An Implementation of the Haskell Language

Diomidis Spinellis

June 1990

Abstract

This report describes the design and implementation of HASKELL system. The
areas implemented are the lexical analysis, parsing, intepretation of the lambda
tree, and machine code generation. Because of the size, complexity and novelty
of the language many of these areas present particular difficulty. A considarable
amount of meta-programming was used in order to tackle the size of the project.

Contents

Introduction

11
12
13
14
15

16

21
2.2
2.3

2.4
2.5
2.6

Lexical Analysis

Technical Overview
General Description o
ThelLayoutRule
AlternativeDesigno
CodingforSpeed
151 TokenRecognition.
152 ChaacterCopying
153 Memory Allocation
154 Symbol TableUpdates
155 TheUltimate Combination.
156 Peformance
Testing

Parsing

Technical Overview
General Description Lo
Handling the Grammar Ambiguities
2.3.1 Definable Operators and Function Applications
232 Generalo
233 SeptemberVersion.
234 AprilGrammarchanges
235 AprilVersion oo
TheParseTree
TheMini-Parser
Thelayoutrule

2.7 Deding With Interface and Implementation Modules
28 Lexica Ties
29 SymbolTable
210 Testing

Modulesand Prelude

3.1 Technica Overview
32 Lexicd Analysis
3.3 Preludelnitidlisation L

Interpreter

41 Technica Overview

4.2 Genera Description Lo

4.3 Interpreter Descriptiono
431 LambdaTree.
432 Environment
433 EvauateCode,
434 ApplyCode

4.4 Primitivelibraryo
441 TypeConversion i
4.4.2 FixedPrecisonintegers
4.4.3 MultiplePrecisionIntegers
444 SinglePrecisionFloatingPoint
445 DoublePrecisonFloatingPoint

4.5 Primitive Description Compiler L.

Code Generation
5.1 Technica Overview
5.2 MachineDescription Meta-generator
53 MachineModels
531 Motorola68020
532 IntediAPX386,
54 Gimplementation
55 Cell Implementation
5.6 Additional Glnstructions
5.7 RuntimeEnvironment

System Development | ssues
6.1 Error messagemanagement L.

Performance

Conclusions

Acknowledgements

Error Messages

A General Critique of the Haskell Syntax

C.1 Introduction

Cl1l Styligicproblems
Cl2 Lexicdties
C.2 Language ambiguity and lack of LR(K)ness

C.3 Conclusions
Error Log
Trademarks

Bibliography

57

59

60

62

70
70
70
71
71
72

73

81

82

List of Tables

21
2.2
2.3
24

7.1

Changesto the September Grammar 16
Changestothe April Grammar 19
Tokens Appearing in the HASKELL Grammar 25
TokenSynonymso 25
Frontendprofile 58

| ntroduction

Haskell is a general-purpose, purely functional programming lan-
guage exhibiting many of the recent innovations in functional (as
well as other) programming language research, including higher or-
der functions, lazy evaluation, static polymorphic typing, user-defined
datatypes, pattern matching and list comprehensions. It isaso avery
complete language in that is has a module facility, a well-defined
functional 1/0 system, and arich set of primitive data types including
lists, arrays, arbitrary and fixed precision integers, and floating point
numbers. In this sense HASKELL represents both the culmination
and solidification of many years of research on functional languages.
[Hud89, p. 381]

Inthisreport | present theimplementation of the front and back ends (scanning,
parsing, interpreting and generating machine-specific code) for aHASKELL system.

Thisisthefirstimplementation of thelanguage donein theimperative paradigm
that | amawareof 1 so considerablescopefor experimentationwithitsnovel features
existed.

The very large scale of the project (more than 12000 lines of code) was an
additional challengein organising it. Simplifying the implementation, minimising
errors and increasing efficiency, were acomplished by designing, implementing
and using four small meta-languages and a number of code management tools.

The novel features of this—committee designed—Ianguage such as layout,
orthogonality between operators and function identifiers, operators of variable

1Thetwo other implementationsthat are under-way (Glasgow and Yale) are being written entirely
in HASKELL [Hud89, p. 405].

precedence and associativity, source layout rules, type classes and modules have
never existed inasinglelanguagebefore?. For someof the problems created by the
interaction of the various features (such as parsing curried function applications)
extended bibliographic research revealed that no formal solutions existed and thus
solutions had to be formalised.

The focus of attention on the front end of the language was efficiency, re-
liability and implementation of the full HASKELL standard. All of these goals
have, in my opinion, been achieved. On the back end the emphasis was more on
experimentation with code generation, profiling and debugging.

2PL/I might qualify if presented appropriately.

vi

Chapter 1

Lexical Analysis

Thelexical analyser reads Haskell programsand convertsthem into a set of tokens.
It keepstrack of the current row and column numbers, interpretsstring and character
escapes removes comments and other white space, converts integers and floating
point numbers and implements parts of the layout rule that are applicable during
thelexical analysis phase.

1.1 Technical Overview

The implementation and theoretical issues of lexical analysers are described in
[ASUS8S5, pp. 83—-157].

In [ASU85, p. 89] lex three approaches to the implementation of a lexical
analyser are listed. They are ordered, from easiest and least efficient and most
complicated and efficient as follows:

1. Using alexical-analyser generator.

2. Writing alexical analyser in aconventional systems—programming language
using the 1/0O facilities of the language for input.

3. Writing thelexical analyser in assembly and explicitly managing the reading
of input.

The solution finally adopted was a hybrid of 2 and 3; a hand crafted analyser
in C using a special input library.

The advantages of using language development tools are presented in [JL87].
A number of tools which automate the task of creating lexical analysers such as

lex [Les75], mkscan [HL87], flex [Pax89] and the one described in [Heu86] are
available.

One of the tools described, the lexical analyser generator lex [Les75] was
initially used. Lex is not widely adopted. In [AKW?79, section 5] the authors
indicate that they are using lex, but other implementation descriptions such as
[Joh82, p. 6] outlinehand crafted analysers. Thistrend wasverified by examination
of the source code of publicly available language systems such as the GNU C
compiler [Sta89] and PERL [Wal88]. The reason for this appears to be that
analysers generated by lex are slow and consume alot of space. In fact, [Heu86]
suggests that nearly al lexical analysers for production compilers are written by
hand.

A forma design methodology for writing scannersis discussed in [DGM80].
A practical design outline for ahand crafted parser that is roughly the base for my
designisfound in [Wai86]. The major difference of my implementation isthat his
nmki nt , and nkf pt routines are implemented with inline code.

[Heu86] gives the basic rulesto follow for creating a fast scanner:

e “touch” characters as few times as possible,
e avoid procedure calls.

Both of these rules have been followed in the design of the scanner.

A most efficient method for expanding tabs is described by [Wai85]. He
proposes to minimise the number of operations on input, eliminating the column
counting variable. Instead the column number is dynamically computed using the
pointer to the input buffer and another variable containing the amount of extra
spaceinserted. The other variable needs only updating when atab is encountered.
The method was not chosen because of its additional complexity and the frequent
number of times the column number is examined in HASKELL .

The C standard input-output library initially used is described in [KR82, Ap-
pendix A]. An alternative, more efficient approach, can be found in [Hum88]. The
fast input library described minimises the copying of data and allows traversing
of the input using a character pointer. Speed advantages are mainly gainedin line
oriented applications. Since most HASKELL tokens are not allowed to cross aline
boundary its use is very appropriate in this context. It was implemented in C for
the UNIX and MS-DOS operating systems.

A list of tasks which complicate the design of an analyser isgiven in [Joh82, p.
8]. InHASKELL thisiscomplicated by the existence of the layout rule. In[ASUS8S5,
p. 84] the possibility of simplifying the lexical analysis by splitting it into two

phases, “scanning” and “lexical analysis proper” isoutlined. | decided for reasons
of efficiency to use the integrated approach also found in [Joh82, p. 9].

In many parts of the code a sentinel is used to speed up aloop. Thisideawas
used in the lexical analyser of the SAIL compiler and can be found in [Ben82, p.
55]. The character classification tables described in section 1.5.1 are patterned on
the ctype macros [V 7.82, ctype(3)]. The use of such tablesto speed up processing
can befound in[Joh82, p. 8].

In section 1.4 an alternative design for the lexical analyser is presented.

1.2 General Description

The top routine of the analyser isyy| ex. Thisroutine every time called returns
the numeric code of a new token. All the tokens that can exist are automatically
numbered with numbers above 255 by the parser generator yacc [Joh75]. Token
values below 256 are used to indicate single ASCII characters. Tokens that have
additional data associated with them (such as the strings, integers and symbols)
havethat dataor apointer to it copied into the appropriatefield of the union variable
yyl val . Thisisaso defined by the parser generator.

Yyl ex is used as an interface to aring buffer. The ring buffer contains a list
of tokens that need to be returned to the parser. Accessroutines allow the addition
of tokens to both ends of the buffer, for reasons outlined in sections 2.3.5 and 2.6.
When the buffer is empty then the routine get t oken is called to supply the next
token.

Get t oken isthe lexica analyser engine. Initially implemented using lex it
was reimplemented in C using a switch case for every possible input character.
Most tokens are recognised by a set of macros and returned immediately. More
complicated cases such ascomments, stringsand charactersaredealt by theroutines
process_conmment ,process stringandprocess character.

At alower level thei nput macro returns the next character from the input
stream. It counts the line and column number, virtually expanding tab characters.
It also provides for asingle character pushback needed by most recognition loops.

Theinterface to the operating system is provided by an implementation of the
fio library ([Hum88] [V 885, fio(3)]). The main routine used Fr dl i ne returns a
character pointer to a beginning of aline. According to [Hum9Q] after opening a
file no other initialisation is required for using the library.

1.3 TheLayout Rule

Thelayout rule of HASKELL allowsfor thelayout of the problemto convey informa:
tion normally represented by the use of bracesfor block specifiers and semicolons
for declaration separators. With the layout ruleif anitem isindented more than the
rest in a place where an open brace is expected then an implicit brace is inserted.
Items that are indented by the same amount have a semicolon inserted before them
and areturn to a previous level of indentation closes an implicitly opened brace.

The September specification of HASKELL [HWAT89, p. 3] defined that an
opening brace could be expected at three different places:

1. after the export list of amodule,
2. dfter the keyword wher e and
3. after the keyword of

Since the first place is determined by the grammar the lexical analyser could
not by itself determine when an opening brace was required. A tie-in with the
parser was needed. This was done by the addition of a rule open_br ace in
the grammar which before asking for a token from the lexical analyser called the
function br ace_needed. That would then check to seeif abrace was available
inthefile. If one was not available it would push one in the input stream.

The April version of the document [HWA*90, p. 3] simplified this situation
by requiring awher e identifier after the export list. Thusthe lexical analyser can
always know when an open brace can possibly be inserted.

The rule for inserting an open brace specifies that the next token needs to be
examined. This can be implemented by having the scanner recursively call itself,
so that whitespace and comments are removed, tabs are expanded and columns
counted.

This approach was found to be very messy. In normal operation the scanner
is caled by the parser. Some state information such as the line and column
numbers needs to be saved between calls. The recursive call destroyed the state
information and made this approach very difficult to implement correctly. An
aternative approach was opted for. A mini-scanner waswritten. The mini-scanner
recognises only whitespace-class tokens, like comments, and genuine whitespace.
Whenever the next token needs to be examined the mini-scanner is called.

Indentation levels are kept in an integer stack. A stack pointer always points
to the current indentation level. The stack is of finite length and checks against
over and underflow are made. Indentation forced the addition of one more piece

of state information to the scanner. In certain places a suitably indented token may
terminate morethan onelevels of blocks. Consequently the scanner needsto return
a number of closing braces. A static variable is checked every time the scanner
operatesto see if some more closing braces need to be returned.

The April HASKELL document gives an additional rule for the layout. Specifi-
cally asemicolon or brace is inserted whenever the next syntactical itemisillegal,
but asemicolon or bracewould belegal. Thisrule can not be handled by thelexical
analyser. Is section 2.6 | describe how this problem was solved by modifying the
parser.

1.4 Alternative Design

From the above it should be clear that the implementation of the scanner isnot very
clean. The operation of the scanner is dependent on seven state items. These are:

1. Thecurrent column.

2. The current line number.

3. A pointer to the next character to be processes in the input stream.
4

. A possible pushback character, its line number and column. Thisis used to
implement aone level pushback stack.

5. The column of the last character processed. This is needed because if a
character is pushed back the column can not be just decrement by one due
to complications with tab expanding.

6. All theindentation levels up to the current indentation.
7. Possible additional close bracesthat may need to be returned.

Asisdescribedin section 2.5 afurther buffer is needed to push arbitrary tokens.

| tried to think of a programming paradigm that could naturally accommodate
the needs of the scanner in a clean way. The best approach would be using corou-
tines [Hoa78]. An example on how programs can be structured using coroutines
can befound in [Pal82].

The scanner and the parser work as coroutines. Whenever the parser needs a
token, it is suspended and the scanner is run. The scanner works until it is ready
to pass a token back to the parser and then gets suspended. In this way the state
information isimplicitly kept by the coroutining mechanism resulting in a cleaner

implementation. One further advantage of this approach is that it leads to easy
parallelisation.

Two ways of implementing the scanner as coroutines were examined. The one
involves breaking the program into two processes. The one process is the scanner
and the other the parser. The two processes communicate using a pipe and are
suspended and resumed under operating system control.

The other way is implementing coroutines inside C . A monitor is used to
control the coroutining. When the monitor starts a C function as a coroutine it
allocates a new stack in dynamic memory and assigns that stack to the function.
Communication is aso done via the monitor, which can switch processes by
switching the stacks. An implementation of coroutines for C can be found in
[Bai85a].

None of the two approaches was implemented because of various problems.

e The two process approach is very inefficient. Every token needs to pass
through the operating system two times (one write and one read) in order
to go from one process to the other. This involves two system calls and a
context switch. A typical time for a system call is 350u.s [Fed84, p. 1796]
and for a context switch 600us [Fed84, p. 1798]. The total overhead for a
singletoken would be 1.3ms. The performancefinally obtained (see section
1.5.6 was 1285 per token) so this approach would make the scanner ten
times slower.

¢ Both approaches are not portable. Thereis no standard C library for corou-
tines and switching the stack — although possible within C — needs to
be done in a different way on different machine architectures and compiler
argument passing conventions. The two processimplementation would limit
the system to the Unix operating system.

¢ The operation of the scanner and the parser needs closer coupling than that
provided by a pipe. They both need to share the symbol table as the lexical
category of some tokens can be redefined by the user.

1.5 Codingfor Speed

The lexical analyser was initially built using the lex [Les75] lexical analyser gen-
erator. Some aspects of HASKELL required however modifications to the code
produced by lex. This meant adding another level of control around the input
processing of lex, slowing down the whole operation. This leaded to the scan-
ning process being redesigned with the aim of improving speed. The areas where

6

improvement could be made were token recognition, character copying, memory
allocation and symbol table maintenance.

151 Token Recognition

Thetop level of token recognitionisbuiltusingaCswi t ch statement. A different
caseisused for amost every character. Sincethetableisquitedenseitiscompiled
by most C compilersinto anindexed jumptable. When acharacter arrives, itisused
as an index into atable of code locations and ajump is made to that location. The
separate entries then process the token according to its lexical category. Separate
functions are used to scan characters, strings and comments. All other scans are
done in the main function in order to avoid the function calling overhead. Macros
are used instead of functions for the same reason.

A procedure was developed for writing macros in a disciplined rather than
the usual ad-hoc manner in order to enhance code readability and maintainability.
Specifically macroswere written in amulti line form like normal proceduresusing
indentation to make them more clear. The C “alternative” operator ? was
indented like an if statement and brackets were used instead of braces. Finally
macros that contained semicolons in them were wrapped in ado { macro }
whi | e(0) togivethem the syntactic quality of asingle statement (otherwisethey
might trigger obscure bugs if used as a single statement after ani f .

In a number of places tests were needed to check if a character belonged to
a certain class (octal digit, identifier, symbol etc.). There is a C set of macros,
the ctype macros, that are designed to distinguish between character classes, but
many character classes defined by HASKELL , such as octal digits and operator
symbols are not part of the ctype macros. The usual way to handle such situations
istocodeasstrchr("class", ch),theintent beingto checkif ch isone of
the charactersin class. St r ch returns an index into the string given as the first
argument of the character given as the second argument, or NULL if the character
isnot in the string. Thusit can be used to classify characters. The problem with
this approach is that it is low. It can involve the function calling overhead and
even in compilers that implement it with in-line code the average time needed for
testing if a character belongsin an n character classisO(n/2).

