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Abstract

The word paradigm, is used in computer science to talk about a family of nota-
tions, that share a common way for describing program implementations. Since each
paradigm is well suited for solving only a range of problems, ideally a large system
should be subdivided into components, each of which should be implemented in the
most appropriate paradigm. Multiparadigm programming, allows the programmer to
implement a system, in a number of different paradigms. The use of multiparadigm
programming techniques, could lower implementation costs, and result in more reli-
able and efficient applications.

The difficulties that arise with multiparadigm programming can be separated into
the areas of application development in multiple paradigms, design and implementa-
tion of multiparadigm environment, and generators for creating such environments.

We propose the use of object-oriented design techniques as a method for encapsu-
lating programming paradigms within multiparadigm applications, and for abstracting
common characteristics across paradigms. These techniques can be used to design
practical multiparadigm environment generators, and implement multiparadigm pro-
gramming environments supporting a wide variety of paradigms.

In order to demonstrate the validity of our approach, we describe the design and
implementation of three prototypes: one in each problem area.

The integrator is a multiparadigm application dealing with the numeric and sym-
bolic evaluation of integrals. The symbolic evaluation is based on the backtracking
resolution mechanism offered by the logic programming paradigm, and the numeric
evaluation, on the infinite streams implemented in the functional paradigm. Addition-
ally, lexical analysis of the input expressions is described using regular expressions,
and the expression grammar is described using a BNF syntax. Finally, expression sim-
plification uses a term rewrite system, and graphing of functions is done by directly
interacting with Unix tools.

Integrator is implemented in the blueprint multiparadigm programming environ-
ment, a prototype implementation of the six paradigms based on our object-oriented
approach. Many different implementation techniques have been applied in order to
demonstrate the wide applicability of our approach. Some of the paradigms are imple-
mented as compilers (using existing implementations where possible), and others are
implemented as interpreters.

Finally, the implementation of blueprint is based on the MPSS multiparadigm en-
vironment generator. This, allows the description of paradigms as object classes using
paradigm description files. Additionally, it provides a multiparadigm link editor, and
support for incorporating existing compilers into multiparadigm programming envi-
ronments.
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discussions, Mireille Ducassé for her valuable comments on drafts of the thesis, Ed-
ward Janies for his motivating thesis talk, the members of the Distributed Software
Engineering Group of Imperial College and in particular Naranker Dulay, Anthony
Finkelstein, Jeff Kramer, Jeff Magee, Bashar Nuseibeh, and Morris Sloman for their
comments, my fellow PhD students Hiu Fai Chau, Kostis Dryllerakis, Konstantinos
Moutsopoulos, Ian Mackie, and David Man for their support during the long hours
of work and finally, various contributors of the project GNU, 4.4 BSD and Larry Wall
whose tools I have used.

Last, but not least, the British Science and Engineering Research Council (SERC)
which provided financial support during the whole period of my research.

iii



iv



Contents

Abstract i

Acknowledgements iii

Table of Contents v

List of Figures ix

List of Tables xii

1 Introduction 1
1.1 Work Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Related Work: Multiparadigm Programming 3
2.1 Programming Paradigms . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Multiparadigm Languages . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Combinations of Functional and Logic Paradigms . . . . . . . 8
2.2.2 Combinations of Imperative and Logic Paradigms . . . . . . . 10
2.2.3 Combinations of Functional and Imperative Paradigms . . . . 16
2.2.4 Combinations of Functional and Object-Oriented Paradigms . 19
2.2.5 Combinations of Logic and Object-Oriented Paradigms . . . . 21
2.2.6 Combinations of Imperative and Object-Oriented Paradigms . 23
2.2.7 Combinations of Functional, Imperative, Logic and Object-

Oriented Paradigms . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.8 Combinations of Distributed, Logic and Object-Oriented Para-

digms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.9 Combinations of Constraint, Functional and Logic Paradigms 27
2.2.10 Combinations of Various Paradigms . . . . . . . . . . . . . . 28

2.3 Multiparadigm Systems . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.1 Unix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.2 MLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.3 Compositional Approach . . . . . . . . . . . . . . . . . . . . 33

2.4 Approach Classification, Analysis, and Evaluation . . . . . . . . . . . 34
2.4.1 New Languages . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.2 Language Extensions . . . . . . . . . . . . . . . . . . . . . . 35

v



vi CONTENTS

2.4.3 Theoretical Approaches . . . . . . . . . . . . . . . . . . . . 36
2.4.4 Multiparadigm Frameworks . . . . . . . . . . . . . . . . . . 36
2.4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 The Approach 39
3.1 Problem Decomposition . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 From Applications to Systems . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 Multiparadigm Applications . . . . . . . . . . . . . . . . . . 41
3.2.2 Multiparadigm Programming Environments . . . . . . . . . . 42
3.2.3 Multiparadigm Environment Generators . . . . . . . . . . . . 44

3.3 Multiparadigm System Structure . . . . . . . . . . . . . . . . . . . . 44
3.3.1 Flexibility Requirements . . . . . . . . . . . . . . . . . . . . 45
3.3.2 Structural Requirements . . . . . . . . . . . . . . . . . . . . 46
3.3.3 Efficiency Requirements . . . . . . . . . . . . . . . . . . . . 47
3.3.4 Paradigms as Linguistic Transformations . . . . . . . . . . . 47
3.3.5 Abstract Description of Multiparadigm Systems . . . . . . . . 48
3.3.6 Paradigms as Classes . . . . . . . . . . . . . . . . . . . . . . 53
3.3.7 General System Structure . . . . . . . . . . . . . . . . . . . 56
3.3.8 Separate Modules . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.9 Separate Compiler for Each Paradigm . . . . . . . . . . . . . 57
3.3.10 Class and Object Encapsulation . . . . . . . . . . . . . . . . 57
3.3.11 Tree Class Structure . . . . . . . . . . . . . . . . . . . . . . 57
3.3.12 Multiparadigm System Implementor vs. Multiparadigm Ap-

plication Programmer View . . . . . . . . . . . . . . . . . . 58
3.3.13 Paradigm Inter-operation . . . . . . . . . . . . . . . . . . . . 58
3.3.14 Control Transfer . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.15 Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.16 Paradigm Inter-operation Design Abstraction . . . . . . . . . 59
3.3.17 Paradigm Inter-operation Limitations . . . . . . . . . . . . . 61

3.4 Multiparadigm Environment Generators . . . . . . . . . . . . . . . . 61
3.4.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.2 General Structure . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4.3 Paradigm Description Compiler . . . . . . . . . . . . . . . . 62
3.4.4 Support for Existing Tools . . . . . . . . . . . . . . . . . . . 64
3.4.5 Generic Run-time Support . . . . . . . . . . . . . . . . . . . 64
3.4.6 System Wrapper . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Multiparadigm Programming Environments . . . . . . . . . . . . . . 65
3.5.1 Delegation of Features Using Subclassing . . . . . . . . . . . 65
3.5.2 Using Inheritance . . . . . . . . . . . . . . . . . . . . . . . . 66
3.5.3 Implementation Approaches . . . . . . . . . . . . . . . . . . 66

3.6 Multiparadigm Programming Applications . . . . . . . . . . . . . . . 67
3.6.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.6.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.6.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



CONTENTS vii

4 System Design 71
4.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 System Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.3 MPSS: A Multiparadigm Environment Generator . . . . . . . . . . . 73

4.3.1 Design Alternatives . . . . . . . . . . . . . . . . . . . . . . . 73
4.3.2 General Structure . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3.3 Paradigm Description Compiler . . . . . . . . . . . . . . . . 74
4.3.4 Instance Variable Detection . . . . . . . . . . . . . . . . . . 75
4.3.5 Private Variable Protection . . . . . . . . . . . . . . . . . . . 75
4.3.6 Multiparadigm Link Editor . . . . . . . . . . . . . . . . . . . 77
4.3.7 System Wrapper . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.8 Building a Multiparadigm Programming Environment . . . . 77

4.4 Blueprint: A Multiparadigm Programming Environment . . . . . . . 78
4.4.1 Design Objectives . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.2 System Structure . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4.3 Imperative Paradigm . . . . . . . . . . . . . . . . . . . . . . 80
4.4.4 Rule-rewrite Paradigm . . . . . . . . . . . . . . . . . . . . . 80
4.4.5 Regular Expression Paradigm . . . . . . . . . . . . . . . . . 86
4.4.6 BNF Grammar Paradigm . . . . . . . . . . . . . . . . . . . . 87
4.4.7 Logic Programming Paradigm . . . . . . . . . . . . . . . . . 87
4.4.8 Functional Programming Paradigm . . . . . . . . . . . . . . 89
4.4.9 Using Blueprint . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.5 Integrator: An Exemplar Multiparadigm Application . . . . . . . . . 95
4.5.1 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.5.2 Paradigm Delegation . . . . . . . . . . . . . . . . . . . . . . 95
4.5.3 Numeric Integration . . . . . . . . . . . . . . . . . . . . . . 96
4.5.4 Symbolic Integration . . . . . . . . . . . . . . . . . . . . . . 96

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5 Implementation 99
5.1 Overall Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2 MPSS: The Multiparadigm Environment Generator . . . . . . . . . . 99

5.2.1 Pdc: Paradigm Description Compiler . . . . . . . . . . . . . 100
5.2.2 Instancev: Instance Variable Detection . . . . . . . . . . . . . 101
5.2.3 Protect: Private Variable Protection . . . . . . . . . . . . . . 101
5.2.4 Mpld: Multiparadigm Link Editor . . . . . . . . . . . . . . . 102

5.3 Blueprint: The Multiparadigm Programming Environment . . . . . . 103
5.3.1 Imper: Imperative Paradigm . . . . . . . . . . . . . . . . . . 104
5.3.2 Term: Rule-rewrite Paradigm . . . . . . . . . . . . . . . . . . 104
5.3.3 Regex: Regular Expression Paradigm . . . . . . . . . . . . . 106
5.3.4 Bnf: BNF Grammar Paradigm . . . . . . . . . . . . . . . . . 106
5.3.5 Btrack: Logic Programming Paradigm . . . . . . . . . . . . . 106
5.3.6 Fun: Functional Programming Paradigm . . . . . . . . . . . 107
5.3.7 Paradigm Inter-operation . . . . . . . . . . . . . . . . . . . . 107
5.3.8 Paradigm Inter-Operation Example . . . . . . . . . . . . . . 107
5.3.9 Implementation Experience . . . . . . . . . . . . . . . . . . 113
5.3.10 Implementation Metrics . . . . . . . . . . . . . . . . . . . . 113



viii CONTENTS

5.4 Integrator: The Multiparadigm Programming Application . . . . . . . 113
5.4.1 Lexical Analysis . . . . . . . . . . . . . . . . . . . . . . . . 114
5.4.2 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.4.3 Numeric Integration . . . . . . . . . . . . . . . . . . . . . . 114
5.4.4 Symbolic Integration . . . . . . . . . . . . . . . . . . . . . . 117
5.4.5 Printing the Resulting Expression . . . . . . . . . . . . . . . 120
5.4.6 Graph Generation . . . . . . . . . . . . . . . . . . . . . . . . 120
5.4.7 Sample Session . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.4.8 Implementation Metrics and Paradigm Inter-operation . . . . 122

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6 Critical Analysis 125
6.1 Multiparadigm Research Contributions . . . . . . . . . . . . . . . . . 125

6.1.1 Multiparadigm System Structure . . . . . . . . . . . . . . . . 125
6.1.2 Multiparadigm Environment Generators . . . . . . . . . . . . 126
6.1.3 Multiparadigm Programming Environment . . . . . . . . . . 127
6.1.4 Multiparadigm Programming Applications . . . . . . . . . . 128

6.2 Evaluation as a Programming Language . . . . . . . . . . . . . . . . 128
6.2.1 Readability . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.2.2 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.2.3 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3 MPSS as a Process Support Environment . . . . . . . . . . . . . . . . 130
6.3.1 Process Support and Evolution . . . . . . . . . . . . . . . . . 130
6.3.2 Integration with the Conceptual Schema . . . . . . . . . . . . 131
6.3.3 Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.4 Blueprint as a Programming Environment . . . . . . . . . . . . . . . 131
6.4.1 Linguistic Support . . . . . . . . . . . . . . . . . . . . . . . 131
6.4.2 Program Semantics . . . . . . . . . . . . . . . . . . . . . . . 132
6.4.3 Execution Support . . . . . . . . . . . . . . . . . . . . . . . 132
6.4.4 Error Reporting, Tracing, and Monitoring . . . . . . . . . . . 132
6.4.5 Analysis and Performance Tuning . . . . . . . . . . . . . . . 133
6.4.6 User Interface Tools . . . . . . . . . . . . . . . . . . . . . . 133
6.4.7 Peaceful Paradigm Coexistence . . . . . . . . . . . . . . . . 133
6.4.8 Support for New Paradigms . . . . . . . . . . . . . . . . . . 133

