Prepare()
programming components in a Pl

GUlI-builder environment Erecinad GUI element T companent | || eonmsctor
| port topology

- Output
Diomidis Spinellis*! +
p Pipe Sort Tee -
. 3 3)) InPort InPort InPort v ‘
Department of Management Science and Technology, Athens University of Economics and Business, OutPort| | OutPort OutPort1
Patision 76, Athens GR-10434, Greece “é"";—"gignly OutPort2 Glue i Connector
eckOnly Lo
IgnoreBlanks — Coordinating 4
FoldCase Visualize | companent Glue
NumericCompare *
Reverse
Run GUI element ID"'“:Iljt

SUMMARY

Development environments based on ActiveX controls and JavaBeans are marketed as ‘visual
programming’ platforms; in practice their visual dimension is limited to the design and implementation
of an application’s graphical user interface (GUI). The availability of sophisticated GUI development
environments and visual component development frameworks is now providing viable platforms for
implementing visual programming within general-purpose platforms, i.e. for the specification of non-

GUI program functionality using visual representations. We describe how specially designed reflective)
components can be used in an industry-standard visual programming environment to graphically specify [SortList urcsort | #errors Error list GUI ListBox
sophisticated data transformation pipelines that interact with GUI elements. The components are based = Teateoored GUI TextBox
on Unix-style filters repackaged as ActiveX controls. Their visual layout on the development environment el siee £ Text heck al
canvas is used to specify the connection topology of the resultant pipeline. The process of converting filter- False ‘| ext to chec ue——.
style programs into visual controls is automated using a domain-specific language. We demonstrate the \ Elic) True hd GUI Rich EditBox Wordcount
approach through the design and the visual implementation of a GUI-based spell-checker. Copyright © OutPort 1 Text Box Sink
2001 John Wiley & Sons, Ltd. OutputFile
Reverse False
KEY WORDS: visual programming; components; reflection; Unix tools; pipe and filter architecture; reuse ?tableSort False ToxiBox Glue
ag b
TmpDirectory Source Dictionary ___Conne{:lor
ToolTipText %5 t""w.,x___%
. Unigue False T
T -
1. INTRODUCTION ‘WhatsThisHelpID 0 g
. . - El Pasition i 0>
A number of environments support the visual composition of graphical user interfaces (GUIs) Height 1095 Translate Sort Unique
using components with a predefined set of interfaces. In addition, technologies such as ActiveX Left 3960
and JavaBeans allow the development of visual components (typically GUI elements) that can be Top 360 |
se:ln?les.‘\'l)-' incorporated into an ll]h.?g]'med development e-m‘n'onment (IDE) and subsequently used in S eR
application development. In this article we present how visual IDEs and components can be extended Compare according bo string numerical value, imply
beyond GUI development to support visual programming for a particular domain. MoaEEHe % Visual campanert bazed sinple spell checke:
Component Source and Execution Environment o—
M ast existing wisual comporents provwide (71 interface elements Typical examples includs Lextinput it
[hoxes, buttons, list boxes, ghds, radio buttons, graphs, and file selection dialogs. The ferr visual
compotents that do provids computationaly interesting processing (such as a control used to peform Run
ITCF/IF transters do not tilize their visual di they are g bly packaged as visual
*Correspondence to: Diomidis Spinellis, Department of Management Science and Technology, Athens University of Economics components in orderto expose theirproperties for editing using the standard IDE prop esty editing Uty 4
and Business. Patision 76. Athens GR-10434. Greece Imechanisms. Candidates for repackaging as wisual components had to provide non-trivial FIRNORN HorGe
+ . o ; ’ ' . compntationd fonetionality, be arenable 1o visual mardpulation, and be available for reuse. P
E-mail: dds @ﬂuch.gr We decided 10 base our wotk on the numerous user and system programs available under the Unix compstionaly
operaing system implementations. Sased on the Unix tookcentred philosophy, software developers connolations
(hawve created alarge rollection of programs that provide a single service (6.2 compare two files, search qui
For a pattern, detiver mail) without requitinguser interaction. Many of thoss programs are ide
1 d using state-of-the-art algosithms, have been stress-tested in many diverse applications P
Received 10 November 2000 for decades, snd have their interface and operation standardissd under efforts suth as POSTX. Unix =] repackaging
Copyright @ 2001 John Wiley & Sons, Ltd. Revised 4 June 2001 and 17 September 2001 Check speling T fé‘;”dadisad
Accepted 18 September 2001 - v =
e wwmw' 'E.'V Mumber of errars
i we 13

N ake the most out 06 the time you have

b
i

Put the document under version control

Write readable and maintainable LaTeX
source code

Avoid explicit formatting

Automate the management of
bibliographic references

Use symbolic references
Automate the document's build
Use Continuous Integration

Use third-party LaTeX packages
Use style files

. Learn how to set text, mathematics,

tables, figures, and floats

% Why obtaining metrics is difficult
Obtaining metrics from large code bodies is difficult
for technical and operational reasons~\cite{Moc09,GSlB}(}
On the technical sides
code dependencies make”it difficult to establish
the full context needed in order to parse and semantically analyse the codq:}
This is especially true for C code,
where the compilation depends on
—system header files,
— compiler-defined macros,
— search paths, and
~ compile-time flags passed through the build process~\cite{Sp103r,LKAll,GGlZ}Q)
The operational reasons are associated with the required throughput
though due to the relatively small number of releases we examined()
this was not a major issue in this studyg

PHOTOGRAPHS BY MICHAEL KLOSE

——— ATTEMPTING TO

DETERMINE HOW QUICKLY
e ‘ a ARCHIVAL INFORMATION
BECOMES OUTDATED.
F [

WEB REFERENCES

By Diomidis Spinellis

THE WIDESPREAD ADOPTION OF THE WEB AS A MECHANISM
for sharing information has brought with it the corresponding
ubiquity of URL references and citations. URLs regularly
appear on billboards, packages, business cards, print advertise-
ments, clothing, and as references in scientific articles. Most
readers have probably experienced a “dead link”: a Web refer-
ence that for a variety of reasons will not lead to a valid or cor-
rect Web page. A dead link stemming from a URL appearing
in the context of everyday life is usually a minor inconvenience
that can be resolved by using a Web index or a search engine;
it will seriously affect only the
future archeologists trying to
untangle the web of our daily lives.
On the other hand, a dead Web
link appearing in a scientific article
has wider implications. Citations
in scholarly work are used to build
upon existing work, substantiate
claims, provide the context in which research is per-
formed, and present, analyze, and compare different
approaches or methodologies. Therefore, references
that cannot be located seriously undermine the foun-
dations of modern scientific discourse.

The objective of this article is to examine, quantify,
and characterize the quantity and quality of Web links
used in computing literature. Our aim is to provide
definitive information related to the availability of
URL references as a function of their age, their domain, the depth of the path used,
as well as the technical reasons leading to failed links. Our research has been greatly
aided by the emergence of online versions of traditional paper-based publications
[4]. By tapping into the online libraries of the ACM and the IEEE Computer Soci-
ety we were able to download, extract, and verify 4,375 Web links appearing in
print articles during the period from 1995-1999. Here, we describe the technolo-
gies related to Web references and retrieval, outlining the methodology we fol-
lowed, presenting the results obtained, and discussing their implications.