The problem was solved by developing a small tool; the character type com-
piler: ctc. Ct c takes as input a file containing sets of recognition macros the
user wants to define and regular expressions defining the characters for which the
macro should return true. The file is line based. Comments starting with # and
blank lines are allowed. The following lines represent a portion of the input file
used for Haskell tokens.

Rest of an identifier
Risidrest [A-Za-z0-9 ']

SYnbol start
Y issynstart [!#$9&*+./<=>?@\"|"]

Based onthe input the compiler createsa C file containing abit vector table and
the suitable macros. The macros take a character as input and use the character to
index into the bit vector table. An and operation is performed on the table element
based onthe character class. Different character classesarerepresented by different
bits being set. In this way with typically two CPU instructions a character can be
portably classified. The character class compiler was itself written in the Perl
programming language [Wal 88].

1.5.2 Character Copying

In atypical lex based lexical analyser a character is copied three times before
arriving in dynamically allocated memory. First the character is copied from the
kernel buffer memory into a buffer of the stdio library. From the stdio buffer it
is then copied to the internal lex array yyt ext . When an identifier needs to be
saved, dynamic memory is allocated and it isfinally copied into that memory. The
copying from the stdio buffer to the data area of lex is particularly expensive since
it isimplemented as two levels of macros, the get ¢ macro of the stdio library and
thei nput macro of lex.

The method used involved the implementation of an aternative input output
library. The design of the fio (fast input output) library [Hum88] outlined in
[Hum88] offered a very efficient alternative. Access to the fio buffer is directly
done via a pointer, in aline by line fashion. Since most tokens in HASKELL can
not span lines this design was found to be suitable. The input part of fio was
implemented and separately tested. It was found to be significantly faster than
stdio.

A special macro, i nput , for interfacing to the fio library was created. The
tasks of this macro are:

e Taking characters out of the fio buffer.
e Counting lines (needed for error reporting).

e Maintaining a column pointer and expanding tabs (needed for the layout
rules).

e Checking for end of file.
e Cooperating with the one character pushback facility.

Through very careful coding the operations above are typically performed in 14
CPU ingtructions. !

1.5.3 Memory Allocation

Tokens that form identifiers need to be saved from the scanner buffer into dynami-
cally allocated memory so that they will not be overwritten by new input. Memory
alocation, especialy when allocating many small blocks, is an expensive opera-
tion. For this reason an aternative approach was used. A big hunk of memory
was requested that was then treated like a stack. Identifiers are put into it and
terminated by atrailing 0. A stack pointer points the the first free character in the
stack, while a counter determines characters remaining. When the stack isfilled a
new oneis alocated.

1.5.4 Symbol Table Updates

Every symbol encountered is placed directly into the symbol table. The way the
symbol tableisorganised ensuresthat if the symbol isalready defined, no additional
entry will be made. The symbols are placed into the symbol table directly from
the lexical analyser input buffer. Subsequently the symbol table entry is compared
against the address of the symbol buffer. If the symboal is located in the symbol
buffer it is then copied to dynamically allocated memory as described above. In
this way unnecessary copying and memory allocation and freeing are avoided.

155 TheUltimate Combination

The three types of improvement outlined above present the possibility to combine
the tasks of reading a token, recognising it, and saving it into a single task! Many
tokens, like user defined identifiers can be recognised by repeated uses of one of the
ctype macros described. When the scanner finds an identifier it transfers control
to the save macro. The save macro copies characters from the fio buffer to
the dynamic memory stack (adjusting the stack pointer) while a given character
classification macro (which is passed as a parameter) holds. In a typical case

IMost common execution path of the i nput macro compiled for the Intel 80286 family using
the Microsoft C compiler version 5.1 with maximum optimisations.

an identifier is recognised and copied to dynamic memory and al counters are
maintained using 28 CPU instructions per character.

1.5.6 Performance

The resulting scanner when applied to the Haskell standard prelude scanned at a
speed of 7800 tokens per second (1285 per token) 2

With atypical instructiontiming for this CPU configuration of 3;.s thisaverages
to 420 CPU instructions per token. This is consistent with the 28 instructions
needed for scanning an identifier character. Identifiers are typically 6 characters
in length and one has to allow for operating system overhead, fio library overhead,
memory management and scanning of more complicated tokens. (Identifiers are
the second fastest token to scan, the fastest being single characters. Care to their
implementation was taken because they occur very frequently.)

The previous implementation using lex was not compl eted to scan all the token
types and thus a comparison of the performance of the two is not very meaningful
since the lex implementation would become slower if it were to implement all
the functionality that was put into the C based scanner. A rough insight to the
performance improvement can be obtained by the fact that the (deficient) lex—
based scanner was working at a speed of 4500 tokens per second.

1.6 Testing

The lexical analyser was tested using a specialy built test harness. The harness
repeatedly callsthe lexical analyser and displaysthe returned token and its associ-
ated value. Tokens are displayed as symbolic constants and not as numbers making
the output much easier to read. This is achieved by reading the token definition
filey. t ab. h into ahash table when the programis run. This automatic run-time
configuration of the test harness ensures that it is always up-to-date.

During the testing 9 errors were found in the lex generated lexical analyser
before it was made obsolete by the C hand crafted version. Up to now 31 errors
have been found in C version with their rate of incidence constantly diminishing.
Using thereliability index formulagiven in [Per87, p. 2.5] thisgives an Rl of 97%.

2All timing and profiling tests were performed on a COMPAQ DESKPRO 386/20e running
COMPAQ Personal Computer DOS 3.31. The programs were compiled using the Microsoft C
compiler version 5.1.

10

Chapter 2

Parsing

2.1 Technical Overview

The subject of language grammars, parsing and syntax directed translation has
received the attention of hundreds of monographes and articles. An introductory
discussion of syntax analysis can befound in [ASUS8S5, pp. 159-278] and of syntax
directed trandlation in [ASUS85, pp. 279-342].

| decided to use yacc [Joh75] for the implementation of the parser asit would
provide an organised framework for basing the parser, generate efficient code and
allow for error recovery. Error recovery is very important in HASKELL as it is
needed for implementing the layout rule! A general overview of LR parsing, the
algorithms used by yacc and error recovery can by found in [AJ74].

HASKELL is a very difficult language to parse. A more general critique of
this aspect of the language is given in section C. Problems | encountered, have
been addressed at the implementation of various—by modern standards—baroque
languages. A way to handle operators with varying syntactic rules of the APL
language is given in [Str77]. The use of a two-level grammar to handle the
complexity of the language PL/I can be found in [Mar84]. This scheme, described
in section 2.3.5, is used to handle a shift-reduce conflict in the HASKELL grammar
associated with the parsing of list comprehension qualifiers.

HAskELL featuresinfix operators with user defined precedence and associativ-
ity. Handlingthemin ayacc-based grammar isvery difficult. A way for generalised
parsing of distfix operatorsisgiven in [Jon86]. Jones (whoisaso amember of the
HASKELL committee) used this schemein a modified version of the Sadl functional
language. Jones' scheme provides the basic idea of having a specia token value
associated with all operators with a special syntactic feature (infix operators are a

11

specialised case of distfix operators). He does not however address the problem
of varying precedence and associativity. Thus the scheme was extended in a way
described in section 2.3.1.

Expression juxtaposition without an operator asused in HASKELL isalso found
in the awk programming language [AKW88] for indicating string concatenation.
That featureis responsiblefor 156 shift-reduce errorsin the Eighth Edition [\ 885]
nawk grammar. Theauthors have attemptedto fix thisby adding a%pr ec keyword
in the yacc specification rule for string concatenation. This method does not work
for reasonsexplained in section 2.3.1. Running yacc on the unaltered sourceand on
the source without the precedence specifier produces the same transition tables. *
The sourcefor the project GNU reimplementation of awk, gawk [CRRS89] contains
exactly the same fruitless attempt.

The C language is not LALR(1) because of the t ypedef keyword. An
implementationnotein[HJ87, p. 118] explainsthat C compilersbased onyacc such
as the portable C compiler [Joh82] deal with this problem by feeding information
back to thelexical analyser. The same approach was used for some of the HASKELL
grammar problems.

As discussed in section 2.4 the most efficient way to build atreeis to build it
in reverse order and, when finished, reverse the whole structure. The list reversal
algorithm used, and a very elegant abstraction for implementing it is given by
[Suz82].

Finally some limited discussion of module implementation can be found in
[Wir77].

2.2 General Description

The parser is contained in a single yacc source file, par se. y. Thefile contains
the type declarations for al the possible nodes and tokens, the grammar rules and
three node building functions. The grammar is very loosely based on the one that
appearsin [HWA 190, pp. 116-120]. A number of rules were changed in order to
remove ambiguities. The ambiguities were removed by the following techniques:

¢ Restructuring of grammar rules.
e Addition of new tokens and closer interaction with the lexical analyser.

e Yacc precedencerules.

The number of shift-reduce errors is increased from 154 to 160, but the default actions of yacc
remain the same.

12

e Merging of grammar rules and addition of semantic analysis.

Most tree nodes are built on the fly, since they are not built in more than one
place. A specia C macro, def st r uc, is defined that creates a tree node of the
appropriate size and type on the heap.

2.3 Handling the Grammar Ambiguities

2.3.1 Definable Operatorsand Function Applications

The HASKELL grammar contains two features that are very difficult to parse. The
user may define new infix operators and constructorsusingthei nf i xI ,i nfi xr
andi nf i x keywords. When defining those keywords the user specifiestheir asso-
ciativity (left associative, right associative or non associative) and their precedence
level from 0 to 10. This associativity and precedence defines how expressions
and patterns will be parsed at compile time. This is a mgor problem since the
behaviour of the parser needs to be changed during parse time. For example with
adeclarationi nfi xlI 3 - theexpressiona - b - ¢ mustbeparsedas((a
- b) - c¢) whereaswithadeclarationi nfi xr 3 - the sameexpression must
beparsedas(a - (b - ¢)).

Fixed precedence and associativity of expression operators can be handled
very elegantly in yacc by using the precedence rules (% eft, % i ght and
%oassoc). Asan example alanguage for asimple calculator can be defined as:

expr : expr '+ expr
| expr ’-' expr
| expr '* expr
| expr '/’ expr
| " -’ expr
I

I

1 (l expr 1) 1
t NUMBER

Thisgrammarisambiguous. A number token can either bereduced to an expression
or the parser state can be shifted to a state waiting for an operator. It can be
dissambiguified either by splitting the rule into many subrules (expr, term, factor)
or by adding the following rules at the beginning of the yacc grammar:

Weft '+ -7
Weft **')/’
% eft um nus

13

Therulefor unary minusneedstobechangedto| ' -’ expr %prec um nus.
These changes have the effect of associating a precedence and an associativity
with each possible input token. In addition each rule inherits the precedence and
associativity of the last token with defined precedence found in its body.

In the case of a parsing conflict yacc behaves as follows:

e If no precedence is associated with the rule than an error is reported when
creating the parse tables.

¢ If there is aprecedence associated with the two rules that create the conflict
then the action dictated by the rule with the highest precedenceis performed.

¢ If both rules have the same precedence then the action depends on the
associativity of the input token:

— If the input token is | eft associative then areduceis performed.
— If the input token iseft associative then a shift is performed.

— If the input token has no associativity related to it then a parse error is
generated.

The user specification of the associativity and fixity of operators and construc-
tors can be handled by defining a series of symbolic operators of fixed precedence
and associativity for all possible specifications. These are defined astokens. When
the user specifies the fixity of an operator or constructor, the parser updates the
symbol table specifying giving a new token value to the token. Every time the
lexical analyser encounters the token it checks the symbol table to seeif its value
has been redefined. If it hasit returnsits new value, elseit returnsits default value.

This approach would mean the addition of 30 tokens for the operators (10
precedence levels and 3 kinds of associativity) and 30 for the constructors. Doing
this produced some obscure bugs. It turned out that yacc has a fixed size table
for recording precedence rules which overflowed without a warning into another
data structure. By merging the specifications for the constructors with those of the
operators the problem was eliminated.

The existence of currying in HASKELL creates an additional problem when
parsing. The HASKELL syntax defines function application asthe textual juxtaposi-
tion of afunction to itsarguments. Asfunctionsarefirst classcitizensin HASKELL
thisisin effect the juxtaposition of two expressions. This operation has a specific
precedence level [HWA 90, p. 10] and binds l&ft to right.

Since no token is associated with function application per-se the precedence
and binding can not be specified directly. Usingthe %pr ec keyword in association
with the rule (as misguidedly done in the awk source).

14

This precedence can not be enforced using the %pr ec keyword. Asexplained
above the disambiguifying val ues are associated with specific tokens. The presence
of a %pr ec keyword alters the precedence of those tokens. Since an expression
can start with atoken other than an operator the precedence rule will not come into
effect for those other tokens. The solution to this problem is to find the FI RST
set of the expression and give the requisite precedence to its members. The set
FIRST(«) for astring of grammar symbols « is defined [ASUS85, pp. 188-189]
to bethe set of terminalsthat begin the strings derived from «.. Thefollowing rules
can be used for determining F'I RST (X) for agrammar symbol X:

1. If X isaterminal, then FIRST(X) is{X}.
2. If X — eisaproduction, then e isadded to FIRST(X).

3. If X isanontermina and X — Y31Y>---Y} is a production, then for all
o = FIRST(Y},), oy, isplaced in FIRST(X) if Vi < kY; = €

Applying the rules above to expr yields the set:
t VARID t CONI D t CONI DCLS t CONI DCON t I NT t DOUBLE t CHAR t STRING ' (" ' [’

All the members of the set were given the appropriate precedence and binding for
function application. In addition a sentinel Pf uncap was also given the same
precedence to use in conjunction with %pr ec in the rule for unary minus.

2.3.2 Genera

In this section | explain the major techniques used for handling grammar ambigu-
ities. A step by step account on how all the problems were eliminated is given in
sections 2.3.3 and 2.3.5.

2.3.3 September Version

The grammar as given in the September 89 document generates 22 reduce reduce
errors and 106 shift reduce errors. The changes made to the grammar and their
effects on the number of errors are given in table 2.1. Further explanations are
given bellow.

1 Thelexical analyser was madeto return different tokensif an identifier identifies
aclass or another object.

2 The specificationsfor var f un andi nf un were:

15

Change Errors

shift / reduce | reduce/ reduce
Initial 106 22
Lexical tie! 102 22
Import list restructuring 101 22
varfunandi nfun? 99 22
Lexicdl tie3 99 16
Recursive at ypel i st 4 83 16
Conflicting at ypel i st ® 75 9
Precedence rules for exp and aexp © 23 9

Table 2.1: Changesto the September Grammar

infun <- infun ’;’ infun |
The intent was probably:

i nfundef <- infun | infundef ';’ infun
infun <-

3 Thelexical analyser was made to return a different token according to the arity
of constant identifier typet ycon.

4 Thegrammar definitionforat ypel i st wasnot |eft recursive. It wasconverted
to left recursive form as recommended in [Joh75].

5 The grammar included two conflicting definitionsfor at ypel i st . They were
splitinto at ypel i st 0 and at ypel st 1 for cases where different arity is
expected.

6 The two grammar rules for expressions exp and aexp were merged. Yacc
precedence (% ef t , % i ght and %moassoc) disambiguifying rules for
al expressions. The rule specifying function application was extremely
difficult to dissambiguify. Thedisambiguifying mechanism of yacc specifies
that the token or literal appearing in the rule must have a precedence and
binding type associated with it. The function application grammar rule has
no literal or token. Specifying a precedence using the %pr ec keyword is
not possible since the precedence given with %pr ec is used to override the
precedence of any other tokens or literals. The solution adopted was to give
the appropriate precedenceto all literals that could form the beginning of a
new expression.

16

Two shift of the remaining reduce conflicts are part of the language. The
definition of t opdecl| alows a context to precede the class and the instance
definitions. However a context can contain class names, which also occur in the
class and instance definition expected.

Atthisstate, the April version[HWA *90] of the HASKELL report was published.

2.3.4 April Grammar changes

The changes made in the grammar by the April report were so numerous that the
grammar had to be written from scratch. The changes that affected the grammar
are:

e Many of the namesused in the syntax description changed. | had tried to stay
close to the terminol ogy used, and found that most terms used had changed.
(eg. i nport s waschangedtoi npdecl s).

e Triple dot which indicated that a whole module was exported changed to
double dot.

e The precedences of conditional expressions and where expressions were
changed.

e The things that could be exported changed from a list of hames to a more
specific and limited list. The ability to export type constructors and type
classes as a whole unit was introduced, while the syntax for exporting a
whole module changed so as not to require brackets before the module
name.

e Syntax for renaming changed. Thetokent o was changed to the token as.
e Type declarations were apparently redesigned from scratch:

— Tuple declarations went away.