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7 Future Work 135
7.1 Approach Improvements . . . . . . . . . . . . . . . . . . . . . . . . 135

7.1.1 Development Methodology . . . . . . . . . . . . . . . . . . . 135
7.1.2 Formal System Semantics . . . . . . . . . . . . . . . . . . . 136
7.1.3 Type Checking Support . . . . . . . . . . . . . . . . . . . . . 136

7.2 MPSS Enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.2.1 Paradigm Class Browser . . . . . . . . . . . . . . . . . . . . 138
7.2.2 Name-space Verification . . . . . . . . . . . . . . . . . . . . 139
7.2.3 Type Checking Support . . . . . . . . . . . . . . . . . . . . . 139
7.2.4 Automatic Call Gate Implementation . . . . . . . . . . . . . 139
7.2.5 Debugging Support . . . . . . . . . . . . . . . . . . . . . . . 139



CONTENTS ix

7.2.6 Instrumentation Support . . . . . . . . . . . . . . . . . . . . 140
7.2.7 Other Language Tool Support . . . . . . . . . . . . . . . . . 141

7.3 Blueprint Enhancements . . . . . . . . . . . . . . . . . . . . . . . . 141
7.3.1 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.3.2 Additional Paradigms . . . . . . . . . . . . . . . . . . . . . . 142
7.3.3 Integration of MPSS Improvements . . . . . . . . . . . . . . 142

7.4 Interesting Applications of our Approach . . . . . . . . . . . . . . . 143
7.4.1 Parallel Processor Target Architecture . . . . . . . . . . . . . 143
7.4.2 Multiparadigm Language Development Systems . . . . . . . 144
7.4.3 Multiparadigm Unix Tool Composition . . . . . . . . . . . . 144
7.4.4 Multiparadigm Document Processing . . . . . . . . . . . . . 145
7.4.5 Reduced Feature Languages . . . . . . . . . . . . . . . . . . 146
7.4.6 Application Specific Paradigms . . . . . . . . . . . . . . . . 146

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

Conclusions 149

References 150

Glossary 179

A Implementation Notes 183
A.1 Term: Rule-rewrite Paradigm . . . . . . . . . . . . . . . . . . . . . . 183

A.1.1 Lexical Analysis . . . . . . . . . . . . . . . . . . . . . . . . 183
A.1.2 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
A.1.3 Code Generation . . . . . . . . . . . . . . . . . . . . . . . . 185
A.1.4 Symbol Table . . . . . . . . . . . . . . . . . . . . . . . . . . 188
A.1.5 Term Support . . . . . . . . . . . . . . . . . . . . . . . . . . 189
A.1.6 Library Routines . . . . . . . . . . . . . . . . . . . . . . . . 190
A.1.7 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

A.2 Btrack: Logic Programming Paradigm . . . . . . . . . . . . . . . . . 192
A.2.1 Translation to Term . . . . . . . . . . . . . . . . . . . . . . . 192
A.2.2 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
A.2.3 Unification . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
A.2.4 Built-in Predicates . . . . . . . . . . . . . . . . . . . . . . . 195
A.2.5 Inter-operation with Term . . . . . . . . . . . . . . . . . . . 195
A.2.6 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

A.3 Fun: Functional Programming Paradigm . . . . . . . . . . . . . . . . 198
A.3.1 Lexical Analysis . . . . . . . . . . . . . . . . . . . . . . . . 199
A.3.2 Intermediate Code . . . . . . . . . . . . . . . . . . . . . . . 199
A.3.3 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
A.3.4 Inter-operation with Term . . . . . . . . . . . . . . . . . . . 201
A.3.5 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

Index 205

B Trademarks 213



x CONTENTS



List of Figures

3.1 Entity-relationship diagram of the separate multiparadigm problem areas 40
3.2 Paradigm class tree structure example . . . . . . . . . . . . . . . . . 43
3.3 T-diagram representations for translator and interpreter. . . . . . . . . 48
3.4 Language implementation coupling possibilities. . . . . . . . . . . . 49
3.5 A complex language implementation tree. . . . . . . . . . . . . . . . 50
3.6 Programming paradigm classes and objects . . . . . . . . . . . . . . 55
3.7 Paradigm inter-operation using call gates . . . . . . . . . . . . . . . . 60
3.8 General structure of a multiparadigm environment generator . . . . . 63

4.1 Entity-relationship diagram of the implemented systems . . . . . . . 72
4.2 Sample paradigm description file . . . . . . . . . . . . . . . . . . . . 76
4.3 Blueprint class hierarchy . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4 Programmer’s view of blueprint . . . . . . . . . . . . . . . . . . . . 80
4.5 Term BNF grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.6 Byrd debugging model as modified for term . . . . . . . . . . . . . . 86
4.7 Fun BNF syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.8 Fun standard library functions . . . . . . . . . . . . . . . . . . . . . 93

5.1 Example of a compiler generated by pdc . . . . . . . . . . . . . . . . 101
5.2 Mpld operation pseudo-code . . . . . . . . . . . . . . . . . . . . . . 103
5.3 Term paradigm inter-operation schematic representation . . . . . . . . 105
5.4 Term bootstrapping sequence T-diagram . . . . . . . . . . . . . . . . 106
5.5 Imper example functions . . . . . . . . . . . . . . . . . . . . . . . . 108
5.6 Term example functions . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.7 Btrack example functions . . . . . . . . . . . . . . . . . . . . . . . . 109
5.8 Fun example functions . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.9 Term code generated for importing a fun rule into btrack . . . . . . . 109
5.10 Term code generated for exporting a btrack predicate to term . . . . . 110
5.11 Term code generated for importing a fun function from term . . . . . 110
5.12 Term code generated for exporting a fun function to term . . . . . . . 110
5.13 Manually implemented parts of the fun call-gate functionality . . . . . 111
5.14 Imper code generated for exporting a term rule to imper . . . . . . . . 111
5.15 Manually implemented parts of the term call-gate functionality . . . . 112
5.16 Integrator user-interface lexical analyser . . . . . . . . . . . . . . . . 115
5.17 Integrator user-interface grammar . . . . . . . . . . . . . . . . . . . 116
5.18 Graph created by the integrator . . . . . . . . . . . . . . . . . . . . . 123

xi



xii LIST OF FIGURES

5.19 Integrator paradigm inter-operation call graph . . . . . . . . . . . . . 124

7.1 Multiparadigm type checking using type gates . . . . . . . . . . . . . 137
7.2 Paradigm class browser interface . . . . . . . . . . . . . . . . . . . . 138
7.3 Multiparadigm debugger structure . . . . . . . . . . . . . . . . . . . 140
7.4 Blueprint paradigm extensions . . . . . . . . . . . . . . . . . . . . . 142
7.5 Multiparadigm Unix tool composition . . . . . . . . . . . . . . . . . 144
7.6 Multiparadigm document processing . . . . . . . . . . . . . . . . . . 145

A.1 The append rule in term . . . . . . . . . . . . . . . . . . . . . . . . 184
A.2 The append rule as a term term . . . . . . . . . . . . . . . . . . . . 184
A.3 An arbitrary term rule . . . . . . . . . . . . . . . . . . . . . . . . . . 185
A.4 An arbitrary term rule compiled into imper . . . . . . . . . . . . . . . 186
A.5 Append compiled into imper . . . . . . . . . . . . . . . . . . . . . 187
A.6 Append initialisation code . . . . . . . . . . . . . . . . . . . . . . . 189
A.7 Append sample debug output . . . . . . . . . . . . . . . . . . . . . 192
A.8 Path finding predicate in btrack . . . . . . . . . . . . . . . . . . . . . 193
A.9 Path finding predicate rules as translated to term . . . . . . . . . . . . 193
A.10 Btrack evaluator: the solve rules . . . . . . . . . . . . . . . . . . . 194
A.11 Btrack evaluator: the tryall rules . . . . . . . . . . . . . . . . . . 195
A.12 Btrack evaluator: the unify rules . . . . . . . . . . . . . . . . . . . 196
A.13 Btrack evaluator: plus with logical semantics rules . . . . . . . . . . 197
A.14 Btrack sample debug output for the solving of path . . . . . . . . . 198
A.15 A factorial implementation in fun . . . . . . . . . . . . . . . . . . . . 199
A.16 The fun factorial function as a term term . . . . . . . . . . . . . . . . 200
A.17 The fun eval/apply interpreter . . . . . . . . . . . . . . . . . . . . . . 202
A.18 Fun sample debug output for evaluating fac . . . . . . . . . . . . . 203



List of Tables

2.1 Multiparadigm Language Features . . . . . . . . . . . . . . . . . . . 7
2.2 Common paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Common composite characteristics . . . . . . . . . . . . . . . . . . . 7
2.4 Implementations combining the functional and logic paradigms . . . . 11
2.5 Characteristics of functional and logic paradigm combinations . . . . 12
2.6 Implementations combining the imperative and logic paradigms . . . 14
2.7 Characteristics of imperative and logic paradigm combinations . . . . 15
2.8 Language characteristics . . . . . . . . . . . . . . . . . . . . . . . . 15
2.9 Implementations combining the functional and imperative paradigms . 18
2.10 Characteristics of functional and imperative paradigm combinations . 19
2.11 Implementations combining the functional and object-oriented para-

digms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.12 Characteristics of functional and object-oriented paradigm combinations 20
2.13 Implementations combining the logic and object-oriented paradigms . 22
2.14 Characteristics of logic and object-oriented paradigm combinations . . 23
2.15 Implementations combining the imperative and object-oriented para-

digms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.16 Characteristics of imperative and object-oriented paradigm combinations 24
2.17 Implementations combining the functional, imperative, logic and object-

oriented paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.18 Characteristics of functional, imperative, logic and object-oriented para-

digm combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.19 Implementations combining the distributed, logic and object-oriented

paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.20 Characteristics of distributed, logic and object-oriented paradigm com-

binations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.21 Implementations combining the constraint, functional and logic para-

digms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.22 Characteristics of constraint, functional and logic paradigm combina-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.23 Languages and paradigms they support . . . . . . . . . . . . . . . . . 30
2.24 Implementations combining the various paradigms . . . . . . . . . . 31
2.25 Characteristics of various paradigm combinations . . . . . . . . . . . 31
2.26 Number of languages for the common paradigm combinations . . . . 37

4.1 Class variables supported by the paradigm compiler . . . . . . . . . . 75

xiii



xiv LIST OF TABLES

4.2 Term operator list . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3 Term built-in rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.4 Term term creation functions . . . . . . . . . . . . . . . . . . . . . . 85
4.5 Term term access functions . . . . . . . . . . . . . . . . . . . . . . . 85
4.6 Btrack built-in predicates . . . . . . . . . . . . . . . . . . . . . . . . 89
4.7 Fun expression precedence rules . . . . . . . . . . . . . . . . . . . . 90
4.8 Fun primitive functions . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.9 Fun data structure building terms . . . . . . . . . . . . . . . . . . . . 92
4.10 Paradigms, source filename extensions, and their compilers . . . . . . 94
4.11 Integrator functions and paradigms . . . . . . . . . . . . . . . . . . . 95

5.1 Implementation languages and Unix utilities used in MPSS . . . . . . 100
5.2 Blueprint implementation summary . . . . . . . . . . . . . . . . . . 103
5.3 Term functions and paradigms . . . . . . . . . . . . . . . . . . . . . 104
5.4 Blueprint paradigm implementation summary . . . . . . . . . . . . . 114
5.5 Integrator line count table . . . . . . . . . . . . . . . . . . . . . . . 124

A.1 Term library routines implementation summary . . . . . . . . . . . . 191
A.2 Fun program representation, as a term environment . . . . . . . . . . 199



Chapter 1

Introduction

In this chapter, we will describe our motivation for undertaking this research, by iden-
tifying our work context, outlining the previous work, and presenting our goals. We
will finish with an outline of the whole thesis, in order to provide a road map for our
reader.

1.1 Work Context

The word paradigm, is used in computer science to talk about a family of notations, that
share a common way for describing program implementations. Thus, we talk about
the imperative, functional, and logic programming paradigms, to denote programming
notations based respectively, on explicit control, the theory of functions, and Horn-
clause logic.