Internet resources are typically specified using the string representation of Uni-

COMMUNICATIONS OF THE ACM January 2003 /Vol. 46, No. |

71

The Journal of Systems and Software 85 (2012) 666-682

Contents lists available at SciVerse ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Organizational adoption of open source software

Diomidis Spinellis®*, Vaggelis Giannikas®

2 Department Management Science and Technology, Athens University of Economics and Business, Patision 76, GR-104 34 Athens, Greece
® Institute for Manufacturing, University of Cambridge, 17 Charles Babbage Road, Cambridge CB3 OFS, United Kingdom

ARTICLE INFO ABSTRACT

Article history:
Received 6 February 2011

Received in revised form 19 August 2011
Accepted 15 September 2011

Available online 22 September 2011

Keywords:
Open source software
Technology adoption
Industrial practice

Organizations and individuals can use open source software (0SS) for free, they can study its internal
workings, and they can even fix it or modify it to make it suit their particular needs. These attributes
make 0SS an enticing technological choice for a company. Unfortunately, because most enterprises view
technology as a proprietary differentiating element of their operation, little is known about the extent
of 0SS adoption in industry and the key drivers behind adoption decisions. In this article we examine
factors and behaviors associated with the adoption of 0SS and provide empirical findings through data
gathered from the US Fortune-1000 companies. The data come from each company’s web browsing
and serving activities, gathered by sifting through more than 278 million web server log records and
analyzing the results of thousands of network probes. We show that the adoption of OSS in large US

companies is significant and is increasing over time through a low-churn transition, advancing from
applications to platforms. Its adoption is a pragmatic decision influenced by network effects. It is likelier
in larger organizations and those with many less productive employees, and is associated with IT and
knowledge-intensive work and operating efficiencies.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Thousands of volunteers and numerous companies develop, dis-
tribute, and license software in a way that allows others to freely
use it, study it, modify it, and redistribute it. What are the prospects
of the organizational adoption of this so-called open source soft-
ware (0SS) and why should we care?

In this paper, through a novel application of web server log
scanning and host fingerprinting techniques, we gather evidence
of 0SS adoption among the US Fortune-1000 companies, and use it
to examine factors associated with OSS adoption. Our observations
are statistically significant and span a wide sample of companies.
However, although each research question we test is backed by
existing theories, we freely admit that our study as a whole is
data-driven rather than grounded on a single cohesive theoretical
framework. Our main contributions are: (a) findings that theoret-
ical frameworks of organizational OSS adoption could build upon
and should be able to explain, and (b) the description and demon-
stration of powerful internet-based methods for collecting data
about an organization's IT operations.

A commonly accepted 0SS definition (Coar, 2006) specifies that
complying software must be licensed for free redistribution (at no
cost or for profit), must provide access to its source code, should

* Corresponding author. Tel.: +30 210 8203981; fax: +30 210 8203370.
E-mail addresses: dds@aueb.gr (D. Spinellis), eg366@cam.ac.uk (V. Giannikas).

0164-1212/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.js5.2011.09.037

allow the creation of derived works provided they respect the cre-
ation of the original author, and should not restrict the use of
the software with reference to specific persons, groups, fields of
endeavor, products, technologies, or other software. Well-known
examples of open source software include the Linux operating sys-
tem kernel, the Mozilla Firefox web browser, the OpenOffice.org
office application suite, the MysoL relational database system, and
the pHP programming language. Many OSS products offer plausi-
ble alternatives to the corresponding proprietary products, while
some, like the the Apache web server, the Sendmail mail server,
and the BIND domain name system server, are market leaders in
their categories (Netcraft Ltd., 2009; E-Soft Inc., 2007; Simpson and
Bekman, 2007; Kerner, 2007).

With its roots in the academic world 0SS was initially viewed
‘with suspicion by some companies. As a representative example,
Microsoft openly attacked it citing problems related to version
incompatibilities, intellectual property risks (especially in the con-
text of copyleft licenses), lack of a credible business model, and an
inability to fund innovation (Mundie, 2001; The Economist, 2001).
However, other IT companies have embraced it for operational or
strategic reasons. One example of operational use involves Google's
thousands of servers, which work on a modified version of Linux,
thus benefiting the company through the system’s low costand the
ability to modify it to suit its needs (Weber, 2005, p. 6). As another
example consider Apple, which has used OSS code from the Mach
and Freessp operating systems to leapfrog in the development of its
widely acclaimed Mac OS X operating system (West, 2003). On the

2016 TEEE/ACM 38th TEEE International Conference on Software Engineering

The Evolution of C Programming Practices:
A Study of the Unix Operating System 1973-2015

Diomidis Spinellis
dds@aueb.gr

Panos Louridas
louridas@aueb.gr

Maria Kechagia
mkechagia@aueb.gr

Department of Management Science and Technology
Athens University of Economics and Business
Patision 76, GR-104 34 Athens, Greece

ABSTRACT

Tracking long-term progress in engineering and applied sci-
ence allows us to take stock of things we have achieved, ap-
preciate the factors that led to them, and set realistic goals
for where we want to go. We formulate seven hypotheses as-
sociated with the long term evolution of C programming in
the Unix operating system, and examine them by extracting,
aggregating, and synthesising metrics from 66 snapshots ob-
tained from a synthetic software configuration management
repository covering a period of four decades. We found that
over the years developers of the Unix operating system ap-
pear to have evolved their coding style in tandem with ad-
vancements in hardware technology, promoted modularity
to tame rising complexity, adopted valuable new language
features, allowed compilers to allocate registers on their be-
half, and reached broad agreement regarding code format-
ting. The progress we have observed appears to be slowing
or even reversing prompting the need for new sources of in-
novation to be discovered and followed.

CCS Concepts

eSoftware and its engineering — Software evolution;
Imperative languages; Software creation and management;
Open source model; sGeneral and reference — Empir-
ical studies; Measurement; eSocial and professional
topics — Software maintenance; History of software;

Keywords
C; coding style; coding practices; Unix; BSD; FreeBSD

1. INTRODUCTION

Tracking long-term progress in engineering and applied
science allows us to take stock of things we have achieved,
appreciate the factors that led to them, and set realistic
goals for where we want to go. Progress can be tracked along
two orthogonal axes. We can look at the processes (inputs)

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, contractor or affiliate of a national government. As such, the Government
retains a nonexclusive, royalty-free right o publish or reproduce this article, or to al-
low others to do so, for Government purposes only.

ICSE *16, May 14-22, 2016, Austin, TX, USA

(© 2016 ACM. ISBN 978-1-4503-3900- 1/16/05. .. $15.00

DOE http://dx.doi.org/10.1145/2884781.2884799

748

or at the resulting artefacts (outputs). Furthermore, we can
examine both using either qualitative or quantitative means.

The objective of this work is to study the long term evo-
lution of C programming in the context of the Unix oper-
ating system development. The practice of programming
is affected by tools, languages, ergonomics, guidelines, pro-
cessing power, conventions, as well as business and soci-
etal trends and developments. Specific factors that can
drive long term progress in programming practices include
the affordances and constraints of computer architecture,
programming languages, development frameworks, compiler
technology, the ergonomics of interfacing devices, program-
ming guidelines, processing memory and speed, and social
conventions. These might allow, among other things, the
more liberal use of memory, the improved use of types, the
avoidance of micro-optimisations, the writing of more de-
seriptive code, the choice of appropriate encapsulation mech-
anisms, and the convergence toward a common coding style.

Here are a few examples. The gradual replacement of
clunky teletypewriters with addressable-cursor visual dis-
play terminals in the 1970s may have promoted the use of
longer, more descriptive identifiers and comments. Compil-
ers using sophisticated graph colouring algorithms for regis-
ter allocation and spilling [12] may have made it unnecessary
to allocate registers in the source code by hand. The real-
isation that the overuse of the goto statement can lead to
spaghetti code [13] might have discouraged its use. Simi-
larly, one might hope that the recognition of the complexity
and problems associated with the (mis)use of the C prepro-
cessor [15,34,48,49] may have led to a reduced and more dis-
ciplined application of its facilities. Also, one would expect
that the introduction and standardisation of new langnage
features [2,23,45] would lead to their adoption by practition-
ers. Finally, the formation of strong developer communities,
the maturing of the field, and improved communication fa-
cilities may lead to a convergence on code style.

In more formal terms, based on a simple-regression ex-
ploratory study [54], we established the following hypothe-
ses, which we then proceeded to test with our data.