— The class derivation was introduced.

— The expose type declaration disappeared .

— The where clause in instance declarations became optional .
— The default declaration was introduced.

— In low level type declarations the variable and identifier definitions
were removed.

— The unit type was introduced.

17

¢ Brackets were introduced around the class list in a context.

e A vertical bar symbol was added to separate constructorsin constructor lists
e The class declaration using a double colon was removed

¢ A new syntax for class instances was introduced.

¢ Elseisnolonger optional in expressions

¢ Case and expression type signature was was moved from aexp to exp.

e The empty expression () was introduced

e Qualifiers were made optional

e The successor pattern and the unit patterns were introduced.

e The new tokenst o, hiding, default andderivi ng were intro-
duced.

¢ Fixes were made compulsory.

2.3.5 April Version

The grammar as given in the April 90 document generates 24 reduce reduce errors
and 113 shift reduce errors (more than those in the September document). An
outline of the progress in removing the problems from the grammar is given in
table 2.2. Details are given in thelist bellow (the numbersin brackets indicate the
number of shift-reduce and reduce-reduce errors after each change).

Sat May 19 11:01:45 (112,24) Intherulefort opdecl movedtheruleforopt cont ext
directly into the instance declaration.

Sat May 19 11:05:22 (112,17) Intherulefor pat madethe- infrom of integer
mandatory. The case where the minusis not mandatory is covered by apat
whichcanbeal i t eral whichcanbeani nt eger . Thisremoved seven
reduce-reduce conflicts.

Sat May 19 11:08:50 (111,17) In rule for decl was modified by merging the
opt cont ext rule.

Sat May 19 11:13:09 (109,15) Inrulefor t opdec! thetype list in brackets al-
ternative was in conflict with the at ype unit type, parenthesized type and
tuple declarations.

18

Change Date Errors

shift / reduce | reduce/ reduce
Initial 113 24
Sat May 19 11:01:45 112 24
Sat May 19 11:05:22 112 17
Sat May 19 11:08:50 111 17
Sat May 1911:13:09 109 15
Sat May 19 11:26:25 108 15
Sat May 19 11:29:48 107 15
Sat May 1911:36:18 107 15
Sat May 19 11:42:30 106 15
Sat May 19 11:52:30 74 15
Sat May 19 12:04:24 140 15
Sat May 19 12:14:48 160 21
Sat May 19 14:28:58 352 21
Sat May 19 14:33:57 37 30
Sat May 19 14:39:21 2 30
Sat May 19 14:52:18 1 0
Sat May 19 14:58:27 0 30
Sat May 19 15:13:04 0 0
Sun Jun 09 22:51:40 0 3
Sun Jun 10 13:33.03 1 0

Table 2.2: Changesto the April Grammar

19

Sat May 19 11:26:25 (108,15) Gave precedence to t CONOP to defined how the
sequence:

pat1l conop pat2 conop pat3

should be parsed using the pat rule.

Sat May 19 11:29:48 (107,15) Moved the opt cont ext rule explicitly into the
exp rule.

Sat May 19 11:36:18 (107,15) For theruleaexp moved an extrarulethat defined
the optional second expression in an arithmetic sequence into the rule. This
change did not change the number of errors.

Sat May 19 11:42:30 (106,15) Restructured the aexp rule. Made the lists of 0,
1 and 2 elements explicit so that they would not conflict with the start of an
arithmetic sequence and then allowed for anexpr | i st 3 followed by more
expressions.

Sat May 19 11:52:30 (74,15) In the rule for exp changed the expression type
signature derivation from

exp :: [context =>] type

aexp :: [context =>] type.

The former case was ambiguous. isexp + exp :: X interpreted as
(exp + exp) :: Xorasexp + (exp :: X).Itturns out that

section 3.11 of the manual specifiesaexp instead of exp.

Sat May 19 12:04:24 (140,15) Replaced all occurrencesof con withconi d and
al of var withvari d. The result was disappointing. Although the two
were supposed to be the same | had defined con wrongly asonly t CONCLS
and thus a number of reduce reduce errors were hidden.

Sat May 19 12:14:48 (160,21) Replaced al occurrencesof coni d witht CONI D
| tCONI DCON | t CONI DCLS.

Sat May 19 14:28:58 (352,21) Removed the function application rule to see the
effect. This change clearly demonstrates the ambiguity that arises from
curried function application.

20

Sat May 19 14:33:57 (37,30) Changed al occurrences of vari d to t VARI D.
Changed | i t er al in the definition of apat to its constituents t | NT
t STRI NG etc. In this way a “precedes’ set for aexp which contains
all the tokens that can start an aexp was formed. This set was placed in a
precedence disambiguifying rule for function application.

Sat May 19 14:39:21 (2,30) Corrected the“precedes’ set used for function appli-
cation. Had used ']’ instead of ' as the start token character of lists.

Sat May 19 14:52:18 (1,0) Removed the list comprehension rule from qual to
confirm its effect on the reduce-reduce errors. The hypothesis was that
al of these errors were a result of that rule. A solution would need a
very complicate and unstructured lexical tie, so if thisrule was not a major
contributor another solution could be found. The hypothesiswas verified, so
the lexical tie was introduced.

Sat May 19 14:58:27 (0,30) Introduced a qual | i st in the rule for qual to
remove the ambiguity over how ‘, * would associate.

Sat May 19 15:13:04 (0,0) Added back the qual rule and the lexical tie. A
new pseudo-token was introduced t PATCONTEXT. This token does not
represent areal lexical item. It represents a context where the lexical anal-
yser has done a bit of scanning ahead as instructed by the parser by the
check pat cont ext () functionto seeif thereisat LARROMon the cur-
rent scope level in the next tokens scanned uptoa‘]’ or‘,’ . Thisis
quite complicated since the lexical analyser must invoke itself to remove
comments, work out the layout rule etc. Furthermore all tokens scanned
must be pushed back in some sort of stack with at PATCONTEXT possibly
on the top of the stack. For all this the lexical analyser must be reentrant.
Sincethelexical analyser is called by the parser and not the opposite it must
a so have state associated with it. This structuring conflict was resolved by
adding one more level of function indirection to the lexical analyser.

Sun Jun 09 22:51:40 (0,3) Added three errorsin order to parse correctly succes-
sor patterns. The rule specifying the successor pattern was never used.
When a variable identifier was found it was directly reduced to an apat .
This happened without a warning because of the precedence rules given to
TVARI Din order to resolve function application ambiguitiesin expressions.
The solution tried was to replace thet VARI Dwith aapat .

21

Sun Jun 10 13:33:03 (1,0) By specifying a more genera rule for successor pat-
terns (their left and right hand sides can be patterns) and adding semantics
checking reduced the conflicts to a single shift/reduce. This occurs in the
case where a pattern appears on the left hand side. In that case the |eft hand
side can contain variable operators. Thusx + 1 can either be parsed astwo
patterns separated by the + operator or as the successor pattern of x.

24 TheParseTree

The result of applying the HASKELL grammar on a set of files is a parse tree.
The parse tree is a tree of structures representing different syntactic elements of
HASKELL . Inplaceswhereasinglesyntactic element could have several underlying
representations (e.g. an expression can be an integer or afunction) a union within
the structure was used to allow the different types to be stored in the same place.

In some cases different objects of the same type have different memory require-
ments. In theory memory can be conserved by using a pointer to a dynamically
alocated data structure of the appropriate length. However, the differences in
memory requirements were small (typically no more than 8 bytes) and for some
implementations of the dynamic memory allocator the alocator overhead (12 bytes
in the one described in [KR88, p. 185]) was higher than the actual space savings.

More space savings were achieved by combining lists and single items. In
many cases single items are the exception, and usually they are composed into
lists. Inthose casesthe overhead of separately creating and managing lists of items
was reduced by creating the items as lists of one element for the beginning.

Enumerated types are used to distinguish differing objects. These offer in-
creased functionality compared to # defi ne’sin type checking and debugger
use.

All lists in the tree have the next pointer as the first element in the structure.
Thisalowsfor general functionson liststo bewritten. Listsare builtinthereverse
order. Without any special pointers (which take extra space and time to maintain)
adding an element at the end of alist of length n takes »n operations. Thus building
alist of length »n has an overhead of n(n + 1)/2. On the contrary a list of n
elements, once built, can be reversed in »n operations.

The tree reversal is performed at the end of the parsing. An automatically
generated programtraversesall thetree. It distinguishesbetweenlinkedlist anchors
and linked list intermediate pointers. When alist anchor is found the list reversal
algorithm is applied to it. Then the tree reversal operation continues for each
element of the list. The program is automatically generated by a per!| script based

22

on the tree definition header t r ee. h in amanner similar to the one described in
section 2.10.

In some cases in the grammar, syntactic sugar is translated into concrete
HASKELL on thefly. For example- exp istranglated to afunction application of
the negat e function.

2.5 TheMini-Parser

As indicated in section 2.3.5 in some cases the lexical analyser needs to parse
ahead to determinein what context the parser isin. Inorder to do thisamini parser
was developed. This parser, written in C, uses precedence rulesto determine how
far to parse. Round, square and curly brackets are counted and matched. Sinceits
input comesfrom thelexical analyser white space and comments are automatically
removed. The follows set [ASU85, p. 188] for the specific sentential form is used
to terminate the parse ahead.

Since the mini parser does not do any real work the tokens it consumes must
be placed back for delivery to the real parser. In addition if it finds the context to
be a pattern context then the pseudo token t PATCONTEXT must be placed in the
beginning of the token list. Furthermore it is possible for the mini parser to be
called before the list of tokens that have been stored from a previous invocation
has been exhausted. For these reasons a data structure is needed that can have
items inserted on both ends, and removed from one end. Additions and removals
from the data structure should be able to be intermixed. In order to achieve the
desired effect aring buffer was used. Two pointers indicate the beginning and the
end of the data. The buffer is empty when the two pointers coincide. (Naturally
atest is made to check if the buffer overflows each time an item is added). The
buffer contains the token number of each token that is consumed and additionally
its value. This is set be the lexical analyser into the yyl val union and is the
copied in the buffer.

Callstothescanner are passed through an additional layer of codewhich checks
the ring buffer. If thereis an item in the ring buffer then that item is removed and
returned. In all other cases the value of the real lexical analyser is returned.

2.6 Thelayout rule
As explained in section 1.3 not al layout rules can be resolved by the lexical

analyser. Therulethat specifiesthat abrace needsto beinserted whenever the next
itemisillegal, but a brace would be legal is more easily handled by the parser. (It

23

can be handled by the scanner by forming the precedes set for the closing brace,
the follows set for every item for the precedes set and returning a closing brace
between every pair of tokens («, 3) where o € precedes({)) A B € follows(a)).

The solution adopted was based on yacc's error recovery mechanism [Joh75, p.
25]. Thetoken } was substituted by therulecl ose_br ace. Thecl ose_br ace
rule can either be literal closing brace or a yacc error production. A yacc error
production is exactly the token that would be legal in the case where the next
token isillegal. Thisfits precisely with the description of the layout rule. When
the error production is invoked the lexical analyser is informed by calling the
cl ose brace procedure. Thisis donein order to remove the pending closing
brace form the lexical analysers stack. After the error production the yacc macro
yyer r ok iscalled to alow the trapping of any other errors. (Yacc will otherwise
suppress any errors unless four tokens have been successfully parsed. Thisis not
acceptablein this case.)

2.7 Dealing With Interface and | mplementation Modules

The interface modules are mostly a subset of the implementation modules. Dupli-
cating the grammar rulesfor theinterface modul es seemed unnecessary duplication
of effort and code, so | decided to usetheimplementation modulerulesand do some
semantic checking within the rules. For this reason a global variable was added
nodul et ype which contained the type of modulethat was parsed. Thisvariable
is set within the grammar rules (i.e. in code inserted between the yacc tokens), as
thereis the only place in the grammar where one can distinguish between the two
types of modules. In order to alow for the abbreviated module the open brace of
the body was moved in the nodul e production rule.

2.8 Lexical Ties

Up to now three lexical ties have been described:

1. Theaddition of apseudo-token returned by thelexical analyser by therequest
of the parser to find if aqualifier isapattern or an expression (section 2.3.5).

2. Informing the lexical analyser that a brace was added by a grammar rule so
that the scanner could adjust the layout tables (section 2.6).

3. Changing the token value of the operators and constructors after the user
defines their associativity and precedence (section 2.3.1).

24

Token | Where
aconid | modid
con constr
conid ! | export
conop | op
literal aexp
modid * | export
tycls® | export
tycon export
tyvar 1 | atype
var aexp
varid export
varop op
Table 2.3: Tokens Appearing in the HASKELL Grammar
Token | Synonym | Representation (example)
var varid name or (+-)
con conid Nameor (:+-)
varop +- or ‘name'
conop +- or ‘Name'
tyvar | avarid name
tycon | aconid Name
tycls | aconid Name
modid Name

Table 2.4: Token Synonyms

| addition to these a mechanism is needed to classify the tokens to different types.
Table 2.3 contains alist of the tokens used in the grammar.

The number of tokens used in the grammar is a source of confusion as many
are synonyms. Table 2.4 contains the token synonyms as defined in the lexical
grammar, and some exampl es.

From table 2.4 the following minimal set of tokens needs to be distinguished:

1. con Constructor.

2. var Variable.

3. conop Constant operator.

25

4. varop Variable operator.
5. tycon Type constructor.
6. tyvar Type variable.

7. tycls Typeclass.

8. modid Module identifier.

From the above list and the fact that 1, 5, 7, 8 and 2, 6 belong to different
name spaces [HWA 190, section 1.4] we can conclude that the lexical analyser can
not — in general— detect in which of (1, 5, 7, 8) or (2, 6) an identifier belongs
through semantic analysis (e.g. by looking at the symbol table) as there might be
four different meaningsfor it. The only case where a semantic analysis will help
isin distinguishing between a type class and a type constructor which are limited
in the same namespace.

From the above we conclude that at any time in the grammar there should be
only one of:

con
tycon tycls
nodi d

or one of ;

var
tyvar

A semantic check needsto be donefort ycon, t ycl s and nodi d to verify
that they do not start with abracket (ast CONI Dis alowed). The sameistruefor
t yvar withrespecttot VARI D.

In order to distinguish between t ycon and t ycl s and all the others the
following lexical tie-in is used:

tCONIDCON Returned when the name is atype constructor in that scope.
tCONIDCLS Returned when the name is atype class in that scope.
tCONID Returned in all other cases.

The type of coni d returned by the lexical analyser does not force the token
to beinterpreted like oneof t ycon ort ycl s, but serves as an indicator in cases
where the distinction is relevant. For examplethe rule for nodi d is:

26

conid : tCONNDCON | tCONIDCLS | tCONID ;
modid : nodid ;

Asnodi disinadifferent name spacethant ycl s anidentifier that represents
atypeclassshall and will till beinterpreted asamodule namein the context where
amodule nameis needed. On the contrary therulesfort ycl s andt ycon are:

tycls : t CONI DCLS;
tycon : t CONI DCON;

In addition to this the grammar needs to be modified so that when anew class
or constructor is defined coni d isused instead of t ycl s.

2.9 Symbol Table

The symbol table is the place where all non reserved identifiers are stored. It is
organised asahash table of binary trees. From datapresentedin [LV 73], it appears
that a hash table is a viable technique for organising a symbol table if another
mechanism is available for resolving hash collisions.

The first character of the symbol is used as the index into the hash table.
A special opaque data type the st ab_ent r y has been defined as the handle in
conjunction with symbols. In addition the data type st ab_t abl e provides the
opague data type definition of the symbol table. Access procedures for adding
new symbols, accessing existing symbols, walking through the table using a higher
order function, adding “floating” pseudo-symbols (used by the type checker) and
getting the symbol values are defined.

210 Testing

In order to test the parser away to view the parse tree was needed. Since during
theinitial phase of the implementation the tree was a moving target it was decided
to automatically create the program to print the tree. Thiswas not very difficult as
care had been taken during the coding of the tree to write it in such a way that a
mechanical translator based on regular expressions could parseit. Thus the layout
ruleswerefollowed scholastically, enumerationswere declared immediately before
the structure in which they were used, and complicated syntax was avoided.