Since every paradigm is best suited for solving different problems, ideally, each
system part should be implemented in the most appropriate paradigm. Multiparadigm
programming, allows the programmer to write the implementation of a system, in a
number of different paradigms. The use of multiparadigm programming techniques,
could lower implementation costs, and result in more reliable and efficient applica-
tions.

The area of multiparadigm programming is relatively new. A number of multipara-
digm languages have been documented in the literature, but most offer only a limited
set of programming paradigms. In addition to the multiparadigm languages, there are
some approaches based on system frameworks, for combining arbitrary paradigms.

1.2 Goals

Our approach is based on the idea of a multiparadigm programming system frame-
work, rather than a specific multiparadigm language. We distinguish the problems
of multiparadigm programming into the areas of application development in multiple
paradigms, design and implementation of multiparadigm environments, and genera-
tors for creating such environments. This separation, allows the methodical study of
the different issues and solutions that exist on each level. We will demonstrate how
object-oriented techniques, can be used to organise multiparadigm programming envi-
ronments in a simple, yet powerful way. We will advance the concept of a call gate, to

1



2 CHAPTER 1. INTRODUCTION

describe the inter-operation of arbitrary programming paradigms, with implementation
overhead linear to the number of paradigms supported. Finally, in order to support our
claims, for each of the subject areas, we will detail the design and implementation of
a system, built according to our approach.

1.3 Thesis Outline

In the second chapter we examine existing multiparadigm languages, and program-
ming frameworks. We present multiparadigm languages categorised according to the
paradigms they support. After a description of multiparadigm frameworks, we anal-
yse and evaluate all the available solutions. Related work concerning implementation
issues has been separately summarised in sections 4.4.4, 4.4.5, 4.4.6, 4.4.7, 4.4.8, and
4.5.4.

Our approach to multiparadigm programming is detailed in the third chapter.
There, we define the problem areas, identify multiparadigm system requirements, and
present our solution based on object-oriented principles. We then, describe how our
approach applies to, application development in multiple paradigms, design and im-
plementation of multiparadigm environments, and generators for creating such envi-
ronments.

Moving from an abstract description of our approach to a concrete realisation of it,
in the fourth chapter we design a multiparadigm programming environment genera-
tor, MPSS, providing tools for implementing multiparadigm environments, a multipara-
digm programming environment, blueprint, which supports programming in six differ-
ent programming paradigms, and an application, the integrator, utilising the paradigms
provided by blueprint.

The fifth chapter contains the implementation details of the systems designed in
the previous chapter. Thus, we present the implementation, of the tools comprising
MPSS, each paradigm of the blueprint environment, and the integrator application.

Having defined our approach, designed a prototype realisation of it, and described
its implementation, in the sixth chapter we provide a critical evaluation of our work.
We evaluate our system contributions to multiparadigm research in the problem areas
defined in the previous chapters, our system as a programming language, MPSS as a
process support environment, and finish with the evaluation of blueprint as a program-
ming environment.

Multiparadigm programming is a relatively new computer science research area.
Any research in it, is bound to raise many new questions; this thesis is no exception. In
the final, seventh chapter, we will summarise various possible enhancements to our
work, and outline possible new applications based on it.

At the end of the thesis we have provided a glossary (page 179) to guide the reader
in the terminology we have introduced, and an index (page 205) to provide “random
access” within the thesis structure. Detailed implementation notes on the realised sys-
tems can be found in appendix A.



Chapter 2

Related Work: Multiparadigm
Programming

In this chapter we begin our exploration of the area of multiparadigm programming by
examining the work that has been done up to now. Research in the area of multipara-
digm programming can be divided in three different areas:

1. Programming paradigms: work in this area examines the notion of programming
paradigms, their relationship to language design, and their effect on the software
production environment.

2. Multiparadigm languages: during the literature research for this thesis we found
more than 90 languages supporting more than one programming paradigm. Al-
though not all languages were explicitly directed towards multiparadigm pro-
gramming per se we believe that there were lessons to be learned from their
collective study.

3. Multiparadigm programming frameworks: some researchers have come up with
suitable abstractions and systems that support multiparadigm programming in
general without targeting specific programming paradigms. Again in this case
at least one of the systems covered was not the result of explicit multiparadigm
research effort although it supports programming in multiple programming para-
digms.

Our approach is geared towards producing a multiparadigm design methodology,
a prototype system based on that methodology, and multiparadigm programming envi-
ronment built upon that system. Therefore, the two last research areas are directly rele-
vant to our research. We also examine the first area, because we believe that the notion
of a programming paradigm is central to the theme of this thesis. Mixed language pro-
gramming environments which only deal with languages based on a single paradigm
(such as [Ein84]), and generic concurrent, distributed, heterogeneous systems, and
module interface languages [Tic92] that could potentialy be used as multiparadigm
frameworks (such as [Bea92]) are not examined. A thorough survey of distributed
system languages can be found in [BST89], and of concurrent logic programming lan-
guages in [Sha89]; a set of articles on concurrent object-oriented programming can be
found in [CAC93], and a survey of specific concurrent Smalltalk implementations in

3
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[aYCK93]. Implementations of various paradigms on parallel computers are exam-
ined in [Tre90]. Furthermore, we will not examine systems that address the multiple
programming paradigms of the program development cycle from specification to im-
plementation, such as [MR89] supporting structured program graphs to provide differ-
ent views of the program according to the software-process evolution stage, [FKG90]
supporting multiple system viewpoints during the design phase of the system, and
[Old92] defining the interface between the specification, implementation, and machine
languages.

2.1 Programming Paradigms

The word paradigm (from the Greek word παράδϵιγµα which means example) is
commonly used to refer to a category of entities sharing a common characteristic.
Wittgenstein [Wit60, p. 48] defines a paradigm by examining all the activities we
call games. Among those activities there are some which possess some characteristic
similarities equivalent to those exhibited by the members of a family. The notion
“game” can only be defined by creating a list of all these typical cases that we call
games, without being able to prescribe specific conditions for labelling an activity
as a “game.” In other words, we define games by listing some exemplar cases. In
order to define an activity as a “game” it must share some common, but unspecified
characteristics with those exhibited by the other members of the family; therefore the
notion is only vaguely defined.

Kuhn used the notion of a paradigm in the scientific process by defining it as
the scientist’s view of the world and the structure of their assumptions and theories1

[Gem87, pp. 301–303]. According to Kuhn [Kuh70, p. 10] a paradigm has a wider
meaning than that of a scientific theory; it encompasses “law, theory, application and
instrumentation together.” Although Kuhn’s examples are drawn from the history
of physical science, his paradigm notion has been extended to a number of sciences
[Gre80, EH80]. Paradigms are the basis of normal science which is related to all the
activities of the established scientific tradition. Therefore, the formation of a paradigm
is a sign of maturity for a given science.

In [Weg89] it is suggested that as programming languages mature, attention is
turning from languages to paradigms. In trying to define the notion of programming
paradigm2 the most common definition found is that of “a style of programming ex-
pressing the programmer’s intent” [Bob84] or the similar “model or approach in solv-
ing a problem” [Shr86], “approach to solving programming problems” [Fri91, p. 188],
and “way of thinking about computer systems” [Zav89]. A more general definition is
given in [Weg90, p. 21], where paradigms are rules for determining classes of lan-
guages according to some testable conditions. These conditions can be based on a
number of abstraction criteria, such as the structure of a program or its state, or the
development methodology. Furthermore, according to the same author, paradigms can
be defined in four different ways:

1. extensional: by the languages that belong to that paradigm,
1Our apologies to the many people who are offended by Kuhn’s misuse of the word paradigm.
2A distincton between (verbal) language-motivated and task motivated linguistic paradigms is made

in [And90, p. 331].
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2. intentional: by the properties that determine whether a language belongs to it or
not,

3. historic: by the paradigm’s evolution, and

4. exemplar: by specific example languages.

The distinction between the extensional and the intentional definition is also made
by [Shr86]. [Fri91] divides the programming paradigms into process centered (im-
perative, dataflow, functional), and data centered (constraint, rule, object, database),
listing them in a tree hierarchy. In sections 3.5.1, and 3.3.11 we will use this tree-
based approach to structure our multiparadigm system. Finally, in a number of articles
paradigms are defined by giving examples of differing ones.

In articles dealing with programming paradigms different authors have differing
views on what constitutes a programming paradigm. Thus, paradigm examples given
are: the block structure, procedural or imperative paradigm [Zav89, Weg90, Shr86,
Bey86, WK89, Fri91], the functional, logic programming, and object-based or object-
oriented paradigms [Zav89, Weg90, Bob84, Shr86, Bey86, WK89, Fri91], the
database, and the concurrent or distributed paradigm [Weg90], the rule-based para-
digm [Zav89, Fri91], the visual paradigm [Shr86], and the constraint, and spread-
sheet paradigms3 [Bey86, Fri91]. At this point we need to point out that often the
denotation of a programming paradigm is confused with the denotation of a program-
ming methodology (e.g. structured programming, data hiding, object-oriented pro-
gramming). A programming paradigm can support a programming methodology, but
it is a distinct entity. Most programming methodologies can be followed irrespective
of the programming paradigms supported by the underlying language (e.g. structured
programming in Fortran) [Str88, p. 11].

Paradigms are also distinguished and characterised according to their costs, the
leverage they provide, and environment for using them [Bob84]. The costs associated
with a paradigm are those of learning to write programs in it, debugging them, chang-
ing them, and running them; in short all the aspects of the software life-cycle. The
leverage provided by a paradigm is associated with the notion of elision: the facts that
need not be stated. Elision in the context of programming paradigms is better defined
in [SBK86]:

“Elision is the ability to state concisely and without redundancy what is
intended. This is a hallmark of appropriate language support for a para-
digm. By eliminating verbiage the programmer can focus on the essentials
having both less opportunity for mistakes and more easily understood pro-
grams.”

Finally, the environment associated with programming paradigms is characterised
according to the support it provides for detecting errors and tracing the program, its
analysis and performance tuning tools, and the tools available for generating user in-
terfaces.

3Given paradigm status in [Cas92, BP93].
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2.2 Multiparadigm Languages

In this section we present a number of languages supporting more than one program-
ming paradigm. Other such surveys can be found in [Hai86b, Hai86a], and [Pla89,
pp. 13–17]. We attempt to order the languages into different categories according to
the paradigms they support. In each category we provide a list of the languages and
the way they have been implemented, their main features, a brief description of each
language and, finally, try to draw some conclusions from the languages presented.

We divide the languages into nine categories by choosing as categories those groups
where more than three languages can be placed. Languages that can not be placed in
any of the nine categories are examined separately at the end. Those languages use
seldom-mentioned or specialised paradigms, based on sets, generators, BNF gram-
mars, and regular expressions. We use the following broad paradigm definitions in
order to divide the languages:

Imperative: Based on change of state, assignment, direct control of the execution
strategy.

Functional: Based on simplification by function reduction. Many of the languages
that fit in this paradigm provide higher order functions, lazy evaluation, and
referential transparency. Functional languages often offer pattern matching, and
polymorphic type systems.

Logic: Based on solving by SLD resolution. The concepts of relations, unification,
backtracking and the logical variable are also closely related.

Object-Oriented: Based around the provision of some of the following: objects with
encapsulated state and methods, inheritance mechanisms, classes, messages.

Distributed: Supporting the execution on more than one processing unit.

Constraint: Containing a solver to satisfy solutions of problems within a specific
domain (usually equations).

We are certain most people will disagree with at least one of the above definitions.
They may rest assured that they are not alone. The literature is full of specific paradigm
definitions and no two of them are identical. However, the above definitions are not
critical to our examination, but just rough guides used to group languages together into
the various categories. We have attempted to characterise the languages using a set of
objective criteria. Thus, all languages will be examined using a set of characteristics
which provide much finer control over the language features. The characteristics are
divided into two categories: general language features and execution strategies. They
are listed in table 2.1 and will be used in all our language evaluations. Some languages
are listed as supporting two conflicting or opposite characteristics; this is the case
when a language has one subset supporting a given characteristic and another subset
supporting another. The execution strategy is denoted as (*) in the cases where a
language uses a strategy that is not included in table 2.1.