H1: Programming practices reflect technology af-
fordances

If screen resolutions rise we expect developers to become
more liberal with their use of screen space, as they are no
longer constrained to use shorter identifiers and shorter lines.
Higher communication bandwidth (think of the progress from
a 110 bps ASR-33 teletypewriter, to a 9600 bps vr-100 char-
acter addressable terminal, to a 10MB Ethernet-connected

Chreate / collect your own data sets

Pers Ubiquit Comput (2003) 7. 53-69
DOI 10.1007/s00779-002-0213-8

ORIGINAL ARTICLE

Diomidis D. Spinellis

The information furnace: consolidated home control

Received: 1 June 2002 / Accepted: 14 August 2002
© Springer-Verlag London Limited 2003

Abstract The Information Furnace is a basement-in-
stalled PC-type device that integrates existing consumer
home-control, infotainment, security and communica-
tion technologies to transparently provide accessible and
value-added services. A modern home contains a large
number of sophisticated devices and technologies. Ac-
cess to these devices is currently provided through a wide
variety of disparate interfaces. As a result, end users face
a bewildering array of confusing user-interfaces, access
modes and price structures. In addition, as most devices
function in isolation, important opportunities to exploit
synergies between their functionalities are lost. The in-
formation furnace distributes data, provides services,
and controls an apartment’s digital devices. Emphasis is
placed on accessibility and on exploiting the synergies
that inevitably come up when these technologies and
services are housed under a single roof. The prototype
implementation I outline integrates on a FreeBSD server
the distribution of MP3-encoded music to DNARD/
NetBSD thin clients, an answering machine, a burglar
alarm, an Internet router, a fax server, a backup server,
and intelligent control of a PBX.

Keywords Automation - Consumer electronics -
Home-control - Multi-modal interfaces

1 Introduction

Although our complex lives are not necessarily im-
proved by each new technological widget we adopt,
uncooperative devices and appliances with deficient
user-interfaces can certainly conspire to frustrate us.
Over the past three years | have experimented with a

D.D. Spinellis

Department Management Science and Technology,
Athens University of Economics and Business,
Patision 76, GR-104 34 Athens, Greece

E-mail: dds@aueb.gr

number of technologies that gave birth to the informa-
tion furnace concept: a basement-installed PC-type
device that integrates existing consumer home-control,
infotainment, security, and communication technologies
to transparently provide ubiquitous access and syner-
gistic value-added services. In the following sections we
will examine the devices and appliances lurking in the
modern home, overview the problems associated with
the current breed of devices, and go over the basic ele-
ments of the information furnace concept and its pro-
totype implementation. Further implementation details
on technologies behind the system we describe can be
found in Spinellis [1]; this paper focuses on the system’s
concept, architecture, and evaluation.

2 The modern home

A modern home contains a large number of sophisti-
cated devices and technologies. Current and near future
technologies and respective devices can be roughly
categorised into the categories of home control,
infotainment, security, communication and special-
purpose devices.

2.1 Home control

Contemporary central heating systems are regulated by
one external and a number of internal temperature
sensors in conjunction with a control unit occupants use
to set the desired room temperature. The system com-
pares the internal room temperature to the setting of the
control unit and, using the external temperature as a
compensating factor, regulates the temperature of the
water produced by the local heat-generating plant or the
valve bringing remotely-heated water into the home.
Bumners often have their own control circuits based on
target temperatures for the burner and the circulating
pump, but we can regard them as a black box for the
purposes of this article. Convenience elements associated

T

bl &
INTEGRATED ENVIRONMENTS

Position-Annotated

Photographs:

A Geotemporal Web

The GTWeb system exploits the synergies of integrating different
information appliances and publicly accessible databases to create and

present trip diaries.

ith the advent of digital cameras,
photographs are no longer gath-
ering dust, forgotten in old
shoeboxes. Instead, they are
lying unused in hard disk direc-
tories and on CDs. The Geotemporal Web system,
belonging to the “capture and access™ class of ubig-
uitous computing applications,! addresses this phe-
nomenon by automatically converting raw data from
the typical vacation trip inte a lively Web site. Exploit-
ing the synergies of integrating different consumer-
grade information appliances and publicly accessible
databases, a GTWeb site presents
a trip overview, timelines, maps,

and annotated photographs.
I first started working on GT-
P Web in the second half of 2001,
in an effort to experiment with the
presentation of GPS logs and digital photographs.
Since then, I've been gradually adding features and
maintaining its interfaces to keep up with technol-
ogy cvolution. Here, I discuss GTWeb’s design and
implementation and review what I've learned about
integrating information appliances in general and

presenting geotemporal data in particular.

Diomidis D. Spinellis
Athens University of
Economics and Business

Functional description

Initially constructing a Web site using GTWeb
is fully automatic and involves integrating pho-
tographs from a consumer-grade digital camera,
a track log recorded from a handheld GPS
device,? and publicly accessible coastline, topog-

PERVASIVE computing

raphy, and gazetteer data. Once created, you can
manually edit and further enhance GTWeb
HTML pages.

A GTWeb homepage (see Figure 1) displays a
description of the trip, such as (underlining denotes
hyperlinks)

From 2.08 km S of Kastraki (hill) (topolog-
ical, street map) (Sun Aug 19, 2001 10:48:55)
to 1.74 km W of Metokhion Konstamonitou
(populated place) (topological, street map)
(Sat Aug 25, 2001 09:14:39) covering a travel
distance of 898.02 km at an average speed of
60 kil over an area of 45909 sq km. Dura-
tion 5 day(s), travel time 14:45 (travel map).

The homepage also includes links to detailed time-
lines, maps, and photograph galleries (all presented
in chronological order); a trip overview on a topo-
graphical map substrate; and the trip’s location on
an azimuthal orthographic projection of the earth
globe. (See Figure 2 for a UML diagram of the
GTWeb content tree.)

The timelines list information such as when the
traveler approached a geographical feature or took
a photograph (sce Figure 3). GTWeb divides the
maps into separate pages based on when the trip
was made and presents a separate overview map for
each trip leg and detailed maps covering smaller
arcas. Each detailed map shows the route traveled
and geographic features (populated places, streams,
hills, and so forth), annotated with the time they
were approached (sce Figure 4). Each map is pre-
fixed by a textual description of the trip part it illus-
trates, such as

Published by the IEEE CS and IEEE ComSoc m 1536-1268/03/$17.00 © 2003 IEEE

Figure 1. A personal GTWeb's overview

D Gkt o Gt

page.

Detailed Trip Part Map 40°19'N,
23°42°E—40°24'N, 23°59°E

Trip Log Presentation

1. Trip Overview

P10m 208 ol) tiak St) (Gunaug 1. 20011148330
Hhian Konatamantou
e 3] oo el dince o 38 1 vt g el vt

U (ROPAUIBERA Blsce) (220626125, Er2es mag) (SLALD

Wed Aug 22, 2001. From 2.96 km
SW of Pirgadhikia (populated place)
(topological, street map) (11:15:44)
to 0.96 km S of Prosforion (pop-
ulated place)(topological, street 3. Map

(12:20:23) covering a travel e
distance of 46.99 kn at an average 31 e
speed of 43 kn/b over an area of

237 sq km. Duration 01:04, travel 4. Photographs
time 01:04. 41 Qraerea by date
42 Slchuiane
Campectives 0 oy

GTWeb indexes photographs using
thumbprints and annotates them with a
description of the time and place they were
taken (see Figure 5). The same description,
together with links to the corresponding

2, Timalines

21 Geographical msuns a0 cooingrapns by axie
22 Geograhica fcaursa and chofographa (sl bia - fx acarshiog)

33 Delabnc mags ot pasts

5. Processing Detalls

Track og peints processec. 3699
Promms processed 31

P v $13 el 1120020212 190842 s B s

trip leg map and detailed trip part map, | # "

Timelines

Figure 2. The GTWeb functional decomposition.

APRIL-JUNE 2003

==

74

w11

IH'lﬁlATED ENVIRONMENYS

Wed Aug 22, 2001

[12:51:29] Approached (topological. street map) 2.95 km SW of Megali Vigla (hill) (topological.
street map) traveling at a speed of 18 km/h.