A 239 line program written in the Perl programming language [Wal88], was
developed to create a tree printing program out of the tree description. The tree

27

printing program recursively walks through the tree displaying the values of the
enumerations and all basic types. Indentation is used to pictorialy represent the
tree structure. The value of the enumerationsis used to determine which member
of the union to print. From a470 line description of thetree(t r ee. h) a1062 line
file of C code is generated. Clearly the effort put into building this tree printing
tool was worth it. In addition as less programs had to be manually modified each
time the tree was changed, changes for reasons of efficiency or clarity were easier
to make.

A specially built test harnesswas built that would call the parser and display the
syntax tree. During thetesting 11 errorswere found in the parser and its associated
modules. Using the reliability index formula given in [Per87, p. 2.5] this gives
an Rl of 99.6%. The index is substantially better than the one achieved for the
scanner. The reasonsfor this are probably:

e Yacc found many errors at compiletime.
e No tricky optimisations were tried (other than the list reversing).

¢ Oncethe conflicts are removed from the grammar the technique for creating
thetreeis straightforward and well understood.

28

Chapter 3

M odules and Prelude

3.1 Technical Overview

A commonly used language based on modulesis Modula-2 [Wir85]. A description
of its implementation can be found in [Wir77]. The HASKELL report does not
specify how the implementations and the interfaces relate to files and to each other.
It leaves that area of specification to the compilation system [HWA 190, p. 37].
For technical reasons the current design requires every implementation module to
have an associated interface module. Although not required by the system it is |
do not think it is a good practice to have more than one module in afile. In this
aspect the system, resembles most Modula-2 implementations.

The standard prelude resembles the specification for the ANSI C hosted imple-
mentation run-timelibrary [KR88]. Ascommentedin[HJ87, p. 276] the C library
headers and functions may be “built in” to the implementation and only exist in a
virtual sense; library calls can be substituted with inline code. Naive implementa-
tions can of course define the library by using real header files and real functions.
Mutatis mutandis the HASKELL prelude provides afunctional specification for the
run-time system. | decided to follow the naive way and use the actual preludefiles,
instead of building them into the language. The advantages of this approach are:

1. Ease of implementation. The language automatically acquires a suite of
useful functions and types, once aminimal set of primitives has been imple-
mented.

2. Modularity. The specifications for the utility functions exist outside the
language system. They can be used by both the compiler and the interpreter.

29

3. Maintainability. A new version of the HASKELL report is due to appear on
April 1991. Casting the preludeinto efficient code at this stageis premature.

The major disadvantage of this approach is loss of efficiency. The system takes
some time to read and parse the prelude every time it is started, and the functions
could probably be implemented more efficiently as“built in” primitives. However
the other two HASKELL implementations that | am aware of (Glasgow and Yale)
are being written entirely in HASKELL [Hud89, p. 405], so this should not make a
very big difference.

An attractive solution offered to the problem of lengthy initialisation is the
undump method. This method is useful for programs that have to bootstrap them-
selves before being ready for user interaction. A virgin copy of the program is
read on the store and starts executing the intialisation code. Thistypically involves
reading parsing some external files. Oncethisis completed a complete core image
of the file including its stack, heap and registers is dumped on the disk. Another
program then converts that core image into an executable program in the state of
the other program was before the dump. For examplethe sc EMACS editor [Sta84]
has a user interface based on hundreds of lines of Lisp code. When the programiis
installed it reads all the lisp code and then performs the undump. In an analogous
way the HASKELL front end can read parse and possibly type check the prelude and
dump that state into a new initialised HASKELL executable.

3.2 Lexical Analysis

The first interface to the module system and prelude is presented at the lexical
analysis phase. Thelexical analyser merges the prelude and the user specified files
into asingle file that is passed as tokens to the parser. The usua interface of the
yywr ap() function is used for this purpose. When the end of afile is reached,
the scanner calls the yywr ap function to check if there is any more input. The
yywr ap function readjusts the current line number, column number and file name
and allows the continuation of input.

3.3 Prdudelnitialisation

Thepreludeisinitialised by meansof asecondary filethat contai nsa specification of
the files comprising theinitialisation part of the language. This method decouples
the prelude from the HASKELL system and alows the user to add or remove
intialisation code. A user may elect not to read parts of the prelude (e.g. complex

30

numbers) or to substitute parts of the prelude with their own implementation. The
file, caled pr el ude. i isline oriented. Empty lines and lines starting with a
hash character (‘#’) are ignored. The rest of the lines are assumed to contain a
single file name that is loaded by the system before the normal processing of the
user specified files.

At thetime of thiswriting the system automatically includes agreat part of the
prelude on startup. The code included is a modified version of the code supplied
with the HASKELL April report. The modifications are mainly the provision of an
interface module for each implementation module (containing al the definitions of
operators (with their fixity) types, classesand instancesand all the type signatures),
the removal of fixity declarations from the implementation modules (as they are
given in the interface modules) and the correction of some minor syntax errors.

31

Chapter 4

| nterpreter

4.1 Technical Overview

The factors one has to consider when choosing between an interpretation or com-
pilation based implementation are given in [aNFV84]:

1. Thelarger distance in a compilation system between the source text and the
generated code requires higher program complexity.

2. In a compilation based implementation the resulting execution will be more
efficient as more checks are done by the compiler.

3. If theintermediate code used by the interpretation system is reversible then
space savings can be made, by storing only the intermediate code.

The reasons listed above are dated (especialy number 3). In addition some
more reasons for choosing an interpreter are:

e Faster user interaction.

¢ Incremental system building, rapid prototyping.

¢ Provision of alanguage with meta-linguistic abilities (e.g. eval).
e Portability of implementation.

e Easy provision of code manipulation facilities such as source level debug-
ging, profiling etc.

Interpreted language implementations tend to fall into three categories:

32

1. Command interpreters such asthe UNIX shells sh [Bou86] and csh [Joy86].
An application of the functional programming paradigm inthisareaisfsha
functional command interpreter [Don87].

2. Interactive programming environments such as Smalltalk [Gol80], InterLISP
[Tei 78], the I.C. Transformation Environment, QuickBASC [MSQ88] and
muProlog [Nai84].

3. Little (and not so little) specialised languages such as the UNIX text pro-
cessing family of eqn [KC], thl [Les82], troff [Oss82] and ditroff [Ker], awk
[AKW8S], perl [Wal88] etc.

HASKELL is neither a command interpreter nor a specialised language, thus an
interpretive implementation of HASKELL would fall into the second area, that of
interactive programmingenvironments. Theneed andimportance of auser-friendly
functional language environment is stressed in [L ei84] who outlinesthe experience
of using the Inter LISP environment. The various styles of LISP environments are
summarised in [San78].

A formal classification of thevarioustypesof writing languagefor aninterpreter
isgiven in [LPT82, p. 802]. The ways interpretation can be implemented are
categorised in [K1i81] asfollows:

CLASS (Classical). The instruction at the address of the program counter is
executed.

DTC (Direct Threaded Code). The instruction pointed by the address of the
program counter is executed.

ITC (Indirect Threaded Code). Theinstruction pointed by the instruction pointed
by the program counter is executed.

Theeval / apply interpreter implemented can be characterised asaDTC interpreter
since the execution pointer is moving on the tree nodes of the lambdatree.
Analternative approachto the benefitsof interpretationisthrow-away-compilation.

A simple compiler generates code, usually on the fly, which is executed in-situ.
The code is usually never saved. A comparison of these two approaches is made
by [Rob83]. The throw-away compilation approach was particularly attractive for
this project since a compiler was a so written. The major implementation problem
isthat of portability. The UNIX operating system does not provide a portable way
for the user to directly compile code into memory. A discussion of interpretation
based on an intermediate language can be found in [KKM80Q].

33

The approach elected was a modification of the classical environment based
eval-apply interpreter following the tradition started by [McC60]. The implemen-
tation of such an interpreter in Hope is described in [FH88, pp. 193 — 213] and
in Lisp in [Lic86]. A more general implementation for abstract equations can
be found in[HOS85]. A meta circular version of the interpreter (with one addi-
tional procedure EVLI S which evaluates alist calling EVAL) is given in [JSXX,
p. 631]. The interpreter is based on the SCHEME language and is thus lexically
scoped, exactly as required for HASKELL . That interpreter is then transformed
into a statement oriented language presented in [JSXX, p. 637] suitable for VLS|
implementation. Another description of a Lisp interpreter is given by [Bai85b]. |
argue that my imperative implementation of the eval-apply interpreter resembles
the SECD machinefirst presented in [Lan63].

In section 4.5 | describe a special compiler written to compile primitives from
a HASKELL / C hybrid language into C / Examples of development and uses of
such little languages are given in [Ben86]. The associative arrays used to store
type information for the primitive compiler are featured in [Ben85]. The compiler
was written in Perl [Wal88] a language containing all the features of awk (awk
programs can be automatically trandated into Perl. The suitability of awk for
generating programsis demonstrated in [Wyk86]. Finally the concept of yacc like
actionsand the possibility of using adifferent languagefor themin aC environment
ispresented in [Set84].

4.2 General Description

Theinterpreter traverses sugared lambda cal cul ustree eval uating expressions. Spe-
cial code hooks alow for debugging and profiling the performance of HASKELL
programs. An extendable interfacing mechanism merges C and HASKELL types
and objects allowing for easy addition of primitives and libraries. Finally a front
end is provided for user interaction.

4.3 Interpreter Description

431 LambdaTree

The parser operates on the lambdatree. The lambda tree which represents sugared
lambdacal culusis derived from the syntax tree by a series of transformations done
by Tassos Hadjicocolis, namely pattern matching removal and lambda lifting.

A node of thelambdatreeisa C structure with two main fields:

34

1. An enumeration type variable containing the type tag of the node.

2. A union containing the various types of nodes.
Thetreeinitialy found can contain the following types of nodes:
Function application. The node contains the function that is applied and the
function it is applied to.

Variable. The node contains a symbol table handle pointer. Looking for that
pointer in the correct environment or list of builtin functions will locate the
value for the variable.

Recursive let. Thenode containsa pointer to adeclaration list (variable = expres-
sion pairs) and the main expression.

Conditional. The node contains an expression to be evaluated, an expression to
evaluateif thefirst expression eval uates to true and the expression to eval uate
if the first expression evaluates to false.

Fatbar. The node contains two expressions o and (3. The semantics of the result

are:
« O =«
FAIL O g =p
1 o p =1

Lambda abstraction. The node contains the lambda variable and the expression
it isto be substituted in.

Error. Thisnode occursin cases of pattern match errors.

Tuple, Operand, Constructor The node contains the appropriate tag or symbol
table entry.

Integer, Double, Character, String, Nil The node union containsthe value of the
iteminafield of the appropriate type.

In addition to those nodes three more are added:

Suspension. The node contains a pointer to an expression and the environment
over which it is suspended.

Closure. The node containsalambdaexpression and the environment in which its
variables are bound.

Operator. The node containsthe arity, function and list of argumentsto be passed
to abuiltin operator.

35

4.3.2 Environment

The environment is stored as a linked list of variable expression pairs. Since all
the strings in the HASKELL system are guaranteed to be stored only ones, when the
value of a variable is searched in the environment, only the pointers and not the
actual names of the variables need be compared.

The circular environment needed for the evaluation of letrecsis constructed on
the fly by creating a dummy environment node. Each (variable, expression) pair
added to the environment as a suspension is made to be evaluated with that node as
an environment. When the last pair has been added to the environment the dummy
nodeis added aswell. In thisway acircleisformed in the environment.

4.3.3 Evaluate Code
Evaluation of an expression can be distinguished to the following cases:

Function application. Theexpressiontobeevaluated and the current environment
areputintoasuspension. Theresult of applyingthat suspensionto the second
expression is returned.

Variable If thevariableisdefined in the environment then the expression to which
it is defined is evaluated and returned. If the variable is a builtin primitive
then the arity and the function addressfor that primitive are fetched from the
symbol table and placed in an newly created operator node. The argument
list of that operator is set to empty.

Letrec. A circular environment is built as explained in section 4.3.2. The result
of evaluating the expression in that new environment is returned.

Conditional. Thefirst expression is evaluated. If the result istrue then the result
of evaluating the second expression is returned else the result of evaluating
the third one.

Fatbar. If evaluating thefirst expression returns bottom then bottomis returned. 1
If evaluating thefirst expression doesnot return afail nodethen thethat result
isreturned, else the result of evaluating the second expression is returned.

Lambda. A closurenodeof the expressionandthecurrent environment isreturned.

Thisisto check if you were reading carefully. The sentence before the footnoteis not to be taken
seriously.

36

Suspension. The result of evaluating the suspension in the environment specified
in the suspension is returned.

All other nodes. The expression is returned.

434 Apply Code

The code for evaluating function application is much simpler. There are only two
cases:

1. The function to be applied is a closure. Then a new environment is created
mapping the second expression to the lambda variable of the closure. The
result of evaluating the closure lambda body in that environment is returned.

2. Thefunction to be applied is an operator. The second expression is added to
the list of arguments of the operator. If the arity of the operator is 1 then a
C function defined in the operator is called with the list of arguments as an
argument. Else A new operator note is created with arity one less than the
current operator node.

4.4 Primitivelibrary

In order to minimise the amount of coding | decided to implement the minimum
number of primitives needed to provide all the features of HASKELL . Fortunately,
thiswas also agoal of the HASKELL committee. (The reasonthe HASKELL commit-
tee provided aminimal number of primitives wasin order provide a clean language
definition). Thus the Pr el udeBui | ti n part of the HASKELL prelude contains
such aminimal set of primitives.

A brief description of the primitives implemented is contained in the following
sections.

37

4.4.1 Type Conversion

pri mCharTolnt :: Char — Int
Converts a character into afixed precision integer. Theresult will aways be
positive.

primntToChar :: Int — Char

Converts a fixed precision integer into a character. Integers with ordinal
values that are the same as the characters of the machine character set are
represented as those characters. Other integers are truncated in an imple-
mentation defined way. Usually the result corresponds to a binary and of a
mask of ones, wide as the character representation and the integer.

prim ntTol nteger :: Int — Integer
Converts afixed precision integer into a multiple precision integer.

prim ntegerTolnt :: Integer — Int
Convert a multiple precision integer into a fixed precision integer. If the
value of the multiple precision integer is greater or less than the maximum or
minimum fixed precision integer representable value the result is undefined.

4.4.2 Fixed Precision Integers

primMnlint :: Int
Returns the maximum fixed precision integer that can be represented on the
system. The valueis-2147483648 for 32 bit machines.

primvaxint :: Int
Returns the minimum fixed precision integer that can be represented on the
system. The value is 2147483647 for 32 bit machines.

prinEgint :: Int — Int — Bool
Compares two integers for equality. Returnstrue if they are equal, false if
they are not equal .

prim,elnt :: Int — Int — Bool

Returns true if the first integer is less than or equal to the second one, false
if the second is greater than thefirst one.

prinPlusint :: Int — Int — Int
Returns the result of adding the two integers passed. If an overflow occurs
the result isimplementation dependent.

38

primvullnt :: Int — Int — Int
Returns the result of multiplying the two integers passed. If an overflow
occurs the result is implementation dependent.

primNeglint :: Int — Int
Returns the negated value of the integer passed. If an overflow occurs the
result isimplementation dependent.

primDivRemint :: Int — Int — (Int,Int)
Returns a tuple containing the quotient and the remainder resulting from
dividing first integer passed by the second. A runtime error will occur if the
second integer is zero.

4.4.3 MultiplePrecision Integers

prinEgint :: Integer — Integer — Bool
Compares two multiple precision integers for equality. Returnstrue if they
are equal, falseif they are not equal.

primelnt :: Integer — Integer — Bool
Returns true if the first integer is less than or equal to the second one, false
if the second is greater than thefirst one.

prinmPlusint :: Integer — Integer — Integer
Returns the result of adding the two integers passed.

primvullnt :: Integer — Integer — Integer
Returns the result of multiplying the two integers passed.

prinmNeglnt :: Integer — Integer
Returns the negated value of the integer passed.

prinmDivRemint :: Integer — Integer — (Integer,|nteger)

Returns a tuple containing the quotient and the remainder resulting from di-
viding first integer passed by the second. A runtime error will occur if the
second integer is zero.

4.4.4 Single Precision Floating Point

“The practical scientist istrying to solve tomorrow’s problem
with yesterday’s computer; the computer scientist, wethink, often

39

has it the other way round.”

W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetter-
ling commenting on C 's half hearted support of single precision
arithmetic in Numerical Recipesin C [PFTV88].