Some of the characteristics are important by their absence as much as by their
presence (e.g. deterministic execution vs. non-determinism). In that case we list the
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Name Explanation Summary
DT Determinism Same arguments produce same results
∪ Unification Logical variables
f Functions Functions can be composed
λ Lambda expressions Anonymous functions
R Relations Support for expressing relations
RT Referential Transparency Expression has single value
BR Branches Control of evaluation order
MD Multiple Data More than one data item is being oper-

ated upon
O Objects Entities responding to messages
∥ Parallelism Support for parallel processes
IN Inheritance Implicit procedure use through a class

tree hierarchy
MI Multiple Inheritance Implicit procedure use through object

DAG hierarchy
Execution Strategies

(X) Explicit Explicit
(FR) Function Reduction Solution by function reduction
(SLD) SLD Resolution Solution by resolution

Table 2.1: Multiparadigm Language Features

Paradigm Characteristics
Functional RT DT f λ (FR)
(Applicative) RT DT f (FR)
Logic-programming ∪ R RT DT (SLD)
Imperative BR RT (X)
Declarative BR (*)
Object-Oriented IN O

Table 2.2: Common paradigms

Characteristic Constituent Characteristics
Non-Determinism RT DT

Assignment RT

Superscalar ∥ BR

Table 2.3: Common composite characteristics



8 CHAPTER 2. RELATED WORK: MULTIPARADIGM PROGRAMMING

characteristic with a horizontal bar over it. In order to give a rough idea of how these
higher-granularity language characterisation entities relate to the paradigms that are
commonly discussed we list in table 2.2 some common paradigms — following the
most widely accepted paradigm definition — together with their composite character-
istics. There are also some characteristics that are often used to characterise languages
that are composite in our characterisation schema i.e. they are defined by more than
one of our primary characteristics. Table 2.3 contains the definitions of some com-
monly used composite characteristics that are defined in this way.

2.2.1 Combinations of Functional and Logic Paradigms

The logic and functional programming paradigms are both based on mathematical
foundations: logic programming is based on Horn-clause logic, and functional pro-
gramming on equational logic (substitution of equals for equals) [GM86a]. Thus,
there is the tempting possibility to perform the multiparadigm integration by inte-
grating the underlying logics [GM87, p. 470], [Bol86]. The relationship between
logic and functional languages is surveyed in [BL86, Red86, DFP86, BDL82, DL86,
JLM86, GLDD90]. A comparison between Prolog and Lisp can be found in [WP77].
Integration of the relational paradigm [Cod70] (supported by logic programming) with
other paradigms is examined in [Kor86b]. We found 24 languages that combine the
functional and logic programming paradigms. Their implementations are summarised
in table 2.4 and their characteristics in table 2.5. In the following paragraphs we list
the most important features of each language.

ALF [Han90a, Han91] Defined in terms of Horn-clauses and equality. Any functional
expression can be used in a goal literal and arbitrary predicates can occur in
conditions of equations. The compilation process is based on a modified version
of the Warren abstract-machine [War83].

ALICE [CST87] Based on the concept of mutual reflection 4. The two systems are
built as procedural introspective systems on top of Lisp-3 and then made mutu-
ally reflective.

Applog [Coh86] A functional programming interpreter implemented on top of Prolog.
The interpreter provides facilities for defining and evaluating functions and an
interface for calling Prolog and converting between lists and terms. It is possible
to call Prolog from Applog using the goal function and Applog from Prolog
using the eval predicate.

Bon87 [Bon87] Meta interpreter built on top of Scheme, modifying its semantics to
evaluate both functions and predicates using a common environment.

EqL, E [JSG86, JS86] Support Horn-clause logic and first-order functional program-
ming by means of equation solving rewrite rules. Their operation semantics are
based on object refinement equation solving.

FGL+LV [Lin85] Functional graph reduction language, with unification. No back-
tracking is offered, so the effects of the unification can not be undone.

4Reflection is the ability to inspect and influence the language’s interpreter from within the language.
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FPL [BDL82] Lazy functional language with unification and a relational syntax for
expressing streams.

Fresh [Smo86] A higher order functional language is extended by adding unification
and non-determinism. Operational semantics are defined using a structural ap-
proach.

Funlog [SY86] Computational model supporting functional and logic programming.
The reduction strategy is based on pattern-driven lazy reduction. The unification
method used is semantic unification, or unification based on equality.

HASL [Abr86] A purely functional language, that supports one way unification. Of
the two terms to be unified, only one can contain non-ground variables.

HCPRVR [Che80] This Horn-clause theorem prover is a Prolog interpreter imple-
mented on top of Lisp. A way is provided to call Lisp functions from within
Prolog.

HHT82 [HHT82] Contains all Prolog features and, in addition, first order determin-
istic functions and lazy evaluation. The logical evaluation system is natural
deduction.

Han90 [Han90b] An explicitly typed polymorphic integration of functional and logic
languages. Its operational semantics are based on resolution for predicates, and
narrowing for functions. Higher order programming techniques can be used.

Id Nouveau [JP91] A first order functional language that contains logical arrays.
These can be declared inside function blocks, and unification can be performed
between them. Id Nouveau programs are compiled into a subset called Cid, for
which full operational semantics are provided.

LML [BMPT90] A higher-order functional language where logic objects are repre-
sented as a special data-type called theories. These are manipulated using the
functional constructs, but can be queried to produce multiple values.

LOGLISP [RS82] Extension to Lisp, using Lisp syntax, allowing the expression of
non-deterministic goals and unification. A special form of resolution called
LUSH is used. Lisp interface functions are provided.

Leaf [BBLM86, BBLM84] Provides a logic programming language with equational
reasoning. The inference rule used, corresponds to call-by-name semantics. A
deterministic, first-order functional subset of the logic language is provided, by
substituting relations with tuple-valued functions, and unification with pattern
matching. (In [BBLM86] the logic component is called ‘declarative’ and the
functional, ‘procedural’).

Nar85 [Nar85] Presents a technique for the lazy evaluation of functions from within
Prolog. This is achieved by defining these functions as rules of a reduce pred-
icate, which performs the function reduction.
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Qute [SS86a] Functional language supporting full unification and AND parallelism.
The evaluation of Qute programs enjoys the Church-Rosser property. Parallel
running processes communicate through shared variables.

SProlog [Smo84] Prolog with additional constructs to make the writing of determin-
istic functions possible.

SchemeLog [Bon91] The language is based on Scheme with the addition of logical
variables and clause expressions. Its operational semantics are defined in terms
of an abstract-machine interpreter borrowing instructions from the P-Machine,
the SECD-Machine and the Warren Abstract Machine.

TABLOG [MMW84, MMW86] Extension to Prolog by allowing the definition of
equations. A deductive-tableau proof system is used in place of Prolog’s resolu-
tion proof system.

Term Desc. [Nak85] Term description provides a functional extension to Prolog by
allowing terms followed by a description of their value. These descriptors are
Prolog predicates, that are executed when such terms are unified. Lazy unifica-
tion allows the expression of infinite data structures.

YS86 [YS86] Logic programs are represented as logic equations and are therefore
solved by equational methods. A ‘deletion upon unification’ rule is used to
handle unification. Lazy narrowing is the rewrite method used.

Many of the systems examined, integrated the two logics using the operational se-
mantics of narrowing proposed in [Red85], instead of function reduction and SLD-
resolution. The research on the integration of the two paradigms started relatively
early [Che80]; we think that the design and implementation of such systems proved
that multiparadigm programming was possible, and opened the road to broader multi-
paradigm programming languages.

2.2.2 Combinations of Imperative and Logic Paradigms

The classic equation [Kow79]

Algorithm = Logic + Control

on which logic programming languages are based, implies that control is part of the
program solution. Furthermore, in contrast to most functional programming languages,
due to the search strategy used by the majority of implementations, the control of the
execution order is an important aspect of many “logic” programs. For example, in the
case of the often cited program a :- a. a. the goal a will not succeed, although
it will if set for the logically equivalent one, a. a :- a.. It is thus clear, that
control of the evaluation strategy can be an important aspect of practical logic pro-
gramming languages. Most logic programming languages offer a way of manipulating
the evaluation order by means of the cut predicate. A more drastic way to achieve
this result is to couple a logic language with the traditional paradigm for expressing
control: the imperative paradigm.
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Name References Implementation
ALF [Han90a, Han91] WAM extension
ALICE [CST87] Meta-interpreter on top of 3-Lisp
Applog [Coh86] Interpreter written in Prolog
Bon87 [Bon87] Meta-interpreter on Scheme
EqL, E [JSG86, JS86] Language
FGL+LV [Lin85] Extension to the graph reduction language FGL
FPL [BDL82] Extension to TEL functional language
Fresh [Smo86] Extensions to functional
Funlog [SY86] Interpreter implemented in Prolog
HASL [Abr86] Implemented in C-Prolog
HCPRVR [Che80] Implemented on top of Lisp
HHT82 [HHT82] Extension to Prolog
Han90 [Han90b] Theoretical framework
Id Nouveau [JP91] Operational Semantics
LML [BMPT90] Extension to functional
LOGLISP [RS82] Extension to Lisp
Leaf [BBLM86,

BBLM84]
Plan for hardware implementation

Nar85 [Nar85] Technique
Qute [SS86a] Implemented in Prolog as a translator to Prolog
SProlog [Smo84] Implemented on top of Prolog
SchemeLog [Bon91] Meta-interpreter on Scheme
TABLOG [MMW84,

MMW86]
Language implemented in Lisp

Term Desc. [Nak85] Prolog extension
YS86 [YS86] Semantic framework

Table 2.4: Implementations combining the functional and logic paradigms
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Name Characteristics Control
BR DT f λ ∥ R RT ∪ DT RT

ALF
√ √ √ √ √ √

SLD, narrowing
ALICE

√ √ √ √ √ √ √
SLD, FR

Applog
√ √ √ √ √ √ √

SLD, FR
Bon87

√ √ √ √ √
FR, SLD

EqL, E
√ √ √ √

*
FGL+LV

√ √ √ √ √
FR

FPL
√ √ √

*
Fresh

√ √ √ √ √ √
FR, SLD

Funlog
√ √ √ √ √ √ √

FR
HASL

√ √ √ √ √
FR

HCPRVR
√ √ √ √ √ √ √ √

SLD
HHT82

√ √ √ √ √ √
*

Han90
√ √ √ √ √ √ √ √

SLD, narrowing
Id Nouveau

√ √ √ √ √ √
*

LML
√ √ √ √ √ √ √

FR
LOGLISP

√ √ √ √ √ √
FR

Leaf
√ √ √ √ √

*
Nar85

√ √ √ √ √
SLD, FR

Qute
√ √ √ √ √ √

FR
SProlog

√ √ √ √ √ √
SLD

SchemeLog
√ √ √ √ √

*
TABLOG

√ √ √ √ √
*

Term Desc.
√ √ √ √ √ √

SLD
YS86

√ √ √ √ √
*

Table 2.5: Characteristics of functional and logic paradigm combinations
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It is not only the logic paradigm that benefits from the synergy with the imper-
ative one. Traditional imperative languages can become more powerful, by tapping
into the power of the logic variable, backtracking, and unification offered by the logic
programming paradigm. In this section we will examine languages built upon such
combinations.

The relationship between imperative and logic languages is examined in [DAT91,
Dra87, HKW85, Fle90]. Integration of the relational paradigm [Cod70] with other
paradigms is examined in [Kor86b]. An interesting approach, based on flow diagrams,
towards the paradigm integration can be found in [DAT91]. We found ten languages
that combine the imperative and logic programming paradigms. Their implementa-
tions are summarised in table 2.6 and their characteristics in table 2.7. In the following
paragraphs we list the most important features of each language.

2.PAK [Mel75] Block structured language offering user-defined pattern matching and
backtracking.

C with Rule Extensions [MS90] Based on the C programming language [KR78] with
an extended syntax, a richer set of data types, a flexible input/output system and
a forward chaining [Ric83, p. 56] execution strategy.

Leda [Bud91] Language with syntax similar to that of Pascal, with an additional code
abstraction facility, the relation. The data-space for all entities contains the un-
defined value. Relations are coded as Prolog rules, and allow backtracking.

Logicon [LC86] A Prolog interpreter implemented as an Icon [GG83] procedure. The
interpreter supports all Icon data types. It is possible to insert Prolog code into
an Icon program as a generator and to use Icon code in a Prolog predicate. Both
are realised using procedures implemented in Icon.

Modula-Prolog [Mul86] The facilities of a Prolog interpreter are provided to a Modula-
2 programmer through a library. Predicates, that can be called from the Prolog
interpreter, are written in Modula-2. The library includes term handling proce-
dures.