[12:51:30] Photograph. About (most recent fix taken 1 seconds from the picture time) (topolog-
ical,) 2.95 km SW of Megali Vigla (hill) (topological, street map) traveling
ata speed of 18 km/h.

[12:57:53] Approached (topological, street map) 2.73 km W of Thivais (populated place) (topo-
) traveling at a speed of 17 km/h.

[13:08:56] Photograph. About (most recent fix taken 5 seconds from the picture time) (topolog-
ical, street map) 1.43 km SE of Thivais (populated place) (topological, street map)
traveling at a speed of 18 km/h.

[13:10:25] Approached (topological, slreel map) 1.52 km SW of Monoxilitai (populated place)

ling at a speed of 18 km/h.

Figure 3. A sample GTWeb timeline
(underlining denotes hyperlinks).

also appears under the full-sized image of
each photograph. All descriptions contain
links leading to dynamically gencrated topo-
logical and street maps available on pub-
lic Web sites. (See www.spinellis.gr/gtweb/
Chalkidiki for a sample GTWeb site.)

design

slreet map) trave
[13:25:16] Approached (topological, s reet map) 5.48 km S of Mnnl il i Y

(topological, street map) traveling at a speed of 18 km/h.

[..]

[13:40:00] Photograph. About (most recent fix taken 3 seconds from the picture time) (topolog-
ical, street map) 0.39 km NW of Moni Xenofondos (monastery) (topological, street’

‘map) traveling at a speed of 19 km/h.

PERVASIVE computing

Figure 6 shows the dataflow diagram of
the GTWeb creation process. The GTWeb
software first processes a GPS track log
together with the gazetteer database to
annotate the track log with the nearest—in
Euclidean distance—geographical features
for each track point. GTWeb can then use
topography (a grid of altitude points on
the earth globe) and coastline data (closed
polygons) to create the various maps. This
phase superimposes the trip track and geo-
graphical features on the maps drawn by
matching the respective longitude and lat-
itude coordinates. Finally, GTWeb allo-
cates the photographs into different maps,
textually annotating them based on the
time assigned by the respective appliance
to each track log point and digital photo-
graph. The availability of time information
for both track log points and the pho-
tographs was the crucial factor that let me
integrate the two different data sets.

Figure 7 depicts (as a UML diagram) the
data model used to construct a GTWeb
site. The primary types of data objects are

e Track points: latitude-longitude-time
triples

Photographs: the actual image plus an
optional caption and the time each pho-
tograph was taken

Gazetteer geographical features: coded
references to each feature’s geographi-
cal region, the feature’s type (such as
lake, town, or mountain), and the fea-
ture’s name and coordinates

Figure 4. A detailed map of a trip leg over
(a) land and (b) water.

http://computer.org/pervasive

Figure 5. Index of boat-trip photographs.

To create a GTWeb site, the system
extends the three data objects by combin-
ing features of their parent classes:

o Annotated track points might contain
the details of a geographical feature (for
example, a town) near a given point,
together with its distance.

* Annotated features refer to the time the

user’s track passed near them (the user

“visited” them) and the track’s nearest

distance.

Annotated photographs contain the

details of the nearest geographical fea-

ture and track point, together with the
time difference between the photograph
and the temporary closest track point.

The tmck log point with the smallest
Euclid to the given feature d
‘mines the time and location of the traveler’s
visit to the vicinity of a given geographical
feature. We can formalize this as follows:

1. The coordinates of all known geo-
graphical features form a set F, and
the coordinates of the track followed
by the user form a set T.

2. Given two coordinate pairs (ax, @), and
(bx, by), the notation la— bl denotes the
Euclidean distance between a and b:

b +a, 6,2

GTWeb forms an annotated track log
A by associating each track point ¢
with its nearest feature f:

A={tf)lte TAfe FAVf'e
Fle—f1<lt—f1).

3. A set of “visits” V is formed from the
annotated track log points that are
nearest to each feature:

Figure 6. Data-flow diagram of the
GTWeb generation process.

APRIL-JUNE 2003

Ouranoupoll
1203: 2s
About (mo:) (topological, street map) W

0195 o S of st (pup\lﬁzd Place) (picoical reet map)

Ouranoupol

1245116

About (most recent fx taken 6 seconds from the picture time) amnlwu sireet map)
1.44 kam S of Prostoriou (populated piace) (topoloaical, street m:

125130

About (most recent fix taken 1 seconds from the ;inu:u nme) (topological, street map)
2.95 km SW of Megall Vigia (nil) (topological, sireet

Trip Leq Map Detalled Trip Part Map

125254

About {most recent fix taken 1 seconds from the pmm ume) (topological, street map)
3.07 km SW of Megall Vigla (nil) (topoiogical, street

Trip Leg Map Detailed Trip Part Mag

time) (topological, street map)

1255:10 -
3.26 km S of Megall Vigla (hill) (topological, street map)
WS coamesiooe

V=N (1) e AV (t)f) e <photo>

Alt—fl<lt~fI). <name>DSC00007.JPG</name>
<lime>998474606</fime>
GTWeb uses most data in its native for- <caption>Ouranoupoli</caption>
mat, apart from photograph metadata <localtime>Wed Aug 22 13:03:26 2001</localiime>
where an intermediate program Iayer <gmiime>Wed Aug 22 10:03:26 2001</gmtime>

resident i </photo>
iftto XML, which is used for further pro-
cessing. Thus, a photograph’s details will In a future version, I would probably use

appearas standardized schemas based on XML to
Track log Feature coordinates
[onograpy | [coastines | < proximity calcutation

l 'wad track

Map generation

Pictures

Map diagrams

Device data -
Static data :I

PERVASIVE computing

CRIME

-

ON 9 MARCH 2005,
a 38-year-old Greek
,’ electrical engineer
named Costas Tsalikidis
was found hanged in his
Athens loft apartment,

HOW SOME EXTREMELY
SMART HACKERS

PULLED OFF THEMOST =~ st

AUDACIOUS CELL-NETWORK

BREAK-IN EVER

known as Vodafone
Greece, the coun-
try’'s largest cel
lular service pro-
vider; Tsalikidis
was in charge of

Even before Tsalikid death,
investigators had found rogue soft-
ware installed on the Vodafone
Greece phone network by parties
unknown. Some extraordinarily
knowledgeable people either pen-
etrated the network from outside or
subverted it from within, aided by
an agent or mole. In either case, the
software at the heart of the phone
system, investigators later discov
ered, was reprogrammed with a
finesse and sophistication rarely
seen before or since.

A study of the Athens affair, surely
the most bizarre and embarrassing
scandal ever to engulf a major cell-
phone service provider, sheds consid-
erable light on the measures networks
can and should take to reduce their
vulnerability to hackers and moles.

It’s also a rare opportunity to get
a glimpse of one of the most elusive
of cybercrimes. Major network pene-
trations of any kind are exceeding]
uncommon. They are hard to pull off,
and equally hard to investigate.

Even among major criminal infil-
trations, the Athens affair stands
out by use it may have involved
state secrets, and it targeted indi
viduals—a combination that, if
it had ever occurred before, was
not disclosed publicly. The most
notorious penetration to compro.
mise state secrets was that of the

“Cuckoo’s Egg,” a name bestowed

by the wily network administrator

Basically, the hackers broke into a
telephone networl
its built-in wiretapping features for
their own purposes. That could have
been done with any phone account,
not just cellular ones. Nevertheless,
there are some elements of the
Vodafone Gri
unique and crucial to the way the
crime was pulled off.

We still don't know who com-
mitted this crime. A big reason is
that the UK-based Vodafone Group,
one of the largest cellular providers
in the world, bobbled its handling of
some key log files. It also reflexively
removed the rogue software, instead
of letting it continue to run, tipping
off the perpetrators that their intru-
sion had been detected and giving
them a chance to run for cover. The
company was fined €26 million this
past December.