The primitives in this section are written in the C programming language
using the standard C library. Traditionally C [KR78] did all single precision
arithmetic by converting the valuesinto doubl e precision doing the operation
and then converting the result back to single precision before storing. The
reason for thisisallegedly the difficulty of switching between the two modes
on the PDP-11 computer. ANSI C [KR88] corrected this deficiency by
specifying that single precision arithmetic is done in single precision. It
does not however provide a single precision mathematical library. For this
reason some operations in the following section are performed in single
precision and somein double.

prinFloat Radi x :: Integer
Returns the exponent radix of the system single precision floating point
representation. Thisvalue is 2 for IEEE arithmetic implementations.

prinFloatDigits :: Int
Returns the maximum number of floating point digitsthat can be represented
in the system single precision floating point representation. This valueis 6
for IEEE arithmetic implementations.

prinFloatMnExp :: Int
Returns the exponent of the smallest representable single precision floating
point number. Thisnumber will be-37 for | EEE arithmeticimplementations.

prinFl oat MaxExp :: Int
Returns the exponent of the highest representable single precision floating
point number. Thisnumber will be 38 for | EEE arithmetic implementations.

pri nDecodeFloat :: Float — (Integer,|nt)
Given asingle precision floating point number z, returnsatuple (m, n) such
that if b isthefloating point radix = = mb". Alsoif d isthe number returned
by primFloatDigits m and n will be zero or b1 <= m < b will hold.

pri mEncodeFloat :: Integer — Int — Float
Given a multiple precision integer n and a fixed precision integer n it
primEncodeFl oat returns mb™ where b is the single precision floating point
radix.

40

pri mnEgFl oat :: Float — Float — Bool
Returns true if the two single precision floating point numbers passed are
exactly equal.

prinmLeFloat :: Float — Float — Bool
Returns true if the first single precision floating point number passed is less
or equal to the second one.

prinPlusFloat :: Float — Float — Fl oat
Returns the result of adding the two single precision floating point numbers
passed. The operation is performed in single precision arithmetic. If an
overflow occursthe result isimplementation dependent.

primvul Float :: Float — Float — Fl oat
Returns the result of multiplying the two single precision floating point
numbers passed. The operation is performed in single precision arithmetic.
If an overflow occurs the result isimplementation dependent.

prinDi vFloat :: Float — Float — Fl oat
Returns the result of dividing thefirst single precision floating point number
given, by the second one. The operation is performed in single precision
arithmetic. If an overflow occursthe result is implementation dependent.

pri mNegFl oat :: Float — Fl oat
Returns the negated value of the single precision floating point number
passed.

prinPi Float :: Float
Returns the single precision approximation to the geometric constant .

pri mExpFloat :: Float — Fl oat
Given asingle precision floating point number = the result of the exponential
function e is returned. The operation is performed in double precision
arithmetic.

prinmLogFloat :: Float — Fl oat
Returns the natural logarithm of the single precision floating point number
passed. The operation is performed in double precision arithmetic.

printgrtFloat :: Float — Float
Returns the square root of the single precision floating point number passed.
The operation is performed in double precision arithmetic.

41

printinFloat :: Float — Float
Returns the sine of the single precision floating point number passed. The
operation is performed in double precision arithmetic.

pri mCosFloat :: Float — Float
Returnsthe cosine of the single precision floating point number passed. The
operation is performed in double precision arithmetic.

pri mfanFl oat :: Float — Fl oat
Returnsthe tangent of the single precision floating point number passed. The
operation is performed in double precision arithmetic.

pri mAsi nFl oat :: Float — Fl oat
Returns the arc sine of the single precision floating point number passed.
The operation is performed in double precision arithmetic.

pri mAcosFl oat :: Float — Float
Returns the arc cosine of the single precision floating point number passed.
The operation is performed in double precision arithmetic.

pri mAt anFl oat :: Float — Fl oat
Returns the arc tangent of the single precision floating point number passed.
The operation is performed in double precision arithmetic.

prinSi nhFl oat :: Float — Fl oat
Returns the hyperbolic sine of the single precision floating point number
passed. The operation is performed in double precision arithmetic.

pri mCoshFl oat :: Float — Float
Returns the hyperbolic cosine of the single precision floating point number
passed. The operation is performed in double precision arithmetic.

pri mfanhFl oat :: Float — Float
Returns the hyperbolic tangent of the single precision floating point number
passed. The operation is performed in double precision arithmetic.

pri mAsi nhFl oat :: Float — Fl oat
Returns the inverse hyperbolic sine of the single precision floating point
number passed. The operation is performed in double precision arithmetic.

pri mcoshFl oat :: Float — Fl oat
Returns the inverse hyperbolic cosine of the single precision floating point
number passed. The operation is performed in double precision arithmetic.

42

pri mit anhFl oat :: Float — Fl oat
Returns the inverse hyperbolic tangent of the single precision floating point
number passed. The operation is performed in double precision arithmetic.

445 DoublePrecision Floating Point
All primitives in this section are performed in double precision arithmetic.

pri mDoubl eRadi x :: Integer
Returns the exponent radix of the system double precision floating point
representation. Thisvalue is 2 for IEEE arithmetic implementations.

pri mDoubl eDigits :: Int
Returns the maximum number of floating point digitsthat can be represented
in the system double precision floating point representation. This value is
15 for |EEE arithmetic implementations.

pri nDoubl eM nExp :: Int
Returns the exponent of the smallest representable double precision floating
point number. This number will be -307 for IEEE arithmetic implementa
tions.

pri mDoubl eMaxExp :: Int
Returns the exponent of the highest representable double precision floating
point number. Thisnumber will be308for | EEE arithmeticimplementations.

pri mDecodeDoubl e :: Double — (Integer,Int)
Given adouble precision floating point number z, returnsatuple (m, n) such
that if b isthefloating point radix z = mb™. Alsoif d isthe number returned
by primDoubleDigits m and » will be zero or b¥4~1 <= m < b? will hold.

pri mEncodeDouble :: Integer — Int — Double
Given a multiple precision integer m and a fixed precision integer n it
primEncodeDouble returns mb™ where b is the double precision floating

point radix.

pri meEgDoubl e :: Double — Double — Bool
Returns true if the two double precision floating point numbers passed are
exactly equal.

pri mL,eDoubl e :: Double — Double — Bool

Returnstrueif the first double precision floating point number passed isless
or equal to the second one.

prinmPl usDoubl e :: Double — Double — Double
Returnsthe result of adding the two doubl e precision floating point numbers
passed. If an overflow occursthe result is implementation dependent.

pri mvul Double :: Double — Double — Doubl e
Returns the result of multiplying the two double precision floating point
numbers passed. If an overflow occurs the result is implementation depen-
dent.

prinDi vDoubl e :: Double — Double — Double
Returnsthe result of dividing thefirst double precision floating point number
given, by the second one. If an overflow occurs the result isimplementation
dependent.

pri mNegDoubl e :: Double — Doubl e
Returns the negated value of the double precision floating point number
passed.

pri nPi Doubl e :: Double
Returns the doubl e precision approximation to the geometric constant .

pri mExpDoubl e :: Double — Doubl e
Given adouble precision floating point number z the result of the exponential
function e* isreturned.

pri mLogDoubl e :: Doubl e — Double
Returns the natural logarithm of the double precision floating point number
passed.

prinsgrtDouble :: Double — Double
Returnsthe square root of the double precision floating point number passed.

pri nSi nDoubl e :: Doubl e — Doubl e
Returns the sine of the double precision floating point number passed.

pri mCosDouble :: Double — Double
Returns the cosine of the double precision floating point number passed.

pri mfanDoubl e :: Double — Doubl e
Returns the tangent of the double precision floating point number passed.

pri mAsi nDoubl e :: Double — Double
Returns the arc sine of the double precision floating point number passed.

44

pri mAcosDoubl e :: Double — Double
Returns the arc cosine of the double precision floating point number passed.

pri mAt anDoubl e :: Doubl e — Double
Returnsthe arc tangent of the doubl e precision floating point number passed.

prinSi nhDoubl e :: Doubl e — Doubl e
Returns the hyperbolic sine of the double precision floating point number
passed.

pri mCoshDoubl e :: Double — Double
Returns the hyperbolic cosine of the double precision floating point number
passed.

pri mfanhDoubl e :: Double — Double
Returnsthe hyperbolic tangent of the double precision floating point number
passed.

pri mAsi nhDoubl e :: Doubl e — Doubl e
Returns the inverse hyperbolic sine of the double precision floating point
number passed.

pri mAcoshDoubl e :: Doubl e — Doubl e
Returns the inverse hyperbolic cosine of the double precision floating point
number passed.

pri mAt anhDoubl e :: Doubl e — Doubl e
Returns the inverse hyperbolic tangent of the double precision floating point
number passed.

45

4.5 Primitive Description Compiler

All primitives have some common characteristics. Each primitive needs to:
e isolate its arguments from the linked list passed,
e evaluate the argumentsinto weak head normal form,

e assert that the arguments passed are of the correct type (this is done in the
debug version of the program to flag potential programmer errors),

e create anew node of the appropriate type,
o fill the appropriate field of the node with the result and
e return that node.

In order to avoid this repetitiveness | implemented a special language for
describing primitives. This small language providing the interface between C and
HASKELL contains features of both languages. It also uses some conventions such
asthe $ pseudo-variable found in yacc [Joh75]. The primitive description file can
contain comments starting with the # character and blank lines. Code between
{%and 94 pairsis literaly included in the resulting C output. Its purpose is to
allow for the specification of include files, global variables, data structures and
procedures.

The user needs to specify amap between the HASKELL types, their C represen-
tations, the C enumeration constants used to represent them in an expression and
the union field they belong to. Each item of the map starts on a new line with a
% ype keyword. Map elements are separated by s double colon. For example the
map for fixed precision integer valuesis the following:

% ype Int coint . oex_int Do

Thismeans that aHASKELL value of type | nt isstored in the structure union field
u. i with the structure ki nd field set to ex_i nt . A C variable of typei nt can
store such avalue.

After the map is given the user can define the primitives. Primitives start
on aline starting with the pri mi ti ve keyword, followed by the name of the
HASKELL primitiveanditsHASKELL typesignature. A Cblock followsthe primitive
declaration. Within the block the pseudo-variables $1, $2 etc. are substituted by
the appropriate union fields of the real arguments, while the pseudo-variable $$
stands for the correctly initialised result node. The definition for the pr i nEql nt
primitive might look as follows:

46

primitive prinEglnt :: Int -> Int -> Bool
{

}

$$ = ($1 == $2);

Thisis about 8 lines shorter and alot clearer than the corresponding C code.

This meta-compiler isimplemented in the PERL programming language. The
associative arrays, variable substitution within strings and extended regular expres-
sions of PERL significantly eased the implementation task.

47

Chapter 5

Code Generation

Thepurpose of thischapter isto describethe processthat yiel dsexecutable machine
code, starting from abstract G code. The G code is produced by a series of
transformationsby Tassos Hadjicocolis (pattern matching removal, lambdalifting,
supercombinators, G).

5.1 Technical Overview

The main reference for code generation from the G machine is [Jon87, 293-366].
Other abstract machinesfo evaluating declarative languages are discussed in [JJ89]
and [War83]. The Amber machine [Car85] is an example of a machine for direct
implementation of functional languages. SK combinators and details on removing
variable references are presented in [Tur79]. The need for highly specific abstract
machineinstructionsto aid the code generation processispresentedin [FH82]. The
paper also containsways for expl oiting various machine specific pointer operations
in abstract machines. Some of the advice given can be found in the 68000 code
generator. A discussion on code generation for Lisp, assembler macros and various
optimisations can be found in [GH81]. Assembler specific optimisations are given
in [Han83].

Systematic optimisation of assembly code is done by means of peephole opti-
misers[ASUS8S5, p. 554]. Some simple optimisationsrelevant to the code produced
by the G trandation process are given in [Jon87, p. 328]. Devidson [Davg4]
generalises the technique of a simulated stack into a simulated cache. A more
general discussion on constructing a peephole optimiser isin [Lam81].

The idea for a generic machine description file (and the file name suffix . nd
was take from the project GNU C compiler [Sta89]. The C calling sequence for

48

interfacing C with assembly language is presented and discussed in [JR81].

5.2 Machine Description Meta-generator

The problem of trandating G into assembly code can be generalised by using
the concept of a machine description file. That file contains a mapping from
G instructions to a specific machine instruction sequences. A separate program,
the machine description compiler compiles the machine description file into an
executabl e program that converts G into assembly. Thisapproach hasthefollowing
advantages:

¢ Thedeveloper need only focus on the assembly mapping of the Ginstructions
when writing the machine description file. Tasks such asthelexical analysis
and parsing of the G instructions need to bother him or her.

e A machine description file is smaller and easier to write than a complete
trandlator. Thus it is easy to create a number of machine description files
easing the porting of the system.

e Changing the format of the G code (e.g. converting it into a binary stream
for efficiency reasonsor even directly connecting the two processes) will not
invalidate the machine description files and the effort put into them. Simply
a new machine description file translator needs to be written.

The format of the machine description file was designed to be the following:

Comment lines are blank lines, or lines containing a hash character.

Header inclusion starts with the symbol %84 . All code from that point up to the
matching %4 is copied verbatim to the assembly file. The purpose of this
section isto include assembler constant definitions, jump tables, macros etc.

Assembly comment definition isgiven by the sequence %8 omrent . The char-
acter following the comment word is taken to be the assembler comment
character. When code for the trandator is generated all commentsin the as-
sembly file will be removed. This allows the user to put arbitrary comments
inside assembly sequences without affecting the efficiency of the translation
process (one should remember that a particular instruction sequence can be
repeated tens of times on the output). The comment facility of the definition
language is not used, becauseit is quite probabl e that the comment character
of the definition language (the hash) will serve some other purpose in some
assembler.

49

G instruction definitions areintroducedby the%k eywor d sequencewherekeywor d
isthe name of a G instructions. An optional set of parameters can be given.
The text starting at the following line up to the first 944 will be generated
for that instruction by the translator. Any parameters will be substituted at
trand ation time with the actual parametersfollowing the G instruction. Any
local assembly comments are removed at compile time.

The “machine description” to “ G to assembly trandator”, compiler isimple-
mented as a script written in Perl. Initialy it used to output lex code. This took
excessively long to compile and the scanners produced were very slow. A speedup
to afactor of 7 was achieved by replacing the lex output by a C program based
on a perfectly hashed function. An option exists to alow the trandator to put into
the assembly comments indicating the G file and line number that generated each
assembly sequence. Thisisto aid the debugging process.

5.3 MachineModes

A full machine description file for the Motorola 68020 processor has been written.
and the machine model for the Intel iAPX386 has been designed.

5.3.1 Motorola 68020
Registers are used on the 68020 [TS86] as follows:

a7 Machine user stack pointer.

a6 C frame pointer

ab G stack pointer. Always pointsto the top of stack element.
a4 G heap pointer. Always pointsto the first free cell.

dO C function result return.

All other registers can be used for temporary values.

5.3.2 Intel iIAPX386
Registers are used on the iIAPX 386 [SJ87] asfollows:

ESP Machine user stack pointer.

50

EBP C frame pointer

ESI G stack pointer. Always pointsto the top of stack element.
EDI G heap pointer. Always pointsto the first free cell.

EAX C function result return.

EBX Secondary heap indexing.

ECX Temporary.

EDX Temporary.

Thedirection flag must always be set, as string instructionswill be used for creating
heap cells.

54 Gimplementation

Most of the instruction sequences follow the general pattern presented in [Jon87].
Unwind and eval are handled through indirect indexed jumps on tables containing
the addresses of code for the relevant cell contents. The indexed register indirect
with offset addressing mode has been extensively used to compute addresseson the
heap in one CPU instruction. For example in the unwind implementation putting
the index of the net element into the appropriate index of the vertebra (indexed by
dl) is accomplished by:

nmovl ab@4,d1:1:4),az2 | Get vertebra
nmovl a2@8),as@0,dl:1:4) | Put it on the stack

Nodes are built on the hap using the postincrement addressing mode. The
al | oc Ginstructionusesthe68000dbeq instructionto combinethedecrementing
of the index, testing and jumping in one instruction. This makes heap allocations
very fast.

A number of G primitives have been implemented in assembly. Some more
complicated such as unpack _sumand unpack _pr od have been written as re-
cursive functionsin C . A C structure and enumeration type have been written to
reflect the underlying assembly language organisation. The C function is passed
the arguments on the C stack (including the heap pointer). It then assigns the heap
pointer to aglobal variable. C functions that build objects on the heap increment
the heap pointer (the heap pointer is declared as a point to a structure of type cell
and thus is automatically incremented by the correct amount.) At the end of the

51

computation the glue C function passes the new heap pointer back to the assembly
caller. Theassembly caller assignsthe updated heap pointer to the register variable
containing it.