PIC [BK90] The logic and imperative programming paradigms are combined, by
translating Prolog predicates into C functions, and providing interfaces between
the two languages. Each Prolog predicate is translated into a single equivalent
C function. The arguments of the C function are the copy and trail stacks, the
argument list, the nearest choice point, and a continuation stack. This imple-
mentation is similar to the Warren abstract-machine [War83]. A limited class
of C functions can be called from Prolog. Prolog can be called from C, using a
special tool to generate the interface code.

Paslog [Rad90] An extension to the Pascal [JW75] programming language providing
logic programming capabilities. This is achieved by additional control struc-
tures, enhanced operators and statements, interactive features, and a suitable
programming methodology. Non-determinism is provided by the special split
statement.
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Name References Implementation
2.PAK [Mel75] Language
C with Rule
Extensions

[MS90] Extension of C, preprocessor

Leda [Bud91] Language
Logicon [LC86] Prolog interpreter in Icon
Modula-Prolog [Mul86] Run-time library for Modula-2
PIC [BK90] Translator of Prolog to readable C
Paslog [Rad90] Language, extension of Pascal
Planlog [Fro87] Theoretical framework
Predicate Logic in
APL

[EGM89] Implemented on top of APL

Strand [FT90] Language

Table 2.6: Implementations combining the imperative and logic paradigms

Planlog [Fro87] A theoretical framework for cleanly incorporating procedural exe-
cution into a logical environment. Implemented by transforming Horn-clauses
into special predicate logic rules. Deriving a goal using an initial situation and
the rules via a linear logic proof [Gab90], generates a plan for that proof. In
a pure logical world the plan’s existence represents the state of the world after
its execution. Adding built-in non-pure predicates i.e. predicates that have side
effects or predicates that reflect external events, imposes the requirement of the
execution of a plan in order to realize the effects of those predicates. Procedural
aspects of an execution can be expressed in the form of pre-fabricated plans.

Predicate Logic in APL [EGM89] Predicate logic in APL is a set of functions that
allow the representation of knowledge bases, and the execution of queries on
them using the APL data structures, functions, and interface.

Strand [FT90] The language provides a “foreign language interface.” This consists of
a set of functions and a suitable methodology [SRA89, pp. 9.1–9.48] for linking
C code into Strand programs. Facilities are provided for testing and building
arguments on the C side, and for providing argument directionality information
on the Strand side.

In the following sections we will attempt to analyse the approaches towards the in-
tegration of the two paradigms, by examining the the handling of unification, non-
determinism, and additional features found in those languages.

Handling of Unification

Unification is a central operation in logic programming because of the use of reso-
lution for theorem proving [Kni89, p. 101]. We expected languages catering for the
logic programming paradigm to provide some form of unification. Surprisingly not
all languages provided it. As summarised in table 2.8 unification is offered in various
degrees. We can distinguish the following levels of support for unification:
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Name Characteristics Control
BR ∥ R RT ∪ DT RT

2.PAK
√ √ √ √

*
C with Rule
Extensions

√ √ √ √ √ √
*, X

Leda
√ √ √ √ √ √

SLD, X
Logicon

√ √ √ √ √ √
X, SLD

Modula-
Prolog

√ √ √ √ √ √
SLD, X

PIC
√ √ √ √ √ √

SLD, X
Paslog

√ √ √ √ √ √
SLD, X

Planlog
√ √ √ √ √ √

SLD
Predicate
Logic in
APL

√ √ √ √ √ √
SLD, X

Strand
√ √ √ √ √ √ √

SLD

Table 2.7: Characteristics of imperative and logic paradigm combinations

Language Unification Backtracking I/O extensions
Modula-Prolog

√ √ √

Planlog
√ √

Predicates in APL
√ √

Paslog Explicit
√ √

C with Rules ?
√ √

PIC
√ √

Leda 1 level
√

Table 2.8: Language characteristics

Full support (M-Prolog, Planlog, P-APL, PIC). Unification of data structures of ar-
bitrary depth is provided in the same way as in conventional logic programming
language implementations.

Single level (Leda). This form of unification only unifies simple variables and does
not work for recursive or nested data structures. When a variable with an unde-
fined value is unified with a variable with a defined value both variables end up
with the same, defined, value. More complicated patterns are not supported. For
example unify(X, john)will result to X = John, but unify(loves(john,
mary), loves(john, X)) will fail.

Explicit unification (Paslog). Under this approach unification and its implementa-
tion strategy is under the control of the programmer. No support for unification
is provided by the language, but the programmer can write his own function
that will unify two arbitrary data structures. This is the most flexible, but least
expressive method.
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Handling of Non-determinism

Non-determinism, the existence of a branched computation tree for a given program
[Hog84, p. 50], can be supported in two different ways:

Implicit generation of choice points (M-Prolog, Planlog, P-APL, Paslog, C-Rule,
PIC, Leda). Choice points, i.e. points where more than one execution path can
be followed, are implicitly generated by the use of non-deterministic constructs
such as the existence of a number of clauses matching a given goal.

Explicit generation of choice points (Leda). Non-determinism can also be explicitly
controlled by the programmer. At a given point of the program execution the
programmer can direct the generation of a choice point. If at a latter point the
program backtracks, execution will be resumed at that choice point.

Additional Features

In this section we outline various notable features of the languages examined.

Input/output support (M-Prolog, Paslog, C-Rule). A number of languages with an
imperative base language enhanced their input/output system to parse and print
composite and recursive data structures. This capability is common in most Pro-
log implementations and useful for rapid prototyping and debugging. In more
solid applications a separate parser and pretty-printer are usually implemented.

Dynamic compilation (M-Prolog, P-APL, Paslog). The majority of Prolog imple-
mentations allow for the dynamic modification of the knowledge base by means
of the assert and retract predicates and, sometimes, the dynamic key-
word. Some of the languages examined also provide this feature.

2.2.3 Combinations of Functional and Imperative Paradigms

Some of the drawbacks of pure functional languages have to do with their inability to
deal with state changes. State, represented by direct changes on a tangible medium,
is an important part of a problem solution process: the solution of a problem needs at
some point to be represented in a tangible way, in order be used. State modifications
are used for two main reasons:

1. Input/output i.e. the control and sensing of the outside world via display screens,
keyboards printers, machine actuators, sensors, etc.

2. Storage of data on various forms of memory.

Both are two facets of the same coin, as one can be performed in terms of the other.
There are two things that can be done with state information: accessing it and modi-
fying it. If a functional language dealt with state information, then either the Church-
Rosser theorem [FH88, p. 121], on which many functional language properties are
based, would be violated, or the way state information was dealt with would be use-
less. The reasons are the following:
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Access: State information, by its nature, can change values between two accesses of
it. Reducing an expression using such state information in two different ways
would produce two different results, hence violating the Church-Rosser theo-
rem.

Modification: By the Church-Rosser theorem, two different terminating sequences of
reductions of the same expression to normal form will produce the same result
(up to alphabetic equivalence). If an expression modified external state, the
order of these modifications would be not be defined. Interfaces to the real
world often impose a single correct sequential ordering (e.g. characters must be
transmitted to a printer in the order in which they are to be printed) and therefore
modification of state by a pure functional language can not be performed in a
generally useful way.

Imperative languages are based on state changes; for this reason the integration
of the functional and logic paradigms seems to be able to provide a way for produc-
ing useful systems utilising functional programming technology. This was advocated
by Strachey in the discussion following [Lan66, p. 165]. The integration of imper-
ative constructs within a functional framework can be realised in two different ways
[WW88]:

• The convenient method, as implemented by ML [Mil85, MH88, MHMA89,
AM87] and Scheme [REA+86] is to introduce primitive operations with side
effects.

• The pure method, as implemented in LispKit Lisp [HJJ83], and SASL [Tur79]
exploits the capabilities of lazy evaluation to treat I/O and data-base handling
primitives as specific instances of stream-valued stream functions. Applicative
state transition systems are described in [Bac78a, pp. 635–638].

We found nine languages that combine the functional and imperative programming
paradigms. Their implementations are summarised in table 2.9 and their characteristics
in table 2.10. In the following paragraphs we list the most important features of each
language.

FL [WW88] Side effects are represented by modifying a special object that all pro-
grams map, the history. Special primitives are provided to modify it.

Fluent [GL86] Class of functional languages that have sub-languages with side-effects.
Sub-language invariants can be checked by static checking called effect check-
ing. Four sub-languages are defined according to their ability to allocate, read,
and write to memory locations.

Gedanken [Rey70] Functional language based exactly on the completeness (all val-
ues are first class citizens) and reference concepts, excluding all other features.
Assignments are possible by using references: objects which point to values.

Lucid [FL86, AW76] Family of dataflow-based languages, each based on a formal
algebra. The properties of each family member are independently determined
by an algebra defined as a set together with operations over its elements.
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Name References Implementation
FL [WW88] Language
Fluent [GL86] Language class
Gedanken [Rey70] Gedanken-experiment, Interpreter on Lisp
Lucid [FL86, AW76] Language
ML [Mil85, MHMA89,

Har86]
Language

Nial [JGM86] Interpreter
Scheme [REA+86] Language
Spreadsheet [Cas92] Application
Viron [Pra83] Language

Table 2.9: Implementations combining the functional and imperative paradigms

ML [Mil85, MHMA89, Har86] Functional language with imperative features. These
are: primitives used for input/output, exceptions allowing to escape from a con-
trol structure to the point where an exception is trapped, assignment by means
of references (pointers to the heap), a sequencing operator, and an iteration con-
struct.

Nial [JGM86] Array based language with assignment and explicit sequencing con-
trol. Extensions for logic programming and a methodology for object-oriented
programming are provided for pedagogical purposes.

Scheme [REA+86] Functional language providing static scoping and primitive op-
erations with side effects. The call with current continuation primitive allows
the creation of arbitrary control and environment graphs, and hence the explicit
control of control flow. Coroutines, generators, classes, actors, and exception
handling can be implemented in this way.

Spreadsheet [Cas92] Business spreadsheets contain a functional programming lan-
guage coupled with an array structure and assignment operations. The program-
ming language often features imperative control structures.

Viron [Pra83] Treats functions and memory cells as processes. Uses a small set of
language elements (atoms, arrays, filters, sets, records, and cells) which are
combined as processes. Program control flow is implicit.

The languages examined can be split into two categories:

• functional languages with imperative constructs, and

• imperative languages with functional constructs.

In general, the functional programming style (λ-expressions, currying, higher-order
functions) was better supported in languages of the first category. The most frequent
imperative constructs provided were assignment and input/output capabilities. Modi-
fication of control-flow was not a common feature, and when a language provided it, it
would provide it in a structured way. In general, one may conclude that combinations
of these two paradigms offer a pragmatic approach to functional programming.
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Name Characteristics Control
BR DT f λ ∥ RT RT

FL
√ √ √ √ √

FR
Fluent

√ √ √ √ √
FR

Gedanken
√ √ √ √ √

FR
Lucid

√ √
*

ML
√ √ √ √ √

FR
Nial

√ √ √ √ √ √
X, FR

Scheme
√ √ √ √ √ √

FR
Spreadsheet

√ √ √ √ √ √
FR

Viron
√ √ √ √ √

*

Table 2.10: Characteristics of functional and imperative paradigm combinations

2.2.4 Combinations of Functional and Object-Oriented Paradigms

Adding objects to a functional programming language can be used as a way to cleanly
integrate some imperative features in a functional language. Object-oriented languages
deal with objects containing state information — a concept functional languages have
difficulty dealing with. As objects are typically encapsulated entities, their addition in
the language space of a functional language would be less intrusive than the addition of
generic imperative features. Some of the systems contain objects that have no identity
that persists between changes of state. These ‘functional objects’ are mentioned in
[Weg90, p. 29]. A discussion of Lisp object-oriented extensions can be found in
[Mey88, p. 442].

An additional reason for the attractiveness of this approach, is the historic relation-
ship of certain functional languages with the artificial intelligence community. Objects
can be used to naturally represent many real world situations. Their addition to a func-
tional language used for artificial intelligence research, would naturally appeal to the
traditional language users. We found eight languages that combine the functional
and object-oriented programming paradigms. Their implementations are summarised
in table 2.11 and their characteristics in table 2.12. In the following paragraphs we list
the most important features of each language.

Common Lisp Object System [BDG+88] An object-oriented extension of Common
Lisp. Messages, polymorphism, and multiple inheritance are supported. The im-
plementation of classes, methods, and discriminators is based on a meta-object
protocol.

Common Loops [BKK+86, KHDS87] An object-oriented kernel implemented on
Common Lisp. Messages, polymorphism, and multiple inheritance are effi-
ciently supported. The implementation of classes, methods, and discriminators
is based on meta-objects.