To piece together this story, we
have pored through hundreds of pages
of depositions, taken by the Greek
parliamentary committee investi
gating the affair, obtained through
a freedom of information request
filed with the Greek Parliament. We
also read through hundreds of pages
of documentation and other records,
supplemented by publicly available
information and interviews with inde-
pendent experts and sources associ
ated with the case. What emerges
are the technical details, if not the
motivation, of a devilishly clever and

and subverted

ce system that were

The illegally wiretapped cellphones in the Athens
affair included those of the prime minister, his
defense and foreign affairs ministers, top military
and law enforcement officials, the Greek EU com-
missioner, activists, and journalists

On 6 April 2006, BILL ZINOU,
CEO of Ericsson Hellas, was
summoned to give evidence
before a parliamentary
committee lookinginto the
scandal. His company pr
vided the telecommunica-
tions switching equipment
that rogue programmers
broke into.

Vodafone Greece CEQ GIORESS
KORONUS ordered tho removal
of the surveillance program,
because, as he explained in
aFebruary 2006 newspaper
interview, “the company had to
react immediately.” Removing
the program is thought 1o have

tipped off the perpetrators and
helped them evade capture.

— Greek Prime Minister COSTAS
KARAMANLIS was only the
most notable of the 100
or 50 individuals illegally
wiretapped, which, besides
{ the country's political, law
S enforcement, and military elite,
included Karamanlis's wife.

1. Celiphone periodically
communicates with nearby
cellular base station even before
calls are made or received.

Typical Ericsson AXE Wiretap System

2. An audit can be performed between

2. Handset converts speech
into digital data stream,
sending the signal to the
transceiver at the base station,

3. Base station controller
allocates radio channels

between base stations.

4. Mobile switching center takes
phone calls, connects them to
recipients within same switching center.

and coordinates “handovers”

Switch

Remote-control

equipment
subsystem (RES)

- Central office

T Interception
management system
(IMS) software

How Cellphone System Was Breached

1. IMS software not
installed; no lists to

2. Intruders modify 29 blocks of code through
their corrections area, that is, a memory space

Arti ; who successfully pursued a German complicated computer infiltration. Mg the warrant and RES subscriber lists. check against unlawful where system software is updated with patches.
an apparent suicide. It network planning programmer in 1986. The program- Softwa, Re, wiretapping.
wouldprove tobe merely at the company. A mer had been selling secrets about THE CELLPHONE BUGGING began some- [ESSRSRNENINEN SQipmgnte-oq, R 3. Wiretaps
the first public news of connection seemed the U.S. Strategic Defense Initiative time during the fevered run-up to [N ————", ' ‘ SUbsyremn @ ES initiated
- : . (“Star Wars”) to the Soviet KGB. the August 2004 Olympic Games [EEENPISTSPASTHYWNSN Es)
fascandalh;l'nat would roil Greece °h|‘"°”s‘i ‘i”’.e" the But unlike the Cuckoo's Egg, the in Athens. It remained undetected [N R Rem,
or months. " i _list of people and their posi- Athens affair targeted the conversa- until 24 January 2005, when one [nstch—— cqu™® Cony, . >
The next day, the prime ministe ions at the time of the tapping, tions of specific, highly placed gov- of Vodafone’s telephone switches [NEHuhROMw ot Sug.ent
of Greece was told that his cellphone 'we can only imagine the sen- ernment and military officials. Given generated a sequence of error mes- [S——— Criber list | Cane% g
was being bugged, as were those of the sitive political and diplomatic the ease with which the conversations sages indicating that text messages ~ [ESIIICILI RISV L] | argq
- : on® i could have been recorded, it is gener- originating from another cellphone R LI LI
W,a"’r °ka4""=:45 arg;Lat_lea_st Ilog_other dlscusdslorlls. high-stakes bl:s" ally believed that they were. But no operator had gone undelivered. The ;’;‘f:::f::’:;g:j:;"“ ‘ 4. RES copies
igh-ranking dignitaries, including an .i‘::'sscrl;a sh:r"::;/'e;an;a'l;lavae one has found any recordings, and switch is a computer-controlled l | conversation \9’4. Rzguc suﬂwa‘r‘c stores tapped
i we don't know how many of the calls ~ component of a phone network that - onto a secon | numbers in two data areas within its
been routinely overheard and, were recorded, or even listened to, by 1‘umﬁ'ﬂ\ two (vlfphum- lines to com- ey ;i“.‘.i‘:‘,::‘ml.,, :,;.T;':.:ﬂ;aﬂ;lﬁ.? - :::‘;fr:ée‘:"‘; R O Mooy space, avoiding detection.
quite possibly, recorded. the perpetrators. Though the scope plete a telephone call. To diagnose 1o whom Koronias disclosed the IMS’s *Warrant 5 AW enforcement. ’ 9
of the activity is to a large extent the failures, which seemed highly the case. Glannis Angelou, Record" dialog box. ~d 7 -
’ & > = : % . the director of the Prime L Voice/data -
d unknown, it' fair o say that noother unusual but reasonably innocuous Minister's pafktical ofion, > [B ooite coiversition ofio s sécond
computer crime on record hashad the at the time, Vodafone ¢ was also prosent <L /& B Liran tordinie b 10 shadow e deets /
same potential for capturinginforma- maker of the switche: 4 P / 4
tion about affairs of state. telecommunications equipment Voice/data e Wirctaps) ,/J & Rogue soliwars concels ealf Furtkac by
While this is the first major manufacturer Ericsson.) initiated. hiding active blocks relating to intercepts.
infiltration to involve cellphones, We now know that the illegally " 4 4 Checksums are also tampered with to make
the scheme did not depend on the implanted software, which was SO AP TS) blocks appear unaltered.
wireless nature of the network. eventually found in a total of four of SBLINERTATTISM
www.spectrum.ieee.org July 2007 IEEE Spectrum NA 27
£ AT VUURIUIE IUGATES T TURUE SUTWare,
8 Mar Vodafone extracts a list of logged phone 7 Apr ADAE publishes its second
numbers from MEAKS. interim report on the case.
20 Jan Shadow phones operate in 8 Mar Vodafone Greece CEO Giorgos Koronias 8 Mar The govern-
Lycabettus restaurant in Athens. orders removal of the rogue software. ment security agency,
6 Jun Accounts for 24 Jan-| Feb Two test numbers are ADAE, presents its
first two shadow configured for interception at a fourth first interim report
phones are created. exchange, MEAPA. on the case to the
' 24 Jan The MEAPA exchange begins 1| Fob MEAKF upgrades Parliament Committee
9 Jun Three more ing forlopp errors, from R9.I to RIO software, Jul Vodafone, follow- on Institutions and
sha_t:'o;v gdnnnes are 2°539J o :;EAPA " - destroying the rogue code. ingli its na;;sr'mmi;‘n Transparency.
» registered. Iogg:r:; forelapn Bmgc inge stops 18 Feb Credits are added to mitnfzgn»in?osr) kse 31 Oct Vodafone 23 Mar ADAE performs
ERICSSON ,‘ Za Jun Or&smm . g the shadow phone accounts. atone exchange 918':5; an 0'0';; u a simulation of the
) = phone makes two 27 Jan Credits are added to the h with Ericsson for rogue software.
31 Jan Ericsson provides outgoing calls. shadow phone accounts. i) S_ﬂafow %nes facilty. software. ¢
Vodafone with the details 21 dai Shat operata ia | yoahestim JulVodafone
of its R9.1 software, which /an Shadow phones make one call restaurant. .
S ey i upgrades two of the 18 Nov Ericsson
includes lawful inter- and forward another. The call recipient he »
i il then sends an SMS message to itself. Ccess servers, wiping delivers LI soft-
ception (LI) capability. out access logs. ware toVodafone.