55 Cell Implementation

Cedllsareimplemented in the boxed way [Jon87, p. 335] Themain reason for thisis
portability. Unboxed representationmixedthe pointer bit withtheactual value. The
resulting code is non-portable. Since some of the runtime environment is written
in C (approximately 20%) it was decided to opt for the boxed representation.

Each cell contains atag field. The tag field is a number that represents how
the rest of the cell is to be interpreted. It occupies one 32 hit machine word.
Following the tag field are two other fiel dswhich contain various val ues depending
on the cell type. Constructors are represented by a linked list of CONSTR cdlls.
Each CONSTR cell contains a pointer to the next cell and a pointer to its element.
Although thisimplementationis not the most efficient possible (see[JSX X, p. 635]
for aternative representation) it easy very general and clean.

In the design of [Jon87] each functions is represented by a different tag and
thus at the time of evaluating it its arity can be deduced by its tag. This scheme,
although very generic is very difficult to implement in a one pass trandator. A
different reason was used. When agl obst art instruction is given the arity of
the function is written in statically allocated memory and a pointer is assigned to
that address. When the a pushgl obal instruction is encountered an assembly
instruction is emitted to fetch the arity from that address (using the label whichis
generated in a known way) and place it in the cell.

5.6 Additional G Instructions

Two additional G instruction beyond those specified in [Jon87] have been added.
Pushvgloba and vgl obst art represent functions with a variable number of
arguments. The only such functions are the internally used and generated pack
functions. The instructions are implemented as the corresponding fixed number of
argument instructions, only the arity is not put in the cell for pushvgl obal and
isnot put into memory for vgl obst ar t . Thesefunctionsare also represented by
adifferent tag. When such an instruction is evaluated or unwound, not check for
the number of argumentsis made. By definition the correct number of arguments
will be on the stack.

52

5.7 RuntimeEnvironment

An executable HASKELL program needs to be linked with a runtime library. That
library containstheinternal and HASKELL primitives, runtime error reporting func-
tions and startup code. The startup code allocates space for the stack and a heap
into a big structure containing two arrays (which are used by the C functions to
address the G memory space) and then callsthe G startup code passing the address
of that structure as an argument. The G startup code initialises the heap and G
stack pointing registers based on that argument (both start on the same point since
they grow on opposite directions) and starts evaluating code on the stack.

53

Chapter 6

System Development | ssues

A number of techniques were used during the implementation of this system in
order to automate the work,

6.1 Error message management

Error messages are one of the most important aspects of a user interface. Cryptic
errors will confuse a novice user, while overly verbose errors can hide valuable
details under their volume. Good error messages are very difficult to create as
indicated in [Bro82]. An approach often taken is to index the errors by a code.
Each error is printed as a brief message accomanied with the index number. In
the documentation, and increasingly on-line, thereisalist of errors sorted by their
index numberstogether with more detailed information. Theinformation provided
should give possible reasons for the error occuring and suggested recovery actions
[BC8Y, p. 309].

The features described above present a serious logistic problem. Errors have
to be numbered in a coherent way. Every timeanew error is added the indicesand
the documentation have to be updated. If on-line help is available then that needs
to be kept in sync as well. An attractive solution to this problem is presented in
[Dou9qQ].

Errors are kept in a database file. The cause of the error and the proposed
solutions are part of the source code. A special program scans the source code
and automatically recreates the database. The map between the database and the
actual error message is represented by the file name and line number in which the
error was called. Special macros are used to take advantage of the C preprocessor
ability to substitute the file name and line number for theindentifiers __FI LE_ and

54

LI NE_..
The approach described was modified to acter for the complexity of the
HASKELL system. Four classes of errors are distinguished:

Fatal errors These are non-recoverable errors. The system terminates when such an error
occurs.

Errors Recoverable errors. The system attempts to recover from the error and
continue the opration.

Warnings Diagnostic information. These can indicate something of interest o the user
(such as a portability problem) which will not affect the operation of the
system.

Runtime errors These are non-recoverable errors found by the runtime system when exe-
cuting G code. They result in an error message together with the offending
address being printed and a temination with a core dump.

Errors are numbered in increments of 1000 for each class. The Perl [Wal88]
programer r or db. pl scansall the source code and creates three files.

Errors. db isafile containing the file, line number and error number of each
error. Itisused by theerror reporting functionsfor associate an error number
with a specific error.

Errors.txt contains asorted list of al errors, their brief messages (suitably
parameterised in order to hidethe C pri nt f output codes), possible causes
and suggested actions. Thefileisformated in auniform and visually attrac-
tive way using thef or mat facility of Perl. Thisfileis suitable for printing
on aline printer or fo display on aglass tty terminal. It is used by the help
system of the interpreter to provide additional information when an error is
encountered.

Errors. tex]isafile containing the error messages with suitable commands
for printing by the IATEX[Lam85] document preparation system. This file
was used in the production of this report.

When an error is called one of the parametersisits CONTEXT whichisreplaced
using a set of macros by the file name and line number in which the error is used.
Theerror reporting procedurescanser r or s. db tofind the error number assigned
by errordb. pl to that error and prints it out otgether with the brief message
and possible other arguments. (The variable number of arguments facility of C

55

is used to create the error reporting function as a variadic pri nt f like funciton.
Thisallows for informative error messagesto be printed in an easy and convenient

way.)

56

Chapter 7

Per for mance

In order to evaluate the performance of the front-end its operation was profiled
using the profiler [Spi89].

Table 7.1 shows the result of scanning, parsing and building the syntax tree
of the HASKELL prelude. The program was run on a Compagq Deskpro 386/20e
running MS-DOS 3.30 with speed reduced from 20MHz to 8MHz to increase the
number of hits and consequently the accuracy of the results. Disk caching was
disabled to reflect the situation where the program is executed for the first time.
Entries with less than 2The program was compiled using Microsoft C 5.1 under
the large model with optimisations turned off (the compiler crashes on some of the
code when optimisations are enabled).

The profile reveals several interesting things. The dominant factor of the front
end isthe parsing and construction of the parsetree (itisdonewithintheyypar se
function. Almost the same percentage of timeis spent in the operating system and
the system ROM which means that the program has a significant 1/0O component.
One should take into account that the 1/O subsystem was proportionally faster than
that of a typical machine, since the CPU was slowed down. A significant I/O
component often indicates an efficient program. Herel believe that thisisthe case.

An unexpected result of the profile was the high percentage of time spent in
the mentpy routine. Searching though the code | found that the only place where
the routine was called was within the fio library. The purpose of thislibrary isto
minimise character copying, sothisresult wasat least ironical. Closer examination
of the code revealed that as aresult of the maximum line length alowed by fio, the
average line length of the prelude and the buffer size chosen approximately half of
the characters would get copied. The reason for thisis subtle:

Fio specifies that a line can be up to 4096 characters. A buffer twice that size

57

| Area | Time % |
yyparse | 19.55
DOS | 15.04
gettoken | 12.78
memcpy | 12.03
_chkstk | 6.02
read | 5.26
fmalloc | 4.51
SYSTEM_ROM | 451
stab_findadd | 3.76
_amaloc | 3.76
strncmp | 2.26
stremp | 2.26
eatwhite | 2.26

Table 7.1: Front end profile

was chosen in order to implement a double buffering scheme. Whenever there
are less than 4096 characters in the buffer and a new line is requested fio needs
to copy the remaining characters to the beginning of the buffer and fill the rest
in. Asthe average prelude lineis alot smaller that 4096 characters (typicaly less
than 80), whenever half of the buffer was read, the other half was copied to the
beginning. Hence the large percentage spent copying characters. The nentpy
time can be made arbitrarily small by increasing the size of the buffer or decreasing
the maximum allowed line length. Each such doubling or halving will halve the
time spent copying.

The time spent in the lexical analyser engine get t oken is very respectable
compared to therest. it indicates a sound design and implementation.

The time spent allocating memory isrelatively low, as expected given the care
taken to avoid allocation of small items.

Surprisingly littletimewas spent in the string compari son routine given the fact
that it is called for every keyword. This dissuaded me from a plan of optimising
the keyword recognition scheme.

58

Chapter 8

Conclusions

Thisproject hasdemonstratedthat the HASKEL L language can beimplemented. The
whole language is scanned and parsed and most of its constructs can be intepreted
and transformed into efficient machine language.

A significant and ironic aspect of the project is the extensive use of little
languages. | do not believe that the 12700 lines of code could have been produced
with the reliability achieved were there not for the additional level of abstraction
provided by those new languagesintroduced. HASKELL isabiglanguage. I1ts many
features make it difficult to analyse, parse and reason about. While writing test
programs | often found myself wondering what a construct would mean. Having
achieved most of the goal s set at the beginning of the project | am not convinced that
HASKELL provides the linguistic vehicle needed by the functional programming
community.

59

Appendix A

Acknowledgements

A great number of people have helped to make this project areality. | would like
to thank

Sophia Drossopoulou for her insightful comments, Dave Edmondson for many
useful ideas and interesting distractions, Sue Eisenbach for having the patience
to deal with me, lively discussions and support, Tony Field for his comments
on the HASKELL implementation problems, Filippos Frangoulis for his help in
the early stages of the project, Tassos Hadjikokalis for his invaluable help in
implementing the G primitives and his patience on keeping an eye while | was
coding them in assembly, Chris Hankin for his general guidance, Andrev Hume
for hisexpert advice on theimplementation of thefio library, Natalia Karapanagioti
for filling the cold Sun Lounge with her laughter, Paul Kelly for the provision
of the December HASKELL report, Lee McLaughlin for providing me with the
Glasgow implementation of HASKELL and for the hard work put (together with
Stuart McRabert) behind the UKUUG software archives—the source of most of
the tools used in this project—, LH Software Ltd. for providing me with a C
compiler, Keith Septhon for his expert opinion on tricky parts of HASKELL , Jan
Simon Pendry for sharing his experience in an attempt to implement thefio library,
Periklis Tsahageasfor various long theoretical and philisophical discussions, down
to earth advice and driving me home, Larry Wall for writing Perl—the most used
tool after the C compile—, and finally, various contributors of the project GNU
whosetools | have used.

The implementation of this system would not have been possible without the
reliabity, speed and disk space of my COMPAQ DESKPRO 386/20e machine.
Each one of the 30,100,780,000,000 cyclesit went through, from the beginning of
the codingtill now (thelast night before handing in thereport) helped therealisation

60

of the system described.

61

Appendix B

Error Messages

3001 Error count exceeds number; stoping

Reason Too many errors were output.
Action Correct some of the errors and retry.

3002 Out of memory (malloc number)

Reason All the memory resources of the system were exhausted.

Action Try to run the system with fewer processes, or increase the swap
area. Alternatively simplify the program.

3003 Out of memory (realloc number)

Reason All the memory resources of the system were exhausted.

Action Try to run the system with fewer processes, or increase the swap
area. Alternatively simplify the program.

2001 Undeclared variable (string)

Reason An undeclared variable was used in an expression.
Action Make sure that al variables used are declared.

2002 Pattern match error

62

2003

2004

2005

2006

2007

Reason A pattern matching failed completely either for different expres-
SiONS, Or Cases.

Action Make sure that there is a pattern specification for every different
pattern that can exist at runtime.

Single digit expected (number)

Reason Aninvalid fixity declaration was found.
Action Fixity declarations should consist of asingledigit in the range from
0to 9.

Missing constructorsin data declaration

Reason No constructors were given in a data declaration of an implemen-
tation module.

Action Ensure that the simple typeis followed by an equal sign and a con-
structor list. Constructors can only be ommited in interface modules.

Invalid unary operator‘string’ in expression

Reason A unary operator other than unary minuswasfoundin an expression.

Action Haskell only allows ‘-" to be used as a unary operator. Ensure
brackets are used correctly to indicate precedence.

Invalid successor pattern

Reason A successor pattern composed by invalid elements was found.

Action Ensurethat the pattern iscomposed by avariableto which aninteger
isadded. Check that precedence rules guarantee the correct binding.

Invalid unary operator‘string’ in pattern

Reason A unary operator other than unary minus was found in a pattern.

Action Haskell only allows ‘-' to be used as a unary operator. Ensure
brackets are used correctly to indicate precedence.

63

2008 Syntax error

Reason A syntactical error was found in the program source.

Action Make sure that the program follows the syntax rules of Haskell.
Check for misspellings. Check the input against the precedence rules.

2009 Invalid interface import

Reason Aninvalid import declaration was found in an interface module.

Action Ensure that no “hiding” declaration has been used and that and
explicit import list has been given.

2010 Invalid interface declaration

Reason Aninvalid variable or class declaration was found in an interface
module.

Action Ensure that no “default” declaration has been used and that any
variable or class instance declarations only consist of type signatures.

3004 End of filein line comment

Reason The file ended while processing a single line comment.
Action Make sure that the line ends with anewline.

2011 Floating point number overflow

Reason A floating point number with avalue higher or lower than the maxi-
mum or minimum representabl e val ue on this system was encountered.

Action Make sure that the exponent is within the valid range and that no
other numbersfollow it.
2012 Invalid backquote operator

Reason The operator formed using backquotes was not valid.

64

Action Ensurethat the operator isenclosed within backquotes and that only
valid alphanumeric characters are used. No spaces are allowed within
the backquotes.

2013 Close bracket missing in variable or constructor

Reason Anattempt wasmadeto useasymbolicoperator asacurriedvariable
or constructor by encolosing it in parentheses. No closing parenthesis
was found.

Action Ensure that the symbols are enclosed within parentheses and that
only valid symbol characters are used. No spaces are allowed within
the parentheses.

2014 Invalid decimal escape (number)

Reason An illegal decimal escape sequence was found. The value of the
resulting character is higher than the maximum allowed.

Action Give an decimal number from O to 255 and make sure that a se-
guence of lessthan three decimal digitsis not followed by other digits
producing a spurious resullt.

2015 Invalid octal escape (octal number)

Reason An illega octal escape sequence was found. The value of the
resulting character is higher than the maximum allowed or no octal
digits were following the @.

Action Give an octal number from 0 to 377 and make sure that a sequence
of lessthan three octal digitsis not followed by other digits producing
aspurious result.

2016 Invalid hexadecimal escape (hexadecimal number)

Reason An illegal hexadecimal escape sequence was found. The value
of the resulting character is higher than the maximum allowed or no
hexadecimal digits were following the
X sequence.

65

Action Give an hexadecima number from O to ff and make sure that a
sequence of hexadecimal digitsis not followed by other hexadecimal
digits producing a spurious result.

2017 Invalid ASCII control escape (character)

Reason AnASCII control escape sequencewith aninvalid control character
was detected.

Action Ensure the an uppercase character fromA to Z

2018 Invalid backslash escape (string)

Reason An unknown backslash escape was found.

Action Makesurethat thebackslashescapeisvalid. Valid backslash escapes
are a backdlash followed by oneof abfnrtv "’ & or the name of
an ASCII control, hat followed by an uppercase letter, x followed by a
hexadecimal number or an optional o followed by an octal number.

2019 Empty character

Reason A character with no contents was found.

Action Make sure that there is exactly one character between the single
quote marks. A character consisting of a single quote mark should be
givenas’’.

2020 Invalid null character constant

Reason The null character escape & is only meaningful inside string con-
stants.

Action Either denote a string constant using double quotes or change the
escape sequence to avalid one.

2021 Invalid character constant (' character’ Ooctal number number Oxhexadecimal
number)

Reason Aninvalid character constant was given. The constant isnot in the
ASCII range 32-126.

66

Action Make surethat the character iswithing the ASCII range 32-126. All
other characters should be given by backslash escapes.

2022 Possibly unterminated character constant

2023 Newlinein string

Reason A newlinewasdetected withinastring. A string was not terminated
on the same line where it started.

Action Make sure that the string terminates on the same line it starts. To
include anewline in a string use the
N escape seguence.

3005 End of filein string

Reason Thefile ended while reading a string.
Action Make sure that the string ends with a double quote.

2024 Badly formed string gap

Reason A string gap was badly formed.

Action Make sure that the string gap is composed by a backslash, possibly
followed by spaces or tabs, followed by a single newline, possibly
followed by another series of spaces or tabs, followed by a backslash.

2025 Invalidcharacterinstring (" character’ Ooctal number number Oxhexadecimal
number)

Reason A non printable character was found within a string.
Action Make sure that the string only contains ASCII characters between

32 and 126. All other characters should be given as backslash escapes.
3006 End of filein comment

Reason The file ended while processing a block comment.

67

Action Make surethat every comment ends with a minus brace and that no
nested comments have been left open.

2026 Bracket missmatch inside qualifier

Reason A bracket mismatch has been detected while parsing alist compre-
hension.