Common Objects [Sny86, KHDS87] An object oriented language implemented on
Common Lisp and on CommonLoops. It has extensive support for encapsulation
and allows the dynamic redefinition of a class in the running environment.
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Name References Implementation
Common Lisp Ob-
ject System

[BDG+88] Common Lisp extension

Common Loops [BKK+86,
KHDS87]

Implemented on top of Common Lisp

Common Objects [Sny86, KHDS87] Implemented on top of Common Lisp
Flavors [Moo86] Language
Foops [GM86b, GM87] Language
Loops [SBK86] Implemented on top of Interlisp-D
T Object [AR88] Scheme extension
YAPS [All83] Implemented on top of Lisp

Table 2.11: Implementations combining the functional and object-oriented paradigms

Name Characteristics Control
DT f IN λ MI O RT

Common
Lisp Object
System

√ √ √ √ √ √ √
FR

Common
Loops

√ √ √ √ √ √ √
FR

Common
Objects

√ √ √ √ √ √ √
FR

Flavors
√ √ √ √ √ √ √

FR
Foops

√ √ √ √ √ √
*

Loops
√ √ √ √ √ √ √

FR
T Object

√ √ √ √ √ √
FR

YAPS
√ √ √ √ √

*

Table 2.12: Characteristics of functional and object-oriented paradigm combinations

Flavors [Moo86] Object-oriented programming integrated with Lisp. Instance vari-
ables, generic functions, and multiple inheritance are available. The implemen-
tation includes program development tools.

Foops [GM86b, GM87] Based on reflective equational logic.

Loops [SBK86] An object oriented language based on Interlisp-D. Messages, poly-
morphism, and multiple inheritance are supported. Supports access-oriented
programming by associating annotations with data. These can introduce side
effects on variable access, are transparent, and contain their own state.

T Object [AR88] A small number of extensions to Scheme that give it the capability
to map functions to values using inheritance.

YAPS [All83] Built on top of Franz Lisp to provide an antecedent-driven production
system with daemon objects.
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From the languages we examined we conclude that object-oriented programming is
typically combined with functional languages by adding objects to an existing func-
tional programming language. This seems to be an established tradition in the Lisp
community, and most of the languages examined fall in this category. We view the
combination of these two paradigms as important, because by adding objects to a
functional language it is possible to integrate various differing evaluation methods,
thus paving the way for broader multiparadigm languages.

2.2.5 Combinations of Logic and Object-Oriented Paradigms

We believe that the main driving forces behind the integration of the logic and object-
oriented paradigms are the suitability of the object-oriented approach for expressing
artificial intelligence problems (a traditional domain of logic programming), and the
flat structure of logic programs. Objects can provide the structure on which elaborate
logic systems can be built. In systems where such features are not available, one can
often see complicated logic programs containing custom-built ad hoc mechanisms for
managing program complexity. The relationship between logic and object-oriented
languages is surveyed in [McC92, pp. 18–30], [Uus92, pp. 99–101], and [VLM88,
p. 194]. We found eleven languages that combine the logic and object-oriented pro-
gramming paradigms. Their implementations are summarised in table 2.13 and their
characteristics in table 2.14. In the following paragraphs we list the most important
features of each language.

Intermission [Kah82] An object-oriented extension to Prolog. Objects that respond
to messages can be defined. All programming is done by the single predicate
send(object, message, result).

LAP [IK87] Object model relations supporting multiple inheritance can be defined in
a Prolog-like environment. Demons can be attached to objects.

LOGIN [AKN86] Based on a ψ-term lattice structure to represent the object hierar-
chy, and a modified unification procedure.

L&O [McC92] Classes are described as theories: labelled sets of axioms. The axioms
can be arbitrary predicates which are accessed by prefixing them with the name
of their class. The logical variable can be used over theory names. Object state
is implemented in terms of mutable theories.

LogiC++ [Wu91] A Prolog extension to C++. C++ methods can be written as Prolog
Horn-clauses. Clauses are translated into C++ functions using the procedural
interpretation of Prolog. The functions are executed at run-time, using activation
frames and the usual two stack representation of the backtracking data.

MU [Uus92] Proposal for object-oriented and logic programming based on modal
logic. Three logics are developed providing different inheritance models. For
those logics a resolution calculus is provided.

PAL [Aka86] Organises Prolog predicates around an inheritance hierarchy. Prolog
variables are represented as belonging to a given class, becoming “class bound
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Name References Implementation
Intermission [Kah82] Implemented on top of Prolog
LAP [IK87] Prolog library
LOGIN [AKN86] Prolog extension
L&O [McC92] Prolog pre-processor
LogiC++ [Wu91] Implemented as a translator to C++
MU [Uus92] Theoretical framework
PAL [Aka86] Language
PEACE [Kos87] Interpreter in Prolog
POL [Gal86] OO Extension of Prolog
Prolog/KR [Nak84] Prolog extension
Zan84 [Zan84] On top of Prolog

Table 2.13: Implementations combining the logic and object-oriented paradigms

variables.” The unification procedure is modified to unify only variables of
matching class instances.

PEACE [Kos87] Objects contain instance variables, named slots and methods, de-
scribed as predicates. They are organised as a flat network. Slots can be asso-
ciated with demons that preform actions when some operation is executed on
that slot. The demons provided are: when empty, referred, constrain,
after put, removed, and after add.

POL [Gal86] The POL system adds the notions of a class, object, method and inheri-
tance to a Prolog-like language. The syntax and semantics of Prolog are retained
and the relational framework is used to refine the object-oriented concepts. The
system support deterministic methods and higher order functions.

Prolog/KR [Nak84] Allows the structuring of the Prolog database by introducing a
world hierarchy in which the predicates are defined. The multiple inheritance
provided can be controlled, so that from different viewpoints different ancestors
are seen.

Zan84 [Zan84] Objects are defined with some attributes, and a set of Prolog clauses
as methods. The primitive isa defines the relationship of the object with other
objects in a multiple-inheritance hierarchy, and gives values to the attributes of
the objects. The attributes of an object remain fixed over its lifetime.

Of the paradigm integrations examined, we found that the integration of logic with
object-oriented programming was the one with the widest design and implementation
choices and variety of approaches. These ranged from frameworks based on sound
theories, to pragmatic approaches targeting real-life applications. Many of the sys-
tems offer genuine features that can be immediately utilised to the advantage of the
application builder.
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Name Characteristics Control
BR IN MI O R RT ∪ DT RT

Intermission
√ √ √ √ √ √

SLD
LAP

√ √ √ √ √ √ √
SLD

LOGIN
√ √ √ √ √

SLD
L&O

√ √ √ √ √ √ √ √
SLD

LogiC++
√ √ √ √ √ √ √

SLD
MU

√ √ √ √ √
SLD

PAL
√ √ √ √ √ √ √

SLD
PEACE

√ √ √ √ √ √ √ √
SLD

POL
√ √ √ √ √ √ √

SLD
Prolog/KR

√ √ √ √ √ √ √
SLD

Zan84
√ √ √ √ √ √ √ √

SLD

Table 2.14: Characteristics of logic and object-oriented paradigm combinations

2.2.6 Combinations of Imperative and Object-Oriented Paradigms

The object-oriented paradigm differs from most paradigms in that it deals with data
abstractions, rather than control abstractions. Although it is a useful mechanism for
organising information, it needs to be coupled with another paradigm in order to make
it possible to write useful programs. It can thus be said, that the object-oriented para-
digm is orthogonal to all other programming paradigms. Naturally, the imperative
paradigm being the one with the widest use, would be seen as the most likely candi-
date for such integration. The objects used in imperative languages are classified as
‘imperative objects’ in [Weg90, p. 29]. A discussion on object-oriented programming
using imperative languages can be found in [Mey88, pp. 373–383]. In [LMT89] the
authors argue that “pure” object-oriented systems are preferable to object-oriented ex-
tensions to the C programming language. We found seven languages that combine
the imperative and object-oriented programming paradigms. Their implementations
are summarised in table 2.15 and their characteristics in table 2.16. In the following
paragraphs we list the most important features of each language.

C++ [Str86b, ES90] Extends the C programming language by adding objects, classes,
polymorphism, inheritance and overloading.

Eiffel [Mey88, Mey92] Block based, procedural, object-oriented programming lan-
guage with emphasis on reusability, software components, and reliability.

Met87 [Met87] A methodology for object-oriented programming in C. The objects
are stored in C structures and unions.

Modula-3 [CDG+92] Block structured, imperative, systems programming language
based on Modula-2. Supports objects (as references to data records with meth-
ods) and single inheritance. Supports a polymorphic type system.

Objective C [Cox86] Extends the C programming language by adding objects, classes,
polymorphism, inheritance, and overloading. A Smalltalk-like syntax is em-
ployed. The objects created by Objective-C can be made persistent and be dis-
tributed.
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Name References Implementation
C++ [Str86b, ES90] Language / C preprocessor
Eiffel [Mey88, Mey92] Language / preprocessor to C
Met87 [Met87] Methodology for object-oriented programming

in C
Modula-3 [CDG+92] Language
Objective C [Cox86] Language
Pool2 [Ame89] Language
Sather [Omo91] Compiler, generates C

Table 2.15: Implementations combining the imperative and object-oriented paradigms

Name Characteristics Control
BR IN MI O ∥ RT

C++
√ √ √ √

X
Eiffel

√ √ √ √ √
X

Met87
√ √ √

X
Modula-3

√ √ √ √ √
X

Objective C
√ √ √ √

X
Pool2

√ √ √ √
X

Sather
√ √ √ √ √

X

Table 2.16: Characteristics of imperative and object-oriented paradigm combinations

Pool2 [Ame89] Object-oriented programming language with message passing across
modules running in parallel. Algol-style syntax is provided using a built-in
“syntactic-sugar” notation for expressing message passing.

Sather [Omo91] Imperative language offering classes, messages and multiple inheri-
tance. Simplified, optimised variant of Eiffel [Mey88].

Given the maturity and pervasiveness of the imperative paradigm, it did not surprise us
a lot to find that most languages combining the two paradigms were quite similar. We
believe that in many cases, implementation efficiency concerns considerably limited
the leeway available to the language designers. Nevertheless, the languages examined,
offered a convincing proof of the orthogonality of the object-oriented paradigm to the
imperative one.

2.2.7 Combinations of Functional, Imperative, Logic and Object-Oriented
Paradigms

The functional, imperative, logic, and object-oriented paradigms appear to be the most
visible programming paradigms. Therefore their combination would appear to be
the starting point for multiparadigm language research. We found five languages
that combine the functional, imperative, logic and object-oriented programming para-
digms. Their implementations are summarised in table 2.17 and their characteristics
in table 2.18. In the following paragraphs we list the most important features of each
language.
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Name References Implementation
G [Pla89, Pla91b,

Pla91a]
New language compiler

G-2 [Pla92] New language compiler
Modcap [Wel89] Compiler
Multiparadigm
Pseudocode

[WK89] Pseudocode teaching aid

TAO [TOO86] Lisp-based meta-interpreter

Table 2.17: Implementations combining the functional, imperative, logic and object-
oriented paradigms

G-2 [Pla92] A multiparadigm language with an attempt to provide semantic consis-
tency in its functional part. The destructive assignment is encapsulated within a
block construct which insulates it from the rest of the program.

G [Pla89, Pla91b, Pla91a] A language based on demand-driven stream evaluations.
Functions are first class citizens, although there is no λ-abstraction mechanism.
Logic programming is possible using generators. Logical variables are not pro-
vided.

Modcap [Wel89] Language based on functions, with assignment and sequencing pro-
viding the imperative features, encapsulation and genericity providing the object-
oriented features, and the possibility of parallel evaluation catering for the logic
non-determinism.

Multiparadigm Pseudocode [WK89] An expression-based pseudocode notation to
be used as a teaching aid. The language features are derived from Modcap
[Wel89].

TAO [TOO86] Lisp-based language supporting assignment, messages and multiple
inheritance, unification and backtracking. Object-oriented features are imple-
mented by defining classes, as collections of methods belonging to some super-
classes. Logic programming is built into the language by offering two resolvers,
similar to the lambda operator. One defines defines unification, and the other
non-deterministic choice. Evaluating objects constructed using these resolvers
leads to logic semantics. Both resolvers can be user-defined. Concurrency is
provided by treating a process as an object. The language is efficiently imple-
mented using micro-coded primitives on the ELIS Lisp-machine.