=== == ==
MAY Ji SEP NOV JAN

MAR

JAN uL
2002 2003 2004 2005 2006
4 Aug Nine more shadow phones 27-29 Oct - "
s gt o e
4-10 Aug Rogue software is 's:'f‘:'i:'&dﬂ‘" is found hanged in his apartment. finishes the preliminary
?fx?&"é’??m":sm: exchange but 10 Mar Koronias briefs Giannis Investigation. R
g " 5 is not used for Angelou, director of the prime 2 Feb The government
vodafone :'" Ad“ H:ﬂ““ softwareis 0':1“' monitoring. ‘minister’s political office. provides details of the case
igured with interception numbers. B in a press conference. 2
£ dns Ercosor dofvern 13 Aug Opening ceremony of the dscros specfying wiulinercep- 2 Fob Criminal prosecution =
FEL avaian sofiare Athens 2004 Olympic Games. o d kes eff . for the violati pr:f e 0T
containing partial L pi 3 tion procedures takes effect. r the violation of commu-) L
functionality to Vodafone. 16 Mar Vodafone sends e-mail to nications privacy and pos- 14 Dec ADAE fines Vodafone
Ericsson asking for the return of all sibly spying is ordered. €76 million (US $99.4 million).

exchange backup data. Voulgarakis

CLOCKWISE FROM TOP LEFT: KOSTAS BROWN/ISTOCKPHOTO; ADAE:
VODAFONE: LOUISA GOULIAMAKI/AFP/GET TY IMAGES; AFP/GE TTY IMAGES: ANDRE Y PROKHOROV/IST OCKPHOTO

Q568

The Antikythera
Mechanism: A Computer
Science Perspective

Diomidis Spinellis
Athens University of Economics
and Business

The Antikythera mechanism
is an ancient astronomical
calculator that contains a
lunisolar calendar, predicts
eclipses, and indicates

the moon’s position and
phase. Its use of multiple
dials and interlocking gears
eerily foreshadows modern
computing concepts from
the fields of digital design,
programming, and software
engineering.

m Computer

Published by the IEEE Computer Society

wo thousand years separate us from an ancient Greck

computing device known as the Antikythera mechanism.

Here I explain the mechanism’s operation based on its

reconstruction in Squeak Etoys, a multimedia authoring

environment primarily designed to help high school stu-
dents learn scientific and engineering concepts.'? The reconstruction
relies on the recent findings that an international cross-disciplinary
team of scientists obtained through surface imaging and high-reso-
lution x-ray tomography. My work aims to present the functioning
of this remarkable device using working code, the language of our
community.

The complete image of this implementation is available online as
open source software running on the Etoys environment (www.dmst.
aueb.gr/dd meso). | readers to d load an Eroys
image and run the software on it, as they step through the descrip-
tions in this article.

HISTORY

1n 1900, a group of sponge fishers secking shelter from the Kythera
Sea’s cruel weather anchored their boats on the barren island of Anti-
kythera. Continuing their diving there, they discovered at a depth of
42 meters an ancient shipwreck with bronze and marble statues. For
almost a year afterward, they worked with the Greek government to
salvage the ship’s contents. These artifacts were then transferred for
preservation and study to the National Archaeological Museum in
Athens, where they remain on display to this day. Among the recov-
ered items, which dated from the first century B.C., were a beautiful
nude bronze statue and a severely corroded lump of bronze clearly
containing gear wheels.

Numerous scientists have devoted their lives to the study of this
mysterious mechanism. Based on the few legible letters in fragments
and descriptions of mechanical contraptions in ancient Greek and
Roman texts, it was initially identified as an astrolabe or planetar-
ium. Derek J. de Solla Price, the father of scientometrics, subsequently
spent three decades analyzing and reconstructing the device. Using
radiographs, he was able to count the tecth of most of the device’s
gears and construct a detailed model of their operation. In his seminal
1974 monograph, “Gears from the Greeks,” he described the mecha-
nism as a calendar computer.* Famously, his proposed model included
a differential mechanism, similar to the one found in the drive trains
of modern cars, apparently constructed scores of centuries before its
reinvention.

0018-0162/08/$25.00 © 2008 IEEE

calendar
Callippic
calendar

Lumisolar

Metonic

Base mi] Eclipse
I L saros
sl 190809
S [N
o Comar Excignes
2
(sirea
oot
Hipparchos
Anomalistic
nonn
Figure 1. Antikyth hani ionalmodel. Each circle rep gear, with thy he topindicating the direction

the gear is turning, the number in the center how many teeth the gear has, and the letter-number combination at the bottom the

name of the gear. Gears with the same letter are concentri:

Recently, astronomers, archeologists, computer
neers, and physicists from around the world collabor:
on the Antikythera Mechanism Research Project (w»
antikythera-mechanism.gr) to reconstruct a more

cise model. They used three computer-based ima
techniques—3D x-ray microfocus computed tomo,
phy, polynomial texture mapping, and digitized h
quality photography—to study virtual cross-secti
of the device under various simulated lighting co:
tions (samples of the images are available for inte
tive study at the project website). The project’s rest
published in Nature in November 2006,* confirmed
the device was indeed a calendar computer. Howe
the new model proposes that the gears Price identi
as a differential instead operate in a distinct, but no
sophisticated, manner to calculate the anomaly in

moon’s rotation.

CALCULATING WITH GEARS

The Antikythera mechanism is believed to consis
35 gears. Archeologists identified 30 in the surviy
fragments, while science historian Michacl Wright
the authors of the Nature study introduced another

to explain the device’s functionality.*’

Figure 1 shows the relationship of the gears, ¢
represented by a circle. The arrow at the top of ¢
circle indicates the direction the gear is turning: —
clockwise and - for counterclockwise. The numbe
the center indicates how many teeth the gear has.
studies of the mechanism name gears systematic
with a letter-number combination; the figure adopts
nomenclature used in the Nature article: Gears with
same letter are concentric, and numbers increase f
the front to the back of the mechanism.* A simple
connects gears that rotate together as one picce, w

@ e

Metonic

(b)

Figure 2. Antikythera mechanism’s front and back faces. (a) A dial on the front face shows the sun’s position throughout the year
on the Zodiac cycle and a 365-day calendar. (b) The back face contains two lunicalendar dials (showing the Metonic and Callippic
cycles) and two eclipse-prediction dials (showing the Saros and Exeligmos cycles).

mi

(@

(b)

Figure 3. Emulator setup of (a) lunisolar calendar and (b) eclipse-prediction gears.

LUNISOLAR CALENDAR

Reckoning time progression through the moon’s
phases is convenient. It involves a calendar based on the
visibly recurring lunar phases defining the 29%-day syn-
odic month—the time from one full moon to the next.
However, the months of such a calendar don’t fit cor-
rectly in the seasonal year, which has practical signifi-
cance for, say, agriculture.

In the fifth century B.C., the Athenian astronomer
Meton devised a way around this problem by observing
that 19 seasonal (known as tropical) years contain almost
exactly 235 synodic months, and proposing a cycle con-
taining 125 full months of 30 days and 110 hollow, 29-
day, months.® A century later, Callippus further refined
that model by proposing the removal of one day every four
Metonic cycles. Two dials on the back of the Antikythera
mechanism indicate each month in a Metonic cycle as well
as track progress through the Callippic cycle.

To increase the Metonic display’s resolution, the dial
rotates five times in each cycle with a pointer tracking a

R computer

five-turn spiral. As the pointer rotates, the spiral’s grooves
force it to move toward the outer turns of the spiral, simi-
larly to a needle tracking a gramophone record. Once the
pointer reaches the end of the spiral, the human operator
would presumably return it to the beginning.

Gear n2 driving the Metonic calendar’s dial must
rotate 5 times in 19 years, thus the ratio between gear
bl tracking the tropical years and n2 should be 5/19.
Indeed, the sequence b2-11-12-m1-m2-n1 calculates this
ratio: 64/38 x 53/96 x 15/53 = 960/3648 = 5/19. Further,
gear 02 driving the Callippic cycle’s dial must turn at
1/20 of the Metonic dial: once every four cycles of five
turns each. The sequence n2-pl-p2-ol calculates the
required ratio: 15/60 x 12/60 = 1/20. Figure 3a shows
the emulator setup of these gears.