Action Make sure that the round, square and curly brackets in the list com-
prehension are correctly balanced. Brackets of different kinds should
never overlap.

3007 Qualifier ring buffer full

Reason Too many lexical tokens while scanning ahead a qualifier were
found.

Action Make surethat the square brackets around thelist comprehension are
correctly balanced. If the expression is very complex try simplifying
it.

3008 Premature EOF

Reason End of file was reached while scanning a list comprehension.

Action Make sure that the sguare brackets around the list comprehension
are correctly balanced.

3009 Quadlifier ring buffer full

Reason Too many lexical tokens while scanning ahead a qualifier were
found.

Action Make surethat the square brackets around thelist comprehension are
correctly balanced. If the expression is very complex try simplifying
it.

3010 Token ring buffer full

Reason

68

Action Too many lexical tokens were pushed by the layout rules. Try
simplifying the layout of the source.

3011 Indentation stack overflow

Reason

Action Too many lexical tokens were pushed by the layout rules. Try
simplifying the layout of the source or use some explicit curly brackets.

3012 Indentation stack underflow

Reason

Action Tried to add more implicit close braces than implicit open bracess
had been addedusing the layout rules. Curly brackets that have been
opened by the user must be explicitly closed.

3013 End of filein line comment

Reason The file ended while processing a single line comment.
Action Make sure that the line ends with anewline.

3014 Unableto open string: string

Reason Theinput file specified could not be opened for reading.

Action Make sure that the correct filename and extension were given and
that the file has appropriate permissions.

69

Appendix C

A General Critique of the Haskéll
Syntax

C.1 Introduction

The syntactic description of Haskell has a number of problems. They can be
classified into three different categories of severity. | will analyse these categories
from the least problematic to the most troublesome. While al of the problems can
in theory be solved, | believe that the implementation of the language will suffer
death by athousand cuts.

C.11 Stylistic problems

The easiest problems to solve are the ones associated with the way the language
is presented. The syntax given in appendix B of the language specification is
supposed to follow some notational conventions which are given in section 1 of
the appendix. However in the presentation of the grammar in section 4 a number
of additional description mechanisms are used. These are:

¢ Bracketed comments on the right of the rules. The comments specify any-
thing from the number of times a construct may repeat to the type an operand
is alowed to have. | stress that the comments do not have just seman-
tic meaning. A number of them are used to distinguish between different
syntactic choices.

e Theéllipsis construct isintroduced to signify repetition.

e Some productions are subsets of other productions.

70

While most of these problems can be dealt with they show a certain lack of
experience or care from the persons who designed the language. They furthermore
demonstrate that the grammar is difficult to describe in a forma way and thus
probably also difficult for people to understand, implement and use.

C.1.2 Lexical ties

Thereis no clear distinction between the lexical and grammatical elements of the
language definition. The same categories of lexical elements are used as different
types of tokens by the grammar. Thus the lexical analyser needs to have a number
of special hooks to change its behaviour according to the context of the syntax.
The casesidentified up to now are:

e Constant identifiers can serve as constant identifiers, as class specifiers and
as constant type specifiers.

¢ Variable identifiers can serve as variable identifiers and as variable type
identifiers.

e Operands can change their precedence and associativity dynamically.

e Layoutissignificant. Although one might get theimpression than thelexical
analyser only needs to check white space at the beginning of each line to
implement the layout rulesacloser examination of therulereveal sthat layout
can begin at any point withinaline.

Most of the problems described above can be found in other languages. C
requires a single lexical tie for type definitions [KR78] , awk [AKW79] doesn't
reguire statement terminators (one form of the Haskell layout rule), Ratfor imple-
ments an extended layout rule, Prolog has varying precedence of operators. No
language that | know of combines them all together. In some cases even the de-
signers of such solutions regretted their decision because of the problemsit added
to the language specification and implementation. | believe that most of the above
bugs/features were added by a combination of creeping featurism and lack of at-
tention to their implications. They increase the complexity of the language in a
number of ways and add confusion to an already complex language.

C.2 Languageambiguity and lack of LR(k)ness

There are many ambiguities in the language. Some of rules for resolving the
ambiguities are given in the analytical description of the language, others should

71

be deduced from the as yet unpublished standard prelude. Yet the fact that 33
disambiguating rules were needed to resolve the ambiguitiesin a yacc description
of thelanguagemeansthat it will bevery difficult to guaranteewhat languagewill be
recognised by the parser. In particular the function application production although
ambiguous has no operand associated with it. Thus in a yacc implementation
disambiguating rules have to be specified for every language token or literal that
might be used to introduce a new expression.

In addition to the ambiguities presented above the language described in the
appendix turns out not to be LR(k). Qualifiers can start with either a pattern or
an expression and both patterns and expressions can be arbitrarily long lists of
variables. Thus an arbitrary number of tokens needs to be scanned before the
list can be reduced to a pattern or an expression. This problem can be solved by
merging patterns and expressions together. Thishowever places an extremely high
burden on the semantic analysis phase which would have to distinguish between
the two and verify that noillegal patternsor expressions were entered. As patterns
and expressions differ in a number of ways this method introduces a number of
problems.

C.3 Conclusions

The syntactical description of the Haskell programming languageisfrom anumber
of different aspects deficient. This makes an implementation of the language
very problematic or even impossible. A solution would be a radical redesign
of the language. The new language would have to be designed with an eye
towards its implementation, avoiding unproven language concepts and irrelevant
barogue features. According to the preface of the Haskell report, Haskell is to
be a standard functional programming language. Experimentation with language
featuresirrelevant to thefield of functional programming should not be part of such
astandard.

72

Appendix D

Error Log

On February 14 when | started testing | decided on a clean room strategy. All
errors found during testing would be logged. The resulting log should provide a
base for measuring the relibility of the project, relative difficulty of various parts
and provide various software metrics.

Wed Feb 14 20:44:52 1990 Lexical analysis File scan.|
one character reserved operators were not treated specially and | relyied on
the default rule to match them. Other rules preceded the default rule and
they were used.

Thu Feb 15 09:18:44 1990 Lexical analysis File scan.|
Some one character reserved operators were treated as variable operators.
The problem was finaly traced to a - appearing in a character class. Thiswas
correctly interpreted by lex as arange, whereas| mean it as aliteral.

Sat May 19 16:56:22 1990 Lexica analysis File scan.|
In routine process_string when a backslash escape was found a check for a
string gap was made. If that test failed process_escape(_ was called. | forgot
to put the character back into the stream.

Sat May 19 17:19:01 1990 Lexica analysis File scan.|
Escape sequences were parsed wrongly. | had used a line of the form:

while (c = input() & isdigit(c))
which was parsed as:

while (c = (input() &isdigit(c)))

73

Sat May 19 17:29:56 1990 Lexica analysis File scan.|
In trandlating hexadecimal escape sequences into a number | forgot that ¢
- "0’ did not produce the right result for hex. | did not even check of upper
and lowercase hex escapes.

Sat May 19 17:36:04 1990 Lexica analysisFile scan.|
The conversion from hex character to hex value was done by finding the
index of the character into atable. Instead of subtracting the table from the
index | subtracted the index from the table.

Sat May 19 17:48:57 1990 Lexica analysisFile scan.|
Did not handle the “consume longest lexeme” rule between the ASCII es-
capes SOH and SO.

Sat May 19 18:03:37 1990 Lexica analysis File scan.|
The code for sting gaps did not take into account that the whitespace before
and after the newline was optional.

Sat May 19 18:41:58 1990 Lexica analysis File scan.|
Had forgotten to include space in the characters that are allowed in strings.

Sun May 20 17:08:58 1990 Lexica analysis File scan.c
The get next character macro returned O if a character was put back into the
stream. | was zeroing the memory to indicate that the pushed back character
was taken away and then was returning the same memory. A temporary
variable was forseen and initialised to the value of the memory beforeit was
zeroed, but was not returned.

Sun May 20 17:13:12 1990 L exical analysis File scan.c
Forgotten to put a case for EOF in the switch statement. EOF was passed to
the parser as -1 whereas the parser expects 0.

Sun May 20 17:20:16 1990 Lexical analysis File scan.c
Used the operator sizeof within amacro to instead of strlen for efficiency, so
that it would be calculated at compiletime. Did not think that it returns one
more than strlen.

Sun May 20 17:25:57 1990 Lexical analysis File ctype.ctc
Had not included the character at in the list of allowed escapes

Sun May 20 17:58:05 1990 Lexica analysisFile ctc.bat
The ctype compiler generates two macrosthat do nothing, isnone and isany.

74

These macrosdiscard their argumentsand thusdid not producethe side effect
needed by scan.

Sun May 20 18:17:32 1990 Lexica analysis File scan.c
The (-) varop did not work. When save was called to put it in the symbol
table c did not contain ’-" aswas required by save.

Sun May 20 18:23:48 1990 Lexica analysis File scan.c
Did not put the character after the open bracket taken to examine if it meant
the start of a varop back to the input stream if the examination proved
negative.

Sun May 20 18:36:33 1990 Lexical analysis File scan.c
Did not parse the sequence (- foo) as four tokens. Attempted to parseit asa
varid. Modified for the special case of a-. Not sureif | need to handle any.
If so then lookahead is needed. Arghh!!!

Sun May 20 18:36:33 1990 Lexica analysis File scan.c
Thetest for conop needed to unput one character and set cto ..

Sun May 20 18:47:08 1990 L exical analysis File scan.c

The hypothesis of Sun May 20 18:36:33 1990 was indeed true. Open bracket
symbol does not imply tVARID. The prelude contained (backslash x if x ...).
Added lookahead. Did not fix tCONID inthe sameway. Can therebeacase
(:+ something)?

Sun May 20 20:57:56 1990 Lexica analysis File scan.c
The layout rules used recursive calls to yylex in order to get the next token.
Therecursive call invoked the layout rules recursively and resulted in tokens
being pushed by reverse order into the ring buffer!

Sun May 20 22:17:13 1990 Lexica analysisFile scan.c
When the ring buffer is empty, topyylex returns yylex. Yylex may fill the
ring buffer, but it istoo late. | will try to fix it by a hack in topyylex (call
yylex and then compate the ring?). | fedl it is ahack.

Sun May 20 22:36:55 1990 Lexical analysis File scan.c
Thefix Sun May 20 22:17:13 1990 did not work. A detailed analysis showed
that the correct operation was to call yylex and then swap the token returned
with the token in the ring, returning the token in thering.

75

Sun May 20 22:42:53 1990 Lexical analysis File scan.c
A very complicated attempt at optimising the copying of yylval in topyylex
was wrong. The idea was not to copy yylex when the token has value
less than 255. When that involved swapping the two tokens the sequence
got very complicated because depending on their values sometimes yylval
became clobbered and sometimes not. The correct series of testsis probably
more expensive than the actual copy, so the optimisation was removed.

Sun May 20 22:52:43 1990 Lexical analysis File scan.c
Topyylex istill wrong. Asdonethe ring will never empty becauseit always
gets another token before examining thering. Modified to get another token
only when the ring is empty. Afterwards it checks if a sidefect of getting
the token wasfilling the ring and performs the swap operation or returnsthe
token.

Sun May 20 23:03:50 1990 Lexical analysis File scan.c
The recursive calls to yylex and the filling of the ring are not working
correctly. The approach of using the lexical analyser to eat white space
when looking for the next lexeme is probably not the best. Trying new
approach to have amini scanner to eat white space.

Sun May 20 23:25:38 1990 Lexical analysis File scan.c

It may be that some of the problems between Sun May 20 20:57:56 1990

and Sun May 20 23:03:50 1990 may have been imeagined bacause of wrong
input data. The example used to test layout had been typed in long time
ago and looked like the example in the April Haskell report. In fact it had
many subtle differences which made the scanner look buggy. (Whenlooking
at the scanner output | was reading against the Haskell document, not the
actual test data.) Closer examination reveal ed that the example had changed
between the September report and the April onel

Sun May 20 23:44:51 1990 L exical analysis File scan.c
Forgot to take into account the fact that asingle line may terminate anumber
of braces. Thisis expressed as a while loop, but because yylex is called |
have too keep state and use a goto unindent. Argh!!!

Sun May 20 23:54:09 1990 Lexica analysisFile scan.c
Initialising the column where modul e appear to -1 when it appearsit too late

76

because a semicolon whil alread have been inserted when the newline comes.
(if there is a newline before module). Fixed by initialising the indentstack
to have a-1 entry in it. Also forgot to update the state on EOF. Thus the
program was looping outputing semicolons.

Mon May 21 00:51:37 1990 Lexical analysisFile scan.c
Did not update state after outputing a’;". This was the real reason for the
looping.

Wed May 30 15:26:02 1990 Parsing File makepr.pl
The procedure that prints out structures checked to se if the pointer to the
structure was null, but did not return if it was. Instead it could call itsself
recursively.

Wed May 30 18:38:39 1990 Error reporting File error.c
The arguments passed to sscanf were not passed by reference.

Wed May 30 18:39:34 1990 Error reporting File error.c
A brace was missing form a nested if. Consequently the wrong else was
chosen.

Wed May 30 18:40:10 1990 Testing File testparse.c
The symbol table was not initialised.

Thu May 31 10:11:00 1990 Parsing File parse.y
The C code for module did not set the dollar dollar variable. This was then
set by default to NULL.

Thu May 31 10:26:10 1990 Lexical analysisFile scan.c
Forgot to unput the first non digit character read after an integer.

Thu May 31 18:59:05 GMT 1990 Parsing File fix.c
The test for differentiating between constructor operators and variable op-
erators was wrong. Constructor operators start with upparcase and variable
operators with lowercase, not the opposite.

Fri Jun 01 14:12:00 1990 Parsing Filefix.c
Had assignments for constructor and variable operators swapped around.

Fri Jun 01 14:36:08 1990 Parsing Filefix.c
- does not qualify for a symbol and was thus termed as a constructor.

77

Fri Jun 01 16:15:25 1990 Parsing File parse.y
After adding the open brace in the module derivation, forgot to remove it
from the body derivation.

Fri Jun 01 17:08:42 1990 Error management File error.c
When an error could not be located in the error database the file numebr and
file name got corrupted. The error number was passed to printf, although no
corresponding

Fri Jun 01 21:55:50 1990 Parsing File parse.y
Datadeclarationswere not parsed becausetype variableswere expected. The
lexical analyser did not differentiate type from normal variables and thus a
syntax error occurred.

Fri Jun 01 23:43:51 1990 Lexical analysis File scan.c
If aclosing brace was needed at end of file the end of file character was not
pushed back in the stream.

Fri Jun 01 23:53:41 1990 Lexical analysis File scan.c
After moving to anew file failed toinitialise input system.

Sat Jun 02 00:05:40 1990 L exical analysis File scan.c
Did not initialise indentation for layout rules after the ‘interface’ keyword.

Sat Jun 02 01:06:01 1990 L exical analysis File scan.c
Did not invoke the layout rule after newlines that terminate line comments

)

Sat Jun 02 01:39:32 1990 Parsing File parse.y
The rule for patterns expected an explicit '-" instead of varopl6 as it is
renamed by fixity declarations.

Sat Jun 2 16:02:17 GMT 1990 Lexical analysis File scan.c
Did not initialise the ring buffer.

Sat Jun 2 16:04:05 GMT 1990 Symbol table File symtab.c
The printf specification for creating unique identifiers missed the final d for
the

Sat Jun 2 16:26:26 GMT 1990 Lexical analysis File scan.c
Tried to interpret 1..2 as afloating point number.

78

Tue Jun 5 22:20:57 BST 1990 Symboal table File symval.c parse.y
Did not create symbol values for most symbols. This cause the macro that
checked symbol values to crash.

Tue Jun 5 23:30:12 GMT 1990 Lexical analysisFile scan.c
Erroneously checkdfor the symbol value of converted VAROPS (in brackets).
This made it return the tokval of the assigned fixit instead of varop.

Wed Jun 6 22:59:10 BST 1990 Parsing File parse.y
Used wrong tag when initialising class structures.

Fri Jun 8 19:07:17 BST 1990 Interpreter File interp.c
Forgot to add suspensions in function applications Checked the value of a
variable in the environment after checking if it was a builtin.

Fri Jun 8 19:22:53 BST 1990 Interpreter File interp.c
Did not evaluate the value of a variable in the environment when it was
found.

Fri Jun 8 21:11:45 BST 1990 Interpreter File interp.c
Did not pass the name of the unitialised variable in the error function.