We found that languages offering the combination of the functional, imperative, logic,
and object-oriented paradigms were attempts to provide a broad multiparadigm lan-
guage, rather than paradigm reconciliation attempts — a common driving force be-
hind languages combining two paradigms. All articles surveyed were explicitly basing
the language design rationale on the virtues of multiparadigm programming, and the
support for these paradigms — according to the authors — offers a sound base for a
multiparadigm language.
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Name Characteristics Control
BR DT f IN λ MI O R RT ∪ DT RT

G
√ √ √ √ √ √ √ √ √

FR
G-2

√ √ √ √ √ √ √ √ √
FR

Modcap
√ √ √ √ √ √ √ √

SLD, FR, X
Multiparadigm
Pseudocode

√ √ √ √ √ √ √ √
SLD, FR, X

TAO
√ √ √ √ √ √ √ √ √ √ √ √

SLD, FR, X

Table 2.18: Characteristics of functional, imperative, logic and object-oriented para-
digm combinations

2.2.8 Combinations of Distributed, Logic and Object-Oriented Paradigms

One reason for the combination of parallel, logic, and object-oriented paradigms is that
the object-oriented paradigm seems to arrive “for-free”, once a parallel implementation
of a logic programming language is realised. Thus, slight modifications to the language
[KTMB86], or even a suitable programming methodology [ST83] allow the creation
of objects containing state. These are represented as the various branches of the logic
computation. Given the number of languages combining the logic with the object-
oriented paradigms, and the suitability of logic languages to run on parallel hardware,
we expect to see more and more languages combining these three paradigms. We
found four languages that combine the distributed, logic and object-oriented program-
ming paradigms. Their implementations are summarised in table 2.19 and their char-
acteristics in table 2.20. In the following paragraphs we list the most important features
of each language.

Concurrent Prolog [ST83] The facilities available in concurrent Prolog make object-
oriented programming natural and easy. Object state changes are represented by
the reincarnation of an object with new parameters — a process similar to tail
recursion. The objects instantiated are active, executing continually.

Orient84/K [IT86] Supports Smalltalk-like object-oriented programming. In addition
objects execute concurrently in a monitor-like fashion and object methods can be
written in a language similar to Prolog. Each object has its own, local knowledge
base.

SCOOP [VLM88] Prolog extended with a block structured syntax and classes. Par-
allelism is provided by distinguishing betweem static entities (objects) and dy-
namic computing agents(processes). The dynamic Prolog clauses are used to
represent object state variables, while the static clauses represent class methods.

Vulcan [KTMB86, KTMB87] A preprocessor for concurrent Prolog that allows the
expression of object-oriented notions in a natural way. The facilities available
in concurrent Prolog already allow object-oriented programming. Object state
changes are represented by the reincarnation of an object with new parameters
in a way similar to tail recursion. The objects instantiated are active, executing
continually.
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Name References Implementation
Concurrent Prolog [ST83] Language
Orient84/K [IT86] Language and Kernel
SCOOP [VLM88] Implemented on top of Prolog
Vulcan [KTMB86,

KTMB87]
Preprocessor for concurrent Prolog

Table 2.19: Implementations combining the distributed, logic and object-oriented para-
digms

Name Characteristics Control
BR DT IN O ∥ R RT ∪ DT RT

Concurrent
Prolog

√ √ √ √ √ √ √ √ √
SLD

Orient84/K
√ √ √ √ √ √ √ √ √

SLD
SCOOP

√ √ √ √ √ √ √ √ √
SLD

Vulcan
√ √ √ √ √ √ √ √ √

SLD

Table 2.20: Characteristics of distributed, logic and object-oriented paradigm combi-
nations

Although the languages we examined support the creation of objects with mutable
states, we did not find support for any inheritance mechanisms — a basic ingredient of
object-oriented programming [Weg87, p. 169]. This can be attributed to the fact that
sharing of variables among object instances across different processors is a difficult
problem.

2.2.9 Combinations of Constraint, Functional and Logic Paradigms

Programming using constraints allows the succinct representation of many difficult
problems [Col90, MD88, Ber88]. A problem is expressed as a set of constraints in
a domain over some variables in a declarative way. A solver built into the constraint
programming language will then attempt to provide a solution (in the form of variable
values) which satisfies the constraints of the problem. Constraint logic programming
languages are examined in [Coh90], while an analysis of the design issues behind
integrating the three paradigms can be found in [DGP91a, DGP91b]. We found five
languages that combine the constraint, functional and logic programming paradigms.
Their implementations are summarised in table 2.21 and their characteristics in table
2.22. In the following paragraphs we list the most important features of each language.

Eqlog [GM86a] Pure first order language combining pure logic programming with
equality, and first order functional programming. The operational semantics of
the Horn-clause logic are provided by narrowing. It has powerful capabilities as
a constraint language.

Falcon [DGP92] Integration of functional, typed-logic and constraint programming
language. Relations are specified in functional syntax, but are evaluated using a
logic solver and can use the capabilities of the logical variable.
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Name References Implementation
Eqlog [GM86a] Language
Falcon [DGP92] Language
Flang [Man91] Language
Prolog-with-
Equality

[Kor86a] Extension to Prolog

Unicorn [Ban86] Language on top of Prolog

Table 2.21: Implementations combining the constraint, functional and logic paradigms

Name Characteristics Control
DT f R RT ∪ DT

Eqlog
√ √ √ √ √

FR, *
Falcon

√ √ √ √ √ √
SLD, FR

Flang
√ √ √ √ √ √

*
Prolog-with-
Equality

√ √ √ √
SLD, *

Unicorn
√ √ √ √

*

Table 2.22: Characteristics of constraint, functional and logic paradigm combinations

Flang [Man91] Functional language where relations are treated as functions. When
a function returns a fail value, backtracking occurs. Function variables support
unification. The definition of “algebraic” functions allows constraint program-
ming.

Prolog-with-Equality [Kor86a] An extension to Prolog based on equality. Unifica-
tion is enhanced by solving equality relations whenever two terms fail to unify
syntactically. This provides the language with constraint solving capability. The
language is expressed using a functional syntax.

Unicorn [Ban86] A first-order functional language based on constraining unification.
This, together with semantic unification give it constraint programming capabil-
ities.

All languages we examined, are based on theoretical examination of the underlying
logics and solving methods. No ad hoc approaches similar to those found in other
paradigm combinations were found among these languages. In fact, some of the ap-
proaches seem to provide constraint programming as a byproduct of the integration of
the other two paradigms using a unified logic approach [Kor86a, GM86a].

2.2.10 Combinations of Various Paradigms

In this section we include languages that could not be fitted into one of the preceding
sections. Table 2.23 contains the names of the languages and the paradigms supported.
We found 15 languages that combine the various programming paradigms. Their im-
plementations are summarised in table 2.24 and their characteristics in table 2.25. In
the following paragraphs we list the most important features of each language.
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DSM [Rum87] A C-based object-oriented language is extended by adding the concept
of a relation to it. Relations are defined at the same abstraction level as classes.

Echidna [HSS+92] Expert system shell with an execution mechanism based on in-
telligent backtracking. An object structure is used to organise the knowledge
representation schema.

Educe [Boc86] Extends and adds persistence to Prolog by coupling it with the IN-
GRES DBMS.

Enhanced C [Kat83] An extension to the C programming language that allows oper-
ations to be performed on whole sets. The set programming paradigm, is thus
supported.

Fooplog [GM87] First-order object-based functional language supporting logic pro-
gramming. Based on reflective Horn-clause logic with equality.

Icon [OG87, Gri84, GG83] Expression-based language offering the concept of gen-
erators; non-deterministic expressions with local scope. An expression can fail
which leads to backtracking. Provides extensive capabilities for handling of
strings.

KE88 [KE88] A bridge between LOOPS and Prolog. LOOPS objects can be ac-
cessed from Prolog, LOOPS object methods can be defined in Prolog, and Pro-
log clauses can be treated as LOOPS objects.

Kaleidoscope [FBB92] Kaleidoscope ’91 provides the integration of object-oriented
features with a declarative constraint system. The object system is used to or-
ganise the contraints in hierarchies via constraint constructors.

Lex [Les75] Allows the definition of text processors and lexical analysers using reg-
ular expressions. Each regular-expression can have some code in C associated
with it. There is an escape mechanism for explicitly manipulating the input
character stream.

ML-Lex [AMT89] Allows the definition of lexical analysers using regular expres-
sions. Each regular-expression has ML code associated with it.

ML-Yacc [TA90] Parsers can be defined in terms of BNF productions. Each rule can
have a semantic action written in ML associated with it. The user can specify
that the semantic rules are free from side-effects and thus, enhance the error
recovery process by allowing the multiple execution of some rules.

SB86 [SB86] Supports the idea of meta-interpreter components to define special eval-
uation strategies for expert system development. The meta-interpreters are then
partially evaluated and mixed with the object base, thus improving efficiency.

SPOOL [FiH86, Yok86] An object-oriented extension to Prolog. Instance and class
variables are supported and store state information which is persistent on back-
tracking. Additional Prolog operators are defined for defining classes and send-
ing messages.
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Name Paradigms
DSM Imperative, Object-oriented and Relational
Echidna Constraint, Logic and Object-oriented
Educe Database and Logic
Enhanced C Imperative and Set
Fooplog Functional, Logic and Object-oriented
Icon Generators and Imperative
KE88 Functional, Logic and Object-oriented
Kaleidoscope Constraint, Imperative and Object-oriented
Lex Imperative and Regular-Expression
ML-Lex Functional and Regular-Expression
ML-Yacc BNF and Functional
SB86 Any and Logic
SPOOL Imperative, Logic and Object-oriented
Uniform Constraint, Functional, Logic and Object-oriented
Yacc (Object-oriented), BNF and Imperative

Table 2.23: Languages and paradigms they support

Uniform [Kah86] A partly-implemented language based on unification augmented
with equality. The unification algorithm provides all the language features. The
author comments, that an efficient implementation may be impossible.

Yacc [Joh75] Allows the definition of parsers using BNF rules. Each rule can have
some code in C associated with it. Contains mechanisms for controlling expres-
sion operator precedence and error recovery. A C++ version [Joh88] allows the
use of object-oriented programming techniques.

2.3 Multiparadigm Systems

We distinguish multiparadigm systems from multiparadigm languages by the fact that
systems offer a complete framework for integrating and mixing translators for arbitrary
paradigms together. In the following sections we will present such systems by provid-
ing a brief overview of each one. The approaches taken are quite diverse; therefore no
attempt will be made to categorise them.

2.3.1 Unix

The Unix operating system [RT74] is not often thought of in its multiparadigm facet
[Hai86a]. Unix supports multiparadigm programming in the sense that is provides a
wide array of tools — supporting many different programming paradigms — which
can be combined [KP84] using the facilities of the programmable shell offered. Many
of the tools offered such as awk [AKW79], sed [McM79], dc [MC79], and the Bourne
shell sh [Bou79] are complete languages specialised to deal with specific problems.
Others such as cmp, col, comm, diff, grep, expr, find, indent, join, paste, sort, tee,
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Name References Implementation
DSM [Rum87] Extension to C
Echidna [HSS+92] Implemented on top of Lisp
Educe [Boc86] Prolog DBMS
Enhanced C [Kat83] Compiler producing C
Fooplog [GM87] Language
Icon [OG87, Gri84,

GG83]
Language

KE88 [KE88] LOOPS and Prolog
Kaleidoscope [FBB92] Language interpreter
Lex [Les75] C preprocessor
ML-Lex [AMT89] C preprocessor
ML-Yacc [TA90] ML preprocessor
SB86 [SB86] Meta-interpreters on Prolog
SPOOL [FiH86, Yok86] Implemented on top of Prolog VM
Uniform [Kah86] Implemented on top of Lisp
Yacc [Joh75] C preprocessor

Table 2.24: Implementations combining the various paradigms

Name Characteristics Control
BR DT f IN λ MI O R RT ∪ DT RT

DSM
√ √ √ √ √

Echidna
√ √ √ √ √

*
Educe

√ √ √ √ √
SLD

Enhanced C
√ √

X
Fooplog

√ √ √ √ √ √ √ √ √
*

Icon
√ √ √ √

X
KE88

√ √ √ √ √ √ √ √ √ √
FR, SLD, X

Kaleidoscope
√ √ √ √ √ √

*, X
Lex

√ √
X, *

ML-Lex
√ √ √ √ √

*, FR
ML-Yacc

√ √ √ √ √
*, FR

SB86
√ √ √ √ √

*
SPOOL

√ √ √ √ √ √ √ √
SLD

Uniform
√ √ √ √ √ √ √

*
Yacc

√ √
X, *

Table 2.25: Characteristics of various paradigm combinations
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test, tr, tsort, and uniq [BSD86a] can be viewed as very specialised little languages,
programmed by the numerous options that control their operation.