ECLIPSE PREDICTION

The Antikythera mechanism predicts eclipses by
means of the Saros cycle established by ancient Baby-
lonian astronomers: a period of 223 and 1/3 synodic

O startbaseOperate | normal:] B
bl turn by start's turn®
sun's theading *bi's hezfing’

b 1 b2 sameHeading: bl

O startluniSolarOperate | normal)
m2 sameHeading: mi

nl adjustCow:m2
n2 sameHeading: nl
(8 sameHeading: nl
|pl adjust:nz
| p2 sameHeading: pt
ql adjustCow: p2

b ol adjust:n3

2

b2

(@) (b)

Figure 4. Emulator setup of gears to (a) calculate the sidereal month and (b) modify this calculation using Hipparchos’s lunar

mechanism to model the moon’s elliptical orbit.

months in which identical moon and sun eclipses occur.
Glyphs on the 223-month divisions of the plate where
the Saros dial rotates indicate each eclipse type. The let-
ter T (for LEAHNH—moon) indicates a lunar eclipse,
while the letter H (for HAIOZ—sun) a solar one. Like the
Metonic display, the Saros display is laid out in a four-
turn spiral. Interestingly, its construction involves two
elements of modern software engineering: the use of a
lookup table (the Saros eclipse data) to aid computation,
and the adoption of a design pattern (a spiral for increas-
ing the display’s resolution).

Because the Saros cycle contains a 1/3-day fraction,
it’s necessary to wait three Saros cycles to witness an
eclipse at the same time. Thus, a separate dial indicates
the Exeligmos cycle, which comprises three Saros cycles
and can be used to predict the time of each eclipse.

Figure 3b shows the emulator setup of the eclipse-
prediction gears. We already know from the Metonic
calendar that there are 235 synodic months in 19 years.
For the Saros display, we need four revolutions in 223
synodic months, a ratio of 4/223 x 235/19. The sequence
b2-11-12-m1-m3-e3-e4-f1-f2-g1 establishes this ratio,
which can be easily verified with a calculator. Further,
the Exeligmos dial must turn once every three four-turn
Saros cycles, thus at a rate 1/12 of Saros. The sequence
g2-h1-h2-i1 calculates this ratio.

LUNAR CALCULATIONS

The Antikythera mechanism’s front dial indicates the
moon’s anomalistic month—its position on the celes-
tial sphere taking into account both the moon’s ellipti-
cal orbit and the additional rotation of the ellipse’s two
extreme points. This anomaly is caused by the solar tide,
and one full rotation takes nine years to complete. Gears
b0 and q1 combine the moon’s position with that of the
sun to show the moon’s phase. The three-step calcula-
tion of the moon’s position is the most sophisticated of
the mechanism’s known parts.

The first step involves calculating the sidereal month,
the moon’s period in a fixed frame of reference. In a
period of 19 years, the moon performs 235 synodic
rotations (from the Metonic calendar) and another 19
due to its rotation around the sun—a total of 254. The
sequence b2-c1-c2-d1-d2-e2, shown in Figure 4a, calcu-
lates the required yearly rotation ratio 254/19.

Next, the Antikythera mechanism models the moon’s
elliptical orbit through an ingenious device known as
Hipparchos’s lunar mechanism. The sidereal rotation
established on gear €2 is transferred to gear €5, which is
mounted on the same axle, as Figure 4b shows. Gear 5
in turn turns k1, which has a pin mounted a small dis-
tance from its center. Gear k2 is mounted below k1, but
its center is slightly displaced from k1’s center. The pin
moves within a slot cut into gear k2, and, because the
two gears are eccentrically mounted, harmonically var-
ies k2’s rotation rate. Running the Antikythera emulator
demonstrates that k2’s rotational speed is high when the
slot is at the top of the screen and low when it’s at the
bottom; this models the corresponding variation of the
moon’s speed between its perigee and apogee.

Finally, the Antikythera mechanism models the rota-
tion of this elliptical orbit by mounting k1 and k2 on
e3. The gear e3 rotates at the rate of the elliptical orbit’s
rotation—the precession period of the moon’s long
axis—through the sequence b2-11-12-m1-m3-e3. Note
that this rotates k2’s axis and thereby complicates driv-
ing a dial with it. Thus, k2 drives e6, which is on a fixed
axis. Gear €6 in turn drives el, which is located on the
front-dial side of €3, and b3 moves the rotation clock-
wise to the front dial’s center. In computer engineering
terms, the sequence e6-¢1-b3 interfaces the processing
unit to the display unit.

Another parallel with modern computing technology
is the dual role of some gears: 3 in the calculation of
both the Saros and the anomalistic month, and m1 in the
calculation of Saros and the lunisolar calendar. This is

way 2008 I3

DICMIDIS SPINELLIS

ADIY LEGO
CONTROLLER

A LOW-COST WAY
TO PROGRAM LEGO
MACHINES

RESOURCES_HAHDS OH touse akit from the company’s well-known Mindstorms robotics line. Mindstorms-
based machines are built around the Intelligent Brick, which can be programmed
using Lego’s graphical programming environment or one of a number of third- party alternative languages. But Lego also makes a col-
lection of motors, connectors, lights, and infrared receivers collectively sold under the label of Power Functions. In place of a program-
mable brick, the Power Function lineincludes a handheld controller for transmitting command signals. ® Iwonderedifitwas possible
to use a Raspberry Pito replace the handheld controller, taking on the role of an Intelligent Brick. This would have some advantages.
With programs being created on the same device used to control Lego constructions, itwould eliminate the need to download the pro-
grams to the brick, speeding up development. The US $40 Pi is also a lot cheaper than the $190 Intelligent Brick. | also wondered if
such a setup could be used with MIT’s Scratch, a freevisual programming environment aimed at children. Scratch extensions are avail-
able for use with the Mindstorms brick, but they require altering the brick’s firmware, and | wanted to try something simpler. ® As| dis-
covered, most of the code required for controlling Lego toys using Scratch is already available as open source software. Whatwas »

n fyouwant toexplore codingwith Lego bricks, there’s one majoroption:

SPECTRUM.IEEE.ORG | HORTH AMERICAN | HOV 2016 | 21

RESOURCES_HAHDS OH

neededwas integration, configuration, and
some glue software.

First, | needed to build an infrared con-
trol link, which is basically two infrared
LEDs operated via the Raspberry Pi's gen-
eral purpose input/output (GPIO) connec-
tor and Lego’s receiver. | used schematics
and instructions by Alex Bain to build the
hardware. For the software, | downloaded
and installed LIRC, a package that has sup-
port for decoding and transmitting signals
used by over 2,500 different infrared re-
mote controls.

Getting the LIRC package to work with
my home-brew infrared link was a simple
matter of editing some configuration files
and specifyingwhich GPIO pins | had wired
up forinput and output.

Now | needed to get LIRC to send valid
Lego command signals. This means speci-
fying the waveform—a pattern of infrared
pulses—that must be sent for each Lego
command. Fortunately, Legohasreleased a
document specifying the protocol and for-
mat of all commands (for example, a binary
value of 1 is transmitted by six pulses of IR
light at afrequency of 38 kilohertz, followed
by a pause of 553 microseconds). The Lego
Power Functions system supports up to
four receivers working on different chan-
nels, and eachreceiverhas ared sideanda
blue side, each ofwhich canindependently
control a motor.

Building on this information, Conor Cary
created lego-lirc, a Java program that gen-
erates command waveforms, complete
withthe correct checksums, in aformatthat
LIRC understands. | downloaded lego-lirc
and,with the Lego documentation in hand,
created additional waveforms that allow
the transmission of PWM (pulse-width
modulation) commands. These commands
allow precise speed adjustment of Power
Function motors without requiring timing
loops in the application software. (To avoid
the hassle of running lego-lirc, you canjust
download my file of generated LIRC wave-
forms directly from my GitHub repository
under the username of dspinellis.) To con-
figure LIRC to use the Lego commands, |
copied thewaveformtothe LIRC configura-
tion directory. | could then send Lego com-

BLOCK BY BLOCK

Lego Power Functions allow motors
to be controlled with infrared signals
[top]. Signals can be generated by
connecting infrared LEDs to a Pi
[middie images]. A Lego enclosure
holds the components [bottom].