Fri Jun 8 21:19:58 BST 1990 Interpreter File testparse.c
Did not initialise the primitives

Fri Jun 8 21:23:43 BST 1990 Lexical analyser File symval.c
Did not check that tokens whose tokval was

Fri Jun 8 22:26:00 BST 1990 Interpreter File interp.c
Used the wrong variable to get the builting name. Used the result of the
environment search (which was NULL) instead of the original expression.

Fri Jun 8 22:31:28 BST 1990 Interpreter File prim.c
The tests used in the assertions to verify that the types passed to primitives
were correct used assignment instead of equality test.

Fri Jun 8 22:39:46 BST 1990 Interpreter File prim.c
The non-lazy primitives were not evaluating their arguments.

Sat Jun 9 21:41:27 BST 1990 Parsing File parse.y
Expressionsdid not allow for constructor operators Forgot to change the ’ +’
for successor patternsto itsinfix|6 op.

79

Sat Jun 9 22:35:08 BST 1990 Lexical analysis File scan.c
When checking for keywords and saving them, did not update yycolumn.

Sun Jun 10 15:23:54 BST 1990 Lexical analysis File scan.c
When atab was found awrong expression was used to incement the column
number.

80

Appendix E

Trademarks

COMPAQ and COMPAQ 386/20e are trademarks of Compag Computer Corporation.
Intel, 386 and iAPX 386 are trademarks of Intel Corporation.
Microsoft and MS-DOS are trademarks of Microsoft Corporation.
Mirandaisatrademark of Research Software Ltd.
PDP-11 and VAX are trademarks of Digital Equipment Corporation.
TeX isatrademark of the American Mathematical Society.
Unix isaregistered trademark of AT& T in the USA and other countries.
All other trademarks are property of their respective owners.

81

Bibliography

[AJ74]

[AKW79]

[AKWSS]

[aNFV84]

[ASUS5]

[Bai85ad]

[Bai8sh]

[BCS89]

[Ben82]
[Ben85]

[Bens6)

A. V. Aho and S. C. Johnson. LR parsing. Computing Surveys,
6(2):99-124, June 1974.

A. V. Aho, B. W. Kernighan, and P. J. Weinberger. Awk — a pattern
scanning and processing language. Software — Practice and Experi-
ence, 9(4):267-280, 1979.

Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger. The
AWK Programming Language. Addison-Wesley, 1988.

P.W. E. Verhelst an N. F. Verster. PEP: an interactive programming
system with an algol-like programming language. Software—Practice
and Experience, 14:119-133, 1984.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers, Princi-
ples, Techniques, and Tools. Addison-Wesley, 1985.

Paul A. Bailes. A low-cost implementaion of coroutines for C.
Software—Practice and Experience, 15(4):379-395, April 1985.

D. Bailey. The university of salford Lisp/Prolog system. Software—
Practice and Experience, 15(6):595-609, June 1985.

Judith R. Brown and Steve Cunningham. Programming the User
Inteface. John Wiley & Sons, 1989.

Jon Louis Bentley. Writing Efficient Programs. Prentice-Hall, 1982.

Jon Bentley. Associative arrays. Communications of the ACM,
28(6):570-576, June 1985.

Jon Bentley. Little languages. Communications of the ACM,
29(8):711-721, August 1986.

82

[Bou86]

[Bro82]

[Car85]

[CRRS89]

[Dav84]

[DGMS0)]

[Don87]

[Doud0]

[Fed84]

[FH82]

[FH88]

[GH81]

S. R. Bourne. An introduction to the unix shell. In UNIX Users
Supplementary Documents. Computer Systems Research Group, De-
partment of Electrical Engineering and Computer Science, University
of Caifornia, Berkeley, California 94720, April 1986. 4.3 Berkeley
Software Distribution.

P. J. Brown. ‘my system gives excellent error messages — or does
it? Software—Practice and Experience, 12:91-94, 1982.

Luca Cardelli. The amber machine. Technical Report 119, Bell
Laboratories, Murray Hill, New Jersey 07974, June 1985.

Diane Barlow Close, Arnold D. Robbins, Paul H. Rubin, and Richard
Stallman. The GAWK Manual. Free Software Foundation, 675 Mas-
sachusetts Avenue, Cambridge, MA 02139 USA, 0.11 beta edition,
October 1989.

Jack W. Davidson. Register alocation and exhaustive peephole
optimization. Software—Practice and Experience, 14(9):857-865,
September 1984.

John M. Dedourek, Uday G. Gujar, and Marion E. Mclntyre. Scanner
design. Software—Practice and Experience, 10:959-972, 1980.

Chris S. Mc Donald. fsh— afunctional UNIX command interpreter.
Software—Practice and Experience, 17(10):685—700, October 1987.

Rohan T. Douglas. Error message management. Dr. Dobb’s Journal,
pages 48-51, January 1990.

J. Feder. The evolution of UNIX system performance. Bell System
Technical Journal, 63(8):1791-1814, October 1984.

Christopher W. Fraser and David R. Hanson. Exploiting machine-
specific pointer operations in abstract machines. Software—Practice
and Experience, 12:367-373, 1982.

Anthony J. Field and Peter G. Harrison. Functional Programming.
Addison-Wesley, 1988.

Martin L. Griss and Anthony C. Hearn. A portable LISP compiler.
Software—Practice and Experience, 11:541-605, 1981.

83

[Gol80]

[Hans3]

[Heu86]

[H387]

[HL87]

[Hoarg]

[HOS85]

[Hudgg]

[Humss]

[Hum9Q]

[HWA+89]

[HWA+90]

Adele Goldberg. Smalltalk 80: The Language and its I mplementation.
Addison Wesley, 1980.

David R. Hanson. Simple code optimizations. Software—Practice
and Experience, 13:645-763, 1983.

V. P. Heuring. The automatic generation of fast lexical anaysers.
Software—Practice and Experience, 16(9):801-808, September 1986.

Samuel P. Harbison and Guy L. Steele Jr. C: A Reference Manual.
Prentice-Hall, second edition, 1987.

R. Nigel Horspool and Michael R. Levy. Mkscan — an interactive
scanner generator. Software—Practice and Experience, 17(6):369—
378, June 1987.

C. A. R. Hoare. Communicating sequential processes. Communica-
tions of the ACM, 21(8):666-677, August 1978.

Christoph M. Hoffmann, Michael J. O’ Donnel, and Robert I. Strandh.
Implementation of an interpreter for abstract equations. Software—
Practice and Experience, 15(12):1185-1204, December 1985.

Paul Hudak. Conception, evolution and application of functional
programming languages. Communications of the ACM, 21(3):359—
411, September 1989.

Andrew Hume. Grepwars. Thestrategic searchinitiative. In Proceed-
ings of the EUUG Spring 88 Conference, pages 237—245. European
UNIX User Group, 1988.

Andrev Hume. Private communication of A. Hume of Bell Labora-
tories, Murray Hill, New Jersey 07974, May 1990.

Paul Hudak, Philip Wadler, Arvind, Brian Boutel, Jon Fairbairn,
Joseph Fasel, John Hughes, Thomas Johnson, Dick Kieburtz, Rishiyur
Nikhil, Simon Peyton Jones, Mike Reeve, David Wise, and Jonathan
Young. Report on the programming language haskell. Technical Re-
port Version 1.0, Yale University, University of Glasgow, September
1989.

Paul Hudak, Philip Wadler, Arvind, Brian Boutel, Jon Fairbairn,
Joseph Fasel, John Hughes, Thomas Johnson, Dick Kieburtz, Rishiyur

84

[389]

[JL87]

[Joh75]

[Joh82]

[Jons6]

[Jon87]

[Joy86]

[JRS1]

[JSXX]

[KC]

Nikhil, Simon Peyton Jones, Mike Reeve, David Wise, and Jonathan
Young. Report on the programming language haskell. Technical Re-
port Version 1.0, Yale University, University of Glasgow, April 1990.

S. L. Peyton Jones and M. S. Joy. FLIC — a funcitonal language
intermediate code. Internal Note 2048, University College London,
Department of Computer Science, July 1989.

S. C. Johnson and M. E. Lesk. Language development tools. Bell
System Technical Journal, 56(6):2155-2176, July-August 1987.

Stephen C. Johnson. YACC — yet another compiler-compiler. Tech-
nical Report 32, Bell Laboratories, Murray Hill, New Jersey 07974,
July 1975.

S. C. Johnson. A tour through the portable C compiler. In UNIX
Programmer’s manual: Supplementary Documents, volume 2, pages
544-568. Holt, Rinehart and Winston, seventh edition, 1982.

Simon L. Peyton Jones. Parsing distfix operators. Communications of
the ACM, 29(2):118-122, February 1986.

Simon L. Peyton Jones. The I mplementation of Functional Program-
ming Languages. Prentice-Hall, 1987.

W. N. Joy. An introduction to the C shell. In UNIX User’'s Supple-
mentary Documents, Volume 1. Computer Systems Research Group,
Department of Electrical Engineering and Computer Science, Uni-
versity of California, Berkeley, California 94720, April 1986. 4.3
Berkeley Software Distribution.

S. C. Johnson and D. M. Ritchie. The C language calling sequence.
Technical Report 102, Bell Laboratories, Murray Hill, New Jersey
07974, September 1981.

Guy LewisSteele Jr. and Gerald Jay Sussman. Design of aL | SP-based
microprocessor. Communications of the ACM, XXX (XXX):628-644,
XXX 1980 XX X.

B. W. Kernighan and L. L. Cherry. A system for typesetting math-
ematics. Technical Report 17, Bell Laboratories, Murray Hill, New
Jersey 07974.

85

[Ker]

[KKM80]

[KIi81]

[KR78]

[KRS2]

[KRSS]

[Lam81]

[Lam85]

[Lan63]

[Leig4]

[Les75]

[Less2]

[Lics6]

Brian W. Kernighan. A typesetter-independent TROFF. Technical
Report 97, Bell Laboratories, Murray Hill, New Jersey 07974.

Peter Kornerup, Bent Bruun Kristensen, and Ole Lehrmen Madsen.
Interpretation and code generation based on intermediate languages.
Software—Practice and Experience, 10:635-658, 1980.

Paul Klint. Interpretation techniques. Software—Practice and Expe-
rience, 11:963-973, 1981.

B. W. Kernighan and D. M. Ritchie. The C Programming Language.
Prentice-Hall, first edition, 1978.

B. W. Kernighan and D. M. Ritchie. UNIX programming. In UNIX
Programmer’s manual: Supplementary Documents, volume 2, pages
301-322. Holt, Rinehart and Winston, seventh edition, 1982.

Brian W. Kernighan and Dennis M. Ritchie. The C Programming
Language. Prentice-Hall, second edition, 1988.

David Alex Lamb. Construction of a peephole optimizer. Software—
Practice and Experience, 11:639-647, 1981.

Leslie Lamport. LATEX: A Document Preparation System. Addisson-
Wesley, 1985.

P. J. Landin. The mechanical evaluation of expressions. The Computer
Journal, 6:308-320, 1963.

Philip Leith. Top-down design within a functional environment.
Software—Practice and Experience, 14(10):921-930, October 1984.

M. E. Lesk. Lex —alexical analyzer generator. Technical Report 39,
Bell Laboratories, Murray Hill, New Jersey 07974, October 1975.

M. E. Lesk. TBL —aprogramtoformat tables. In UNIX Programmer’s
manual: Supplementary Documents, volume 2, pages 157-174. Holt,
Rinehart and Winston, seventh edition, 1982.

Zavdi L. Lichtman. The function of T and NIL in LISP. Software—
Practice and Experience, 16(1):1-3, January 1986.

86

[LPT82]

[LV73]

[Mar84]

[McC60]

[MSQ8s]

[Naig4]

[Oss82]

[Pal82]

[Pax89]

[Per87]

[PFTV8S]

[Rob83]

Olivier Lecarme, Mireille Pellissier, and Marie-Claude Thomas.
Computer-aided production of language implementation systems:
A review and classification. Software—Practice and Experience,
12:785-824, 1982.

D. Lurieand C. Vandoni. Statisticsfor FORTRAN identifiersand scat-
ter storage techniques. Software—Practice and Experience, 3:171-
177, 1973.

B. L. Marks. Taming the PL/1 syntax. Software—Practice and Expe-
rience, 14(8):775-789, August 1984.

John McCarthy. Recursive functionsof symbolic expressionsand their
computation by machine. Communications of the ACM, 3(12):184—
195, December 1960. Part |.

Microsoft Corporation, 16011 NE 36th Way, Box 97017, Redmon,
WA 98073-9717. Microsoft QuickBASIC, 4.5 edition, 1988.

Lee Naish. Mu-prolog 3.1db Reference Manual. Melbourne Univer-
Sity, 1984.

J. F. Ossanna. NROFF/TROFF user’smanual. In UNIX Programmer’s
manual: Supplementary Documents, volume 2, pages 196—229. Holt,
Rinehart and Winston, seventh edition, 1982.

Jacob Palme. Uses of the SIMULA process concept. Software—
Practice and Experience, 12:153-161, 1982.

VernPaxson. flex: fast lexical analyzer generator. Real Time Systems,
Bldg, 46A, LawrenceBerkeley Laboratory, Berkeley CA 94720, 1989.
Optional.

William E. Perry. A Standard for Testing Application Software. Auer-
bach, Boston, MA, 1987.

WilliamH. Press, Brian P. Flannery, Saul A. Teukolsky, and WilliamT.
Vetterling. Numerical Recipes in C. Cambridge University Press,
1988.

D. J. Robson. An evaluation of throw-away compiling. Software—
Practice and Experience, 13:241-249, 1983.

87

[San78§]

[Set84]

[S387]

[Spig9)]

[Stad4]

[Sta89]

[Str77]

[Suz82]

[Tei 78]

[TS86]

[Tur79]

[V7.82]

[V885]

Erik Sandewall. Programming in an interactive environment: the
“LISP” experience. Computing Surveys, 10(1):35-71, March 1978.

Ravi Sethi. Preprocessing embedded actions. Software—Practice and
Experience, 14(3):291-297, March 1984.

Bud E. Smith and Mark T. Johnson. Programming the Intel 80386.
Scott, Foresman and Company, 1987.

Diomidis Spindlis. v08i002: A c execution profiler for ms-dos.
Posted in the Usenet newsgroup comp.sources.misc, August 1989.
Message-1D: <64297 @uunet. UU.NET>.

R. M. Stalman. EMACS: The extensible, customizable, self-
documenting display editor. In D. R. Barstow, H. E. Shrobe, and
E. Sandwell, editors, Interactive Programming Environments, pages
300-325. McGraw-Hill, 1984.

Richard M. Stallman. The GNU C compiler. Distributed by the Free
Software Foundation, 675 Mass Ave, Cambridge, MA 02139, July
1989.

George O. Stravn. Does APL redly neeed run-time parsing.
Software—Practice and Experience, 7:193-200, 1977.

Norihisa Suzuki. Analysis of pointer “rotation”. Communications of
the ACM, 25(5):330-335, May 1982.

Warren et a Teitelman. Inter LI SP Reference Manual. Xerox Palo Alto
Research Center, Palo Alto, California, third revision edition, 1978.

Walter A. Triebel and Avtar Singh. The 68000 Microprocessor: Ar-
chitecture, Software and Interfacing Techniques. Prenice Hall, 1986.

D. A. Turner. A new implementation technique for applicative lan-
guages. Software—Practice and Experience, 9(1):31-49, January
1979.

UNIX Programmer’s manual, volume 1. Holt, Rinehart and Winston,
seventh edition, 1982.

AT&T Bell Laboratories, Murray Hill, New Jersey. UNIX Time-
Sharing System, Programmer’s Manual, Research Version, February
1985. Eighth Edition.

88

[Waig5]

[Waig6]

[Wal8g]

[War83]

[Wir77]

[Wir8s]

[Wyk8e]

W. M. Waite. Treatment of tab characters by a compiler. Software—
Practice and Experience, 15(11):1121-1123, November 1985.

W. M. Waite. The cost of lexical analysis. Software—Practice and
Experience, 16(5):473-488, May 1986.

Larry Wall. Perl — Practical Extraction and Report Language, March
1988.

David H. D. Warren. An abstract Prolog instruction set. Technical
Note 309, SRI International, Artificial Intelligence Center, Computer
Scienceand Technology Division, 333 Ravenswood Ave., Menlo Park,
CA 94025, October 1983.

N. Wirth. Design and implemenation of modula. Software—Practice
and Experience, 7:67-84, 1977.

Niklaus Wirth. Programming in Modula-2. Springer Verlag, third
edition, 1985.

Christopher J. Van Wyk. AWK as glue for programs. Software—
Practice and Experience, 16(4):369-383, April 1986.

89