22 | HOV 2016 | HORTH AMERICAN | SPECTRUM.IEEE.ORG

mands from the Pi's command line through
LIRC's irsend program.

The final stepwas toissue the LIRC com-
mands from the Scratch environment. |
enabled “remote sensor connections” in
Scratch. This makes Scratch behave like a
local server running onthe TCP port 42001.
Client software can connectto Scratch us-
ing this port and listen for messages from
Scratch programs. (It's also possible to
have the client software and Scratch envi-
ronment run on separate machines, soyou
could have the Raspberry Pi—based infra-
red interface controlled by a Scratch pro-
gram running on a desktop computer, for
example.) | theninstalled Phillip Quiza's ex-
cellent scratchpy library, which allows you
to write Scratch clients in the Python pro-
gramming language.

Finally, | wrote a Python script that re-
ceives Scratch broadcast messages speci-
fying Lego remote commands, and runs
the LIRC command-line client to send
them (this is also available from my lego-
power-scratch GitHub repository). To run
the script, run the control.py programin a
separate terminal window and launch the
Scratch environment. While control.py is
running, it will display on its standard out-
put the remote control messages it sends
or the errors it detects on the incoming
Scratch messages.

In Scratch, programs are constructed
by chaining together graphical blocks on
screen. Blocks perform functions such as
program-flow control and graphics ma-
nipulation. To send a message to a Lego
Power Functions receiver, a “broadcast”
block is used, with a simple text string of
the form “Lego <channel> <Blue|Red>
<power level>." So, for example, the mes-
sage “Lego 2 blue -7” will send a signal by
way of the Python client and my transmit-
terto turn the motor connected to the blue
side of the receiver on channel 2 at full
speed, backward.

How does the system work in practice
withits intended audience? I tried it out with
ayoung budding engineer—who quickly
wrote a Scratch program to control Lego’s
Volvo Wheel Loader kit with a computer’s
arrow keys. —DIOMIDIS SPINELLIS

Takeaway?

Pe curious, have ‘ﬁm./

Thank you!

w4 dds@aueb.gr
@ www.spinellis.gr
¥ @CoolSWEng
@ github.com/dspinellis

Image Credits

65 instructions: Bruker

65 image: DL4ACS German Amateur Radio Station

narp PC-1211: Denisfo - Own work CC BY-SA 3.0

-99/4A: Rama & Musée Bolo - Own work CC BY-SA 2.0 fr
IBM PC: Rama & Musée Bolo - Own work CC BY-SA 2.0 fr
IBM Portable PC: Hubert Berberich (HubiB) CC BY-SA 3.0

Texvikn EkAoyn magazine: salax54

— OV T T

References

Diomidis Spinellis and Panagiotis Louridas. A framework for the static verification of
API calls. Journal of Systems and Software, 80(7):1156-1168, July 2007.
d0i:10.1016/].iss.2006.09.040

Diomidis Spinellis. Code Reading: The Open Source Perspective. Addison-Wesley,
Boston, MA, 2003.

Diomidis Spinellis. Global analysis and transformations in preprocessed languages.
IEEE Transactions on Software Engineering, 29(11):1019-1030, November 2003.
doi:10.1109/TSE.2003.1245303

Diomidis Spinellis. CScout: A refactoring browser for C. Science of Computer
Programming, 75(4):216-231, April 2010. doi:10.1016/j.scico.2009.09.003

Diomidis Spinellis. A dynamically linkable graphics library. Unpublished article,
Imperial College, London, UK, March 1988.

Alexander Lattas and Diomidis Spinellis. Echoes from space: Grouping commands with
large-scale telemetry data. In 40th International Conference on Software Engineering:
Software Engineering in Practice Track, ICSE-SEIP '18, New York, NY, USA, May 2018.
Association for Computing Machinery. doi:10.1145/3183519.3183545

Diomidis Spinellis. Reliable identification of bounded-length viruses is NP-complete.
IEEE Transactions on Information Theory, 49(1):280-284, January 2003.
do0i:10.1109/TIT.2002.806137

Duncan White, Jan-Simon Pendry, and Diomidis Spinellis. Unix PDP-11 emulator (as11
& em11) user's guide. Laboratory documentation, Imperial College, London, UK,
January 1989.

Diomidis Spinellis. Programming Paradigms as Object Classes: A Structuring
Mechanism for Multiparadigm Programming. PhD thesis, Imperial College, London,
UK, February 1994.

Diomidis Spinellis and Chrissoleon T. Papadopoulos. A simulated annealing approach
for buffer allocation in reliable production lines. Annals of Operations Research,
93:373-384, 2000. d0i:10.1023/A:1018984125703

Diomidis Spinellis. Unix tools as visual programming componentsin a GUI-builder
environment. Software: Practice and Experience, 32(1):57-71, January 2002.
doi:10.1002/spe.428

Diomidis Spinellis. The Elements of Computing Style: 180+ Tips for Busy Knowledge
Workers. Leanpub, Vancouver, BC, Canada, 2014.

Diomidis Spinellis. The decay and failures of web references. Communications of the
ACM, 46(1):71-77, January 2003. doi:10.1145/602421.602422

Diomidis Spinellis and Vaggelis Giannikas. Organizational adoption of open source
software. Journal of Systems and Software, 85(3):666—682, March 2012.
do0i:10.1016/j.is5.2011.09.037

Diomidis Spinellis, Panos Louridas, and Maria Kechagia. The evolution of C
programming practices: A study of the Unix operating system 1973-2015. In Willem
Visser and Laurie Williams, editors, ICSE '16: Proceedings of the 38th International
Conference on Software Engineering, pages 748-759, New York, May 2016.
Association for Computing Machinery. doi:10.1145/2884781.2884799

Diomidis Spinellis. The information furnace: Consolidated home control. Personal and
Ubiquitous Computing, 7(1):53-69, 2003. doi:10.1007/s00779-002-0213-8

Diomidis Spinellis. Position-annotated photographs: A geotemporal web. IEEE
Pervasive Computing, 2(2):72-79, April-June 2003. doi:10.1109/MPRV.2003.1203756
Vassilis Prevelakis and Diomidis Spinellis. The Athens affair. IEEE Spectrum, 44(7):26—
33, July 2007. doi:10.1109/MSPEC.2007.376605

Diomidis Spinellis. The Antikythera mechanism: A computer science perspective. IEEE
Computer, 41(5):22-27, May 2008. doi:10.1109/MC.2008.166

Diomidis Spinellis. A DIY Lego controller: A low-cost way to program Lego machines.
IEEE Spectrum, 53(11):21-22, November 2016. doi:10.1109/MSPEC.2016.7607018

www.spinellis.gr/pubs/

http://dx.doi.org/10.1016/j.jss.2006.09.040
http://www.spinellis.gr/codereading
http://dx.doi.org/10.1109/TSE.2003.1245303
http://dx.doi.org/10.1016/j.scico.2009.09.003
http://dx.doi.org/10.1109/TIT.2002.806137
http://dx.doi.org/10.1023/A:1018984125703
http://dx.doi.org/10.1002/spe.428
http://www.computingstyle.com/
http://dx.doi.org/10.1145/602421.602422
http://dx.doi.org/10.1016/j.jss.2011.09.037
http://dx.doi.org/10.1145/2884781.2884799
http://dx.doi.org/10.1007/s00779-002-0213-8
http://dx.doi.org/10.1109/MPRV.2003.1203756
https://spectrum.ieee.org/telecom/security/the-athens-affair
http://dx.doi.org/10.1109/MSPEC.2007.376605
http://dx.doi.org/10.1109/MC.2008.166
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7607018
http://dx.doi.org/10.1109/MSPEC.2016.7607018
https://www.spinellis.gr/pubs/