All these languages can be combined together thanks to some important design
decisions of the tools, and characteristics of the operating system. Unix supports the
painless combination of all these paradigms, by making it easy to create processes
(thus invoking multiple paradigms), and by providing an efficient and simple interpro-
cess communication mechanism: the pipe [KP84, p. 31]. The tools themselves are
designed in a way that lets them be integrated as components of a working system
[KP84, p. 170]. The following conventions are used in the design of the tools [KP84,
p. 130–131]:

• Each tool does one job, and does it well.

• The output of each tool, can be used as input for another. It is free of decorative
lines, headers, copyright messages, and blank lines.

• All filters write to their standard output the result of processing the argument
files, or the standard input, if no arguments are provided.

• Error messages are always written on a special output stream, the standard error,
so as to avoid confusing the tools reading their input.

New paradigms can be easily added to the system, by making them conform to the
above design rules.

2.3.2 MLP

The MLP (Mixed Language Programming) system [HMS88] is based on Unix pro-
cesses communicating via remote procedure calls. According to the author, multi-
paradigm programming, is not only useful for utilising specific strengths of various
languages (he gives as examples string processing, and arithmetic capabilities), but
also because mixed language programs can use existing software libraries irrespective
of the language that calls them. The author divides the problems for multiparadigm
programming into two categories:

1. problems due to incompatible language definitions, encompassing features suchs
as different type systems, parameter passing semantics and exception handling,
and

2. problems due to incompatible implementation choices including differences of
data representation, storage management, and I/O support.

The system deals only with sequential programs, and no attempt is made to define the
semantics and properties of the resulting system. Another simplifying assumption in
the design of the system, is the decision to avoid modifications to the operating system,
and to keep the address spaces of the cooperating paradigms separate.

The system is implemented as a set of translators that compile interface descrip-
tions from the languages supported into object code. Each process is linked with a
special run-time library that handles remote procedure calls using the reliable user
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datagram protocol. A purpose-built linker binds the exported procedures to the run-
time system, and type checks the procedure uses against the interface descriptions. All
interface descriptions are expressed in a type system that is supposed to be a superset
of the languages supported: the Universal Type System, UTS. The system supports
most common simple types, and the copy in, copy out, and copy in/out parameter
passing mechanisms. When the interface descriptions are compiled a server module is
generated. That module is linked with the rest of the program modules providing the
external interface to the exported functions of the program. The server translates data
for all the calls to external procedures into an internal format before calling the remote
process, and all the arguments of all incoming remote calls from the internal format
into the format expected by the language in which the process is implemented. The
system desribed in the paper supports modules written in C, Pascal, and Icon.

The importance of this approach lies in its simplicity of design and implementa-
tion. Although simple, the resulting system is efficient and useful.

2.3.3 Compositional Approach

The approach described in [Zav89] defines paradigm composition as a collection of
single paradigm programs. The interaction between them is defined at the conceptual
level of the participating paradigms. The author maintains that it is important to re-
tain the validation operations of the participating paradigms. The isolated program is
validated, by expressing the points of communication with parts written in other para-
digms using nondeterminism. Thus for example, when validating a module containing
a function defined in another paradigm, that function will be treated as nondetermin-
istic in its range. The author claims, that although isolated validation must be applied
with care, it can nevertheless have many uses. Three types on paradigm communica-
tion modes are distinguished:

1. Call synchronisation: based on the familiar procedure call, return sequence.

2. Stream synchronisation: the first module produces a stream of characters con-
sumed by the second one. No information is passed back from the second to the
first.

3. Event synchronisation: the two modules are synchronised at points where they
expect a common event.

The distinction on the synchronisation types is important, because it defines the con-
tractual obligations that can be expected to exist between the communicating mod-
ules. Different modes of synchronisation imply different types of nondeterminism and
hence, different strategies for isolated validation.

Using this approach, the author designed a small prototype telephone network.
The database part of the system was written in Prolog, the billing program in awk, and
the protocol program in CSP. Finally, the performance simulation part of the system
was written in a process-oriented applicative language called Paisley. The Prolog part,
interacted with the rest of the system using call synchronisation, the awk part using
stream synchronisation, and the CSP part using event synchronisation. All communi-
cation among the parts described above, happened through the part written in Paisley.
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At the implementation stage, the communication between Paisley with CSP and Prolog
was realised using remote procedure calls, and with awk using an intermediate file.

In summary, the main contributions of this approach lie in the characterisation of
the communication modes between the paradigms, and the the proposition for individ-
ual validation of the parts using nondeterminism.

2.4 Approach Classification, Analysis, and Evaluation

Having described many different multiparadigm languages and systems, in this section
we will attempt to classify their approaches into different categories. We will then
outline the basic characteristics of each such approach together with the associated
strengths and weaknesses. In this way we hope to gain valuable insight that should
lead us towards the best way to tackle the problem of multiparadigm programming.
The approaches described in the previous sections can be divided into the following
categories:

• new languages,

• language extensions sub-divided into:

– pre-processors,

– libraries,

– meta-interpreters, and

– expanded implementations,

• theoretical approaches, and

• multiparadigm frameworks.

In the following sections we will examine each of these approaches in more detail.

2.4.1 New Languages

New languages are languages designed with the explicit aim of integrating multiple
programming paradigms. Typical examples of this approach are [Bud91, Pla92]. The
designer of such a language has full control of all aspects of the system. Therefore, the
system can be made internally consistent throughout its design and implementation.
Unfortunately, language design is a very difficult area where judgement and good taste
are of paramount importance. Another difficulty arises from the implementation aspect
of such a system. Many declarative paradigms require very specialised implementation
knowledge. These two facts combined call for an exceptionally talented designer or a
team with deep knowledge of many diverse areas.

Even when the effort is finished the deliverable is a monolithic block. Adding
more paradigms to such a system is very difficult as its modification dynamics are
likely to be extremely complex. Finally, in our opinion, the intermingling of syntactic
and semantic notions of different paradigms within a single language can easily result
in a language that is difficult to implement, learn, and use.
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2.4.2 Language Extensions

Language extensions typically start from a single language, and extend it to accommo-
date different paradigms. The extension of an existing language provides the designer
with a solid base for the extensions. This can include the — hopefully sound — design
decisions of the original language, available implementations, verification techniques,
development, debugging, and performance measuring tools, a range of programs that
can be ported with little difficulty, and also a trained user base. However, languages
can not be easily extended to handle more than one additional paradigm, and often a
language can contain features that will complicate or hinder such extensions. Further-
more, the syntactic support provided by the base language can force the notions from
a foreign paradigm to be expressed in a roundabout, non-intuitive style.

There are many ways in which language extensions can be implemented; we will
discuss specific advantages and disadvantages of each one in turn.

Pre-processors

A language can be extended by passing the source text of its extended version through a
pre-processor that transforms it into the standard version of the language [Ker75]. This
approach has been used to implement multiparadigm systems in [MS90, KTMB86].
The preprocessor style of language extension [CHP88] has the advantages of easy im-
plementation, and freedom of syntactic expression. However, good implementations
may need to perform a lot of checking of the full language in order to provide useful
error messages thus complicating the implementation effort. Furthermore, the devel-
opment tools associated with the language (debuggers, linkers), are likely to provide
an obfuscated picture of the source code to the user, due to the transformations that
have been imposed to his source code by the pre-processor.

Libraries

Libraries are pre-compiled sets of modules of a language, that can be used together
with other programs. They can offer additional functionality, and some approaches use
them in order to provide a multiparadigm programming capability [Mul86]. Libraries
offer the easiest way to enhance the power of a programming language. Unfortunately,
their scope is limited as they can not affect the syntax or semantics of existing language
constructs.

Meta-interpreters

Many declarative interpreter-based languages allow the easy and relatively efficient ex-
pression of meta-interpreters: interpreters that implement the original language. These
can then be modified to interpret a superset of the original language, and thus used to
add more paradigms to it. This approach has been used in [SB86, Bon87, CST87,
DFP86]. An implementation based on a meta-interpreter is likely to be easy to imple-
ment, but inefficient in its execution. The technique can be utilised for implementing
language prototypes.
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Enhanced Implementations

Another way to extend a language is to start from an available implementation and
modify it to accommodate other paradigms [Cox86]. This is likely to be a more ro-
bust approach than a pre-processor while allowing for considerable syntactic change
breadth. On the other side, the implementation effort is likely to be an order of mag-
nitude more than that of the other approaches, and the drawbacks of the language-
extension approach still hold.

2.4.3 Theoretical Approaches

Many researchers approach multiparadigm programming by attempting to unify the
theoretical bases of the paradigms they want to unify [Han90b]. Then, on the theo-
retically sound groundwork a language is designed and implemented. This approach
has the advantage that many verification methods available for specific paradigms are
likely to be available for the multiparadigm system. Furthermore, the system should
offer a consistent framework where reasoning about programs and program transfor-
mations will be possible. In practice, such an approach seems to be extremely difficult.
The number of paradigms that can be unified under a theory roof is likely to be limited
and adding more paradigms will in most cases completely modify the relevant theory
requiring a complete rework of it. The difficulty of the approach often leads to lan-
guages tailored after the theory instead of theories tailored after a language. This is
— in our opinion — an unlikely approach to language design; most successful lan-
guages are pragmatically oriented towards practical needs, rather than derived from a
theory — even in areas where the language paradigm is based on strong theoretical
groundwork [Har86, REA+86].

2.4.4 Multiparadigm Frameworks

The most promising area in multiparadigm programming, appears to be that of frame-
works supporting multiple paradigms. Such frameworks, make no attempt to dictate
what paradigms are to be used, but provide the requisite methodology and technology
for the integration of the parts. This approach, is open-ended, and has no inherent
limitations or disadvantages. However, systems adopting this approach are an order
of magnitude more difficult to design and implement, than the systems based on the
other approaches, because of their generality and openendedness. We believe, that
once a satisfactory solution has been found and adopted, many phases of the design
and implementation of multiparadigm systems will be rationalised or automated, in
the same way, as is the case today for the design and implementation of programming
languages.

In the following sections we will deal with each of the systems surveyed separately,
as they all have different advantages and drawbacks.

Unix

The environment provided by the Unix operating system, allows the swift and painless
implementation of multiparadigm programs, by combining the different paradigms as
processes in a pipeline. Applications developed using this approach however, can be
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Functional • • • • •
Imperative • • • •
Object-Oriented • • • • •
Logic • • • • • •
Distributed •
Constraint •
Number of languages 24 10 9 8 11 7 5 4 5

Table 2.26: Number of languages for the common paradigm combinations

inefficient, as each exchange of information between the parts implemented in different
paradigms, requires a context switch and a copy operation through the data space of
the operating system’s kernel. Furthermore, the information flow is restricted to a
one-directional stream, with no possible feedback from the processes downstream to
those upstream. More complicated configurations are not supported by the standard
user interfaces (shells), and manual implementations of them can lead to deadlocks.
This restriction, can make applications with a more complex structure unreliable, or
impossible to implement.

MLP

The MLP system allows for complicated interactions between the different compo-
nents, by the use of remote procedure calls. These however, incur the overhead of the
data conversion between the native and global formats, and the passing through the
operating system’s network layers. Furthermore, the system lacks a conceptual model
for extensions to its structure and capabilities.

Compositional Approach

The advantage of the system proposed by [Zav89] lies in the models offered for val-
idating modules written in a single paradigm in isolation, and for characterising the
communication modes between different paradigms. Unfortunately, the compositional
approach, does not offer a structuring methodology for combining the different para-
digms at the implementation level.

2.4.5 Conclusion

We conclude, that multiparadigm system frameworks, offer the greatest promise for
usable multiparadigm systems. The ones we examined, have strengths in different
areas; all of them however, lack a unifying model for the combination of the paradigms.
In the following chapters we hope to offer our readers such a model, and design and
implement a system based on it.

2.5 Summary

A programming paradigm is the term used in computer science to define a style of
programming expressing the programmer’s intent. A number of languages allow pro-
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gramming in more than one programming paradigm. The most common paradigm
combinations and the number of languages supporting them are summarised in table
2.26. The survey of those languages could not be exhaustive, but we hope that most of
the ideas have been touched on. Multiparadigm systems offer a framework for com-
bining arbitrary paradigms. We examined the Unix operating system as a multipara-
digm framework, the MLP system based on an RPC process communication mecha-
nism, and the compositional approach which attempts to provide program validation
in multiparadigm applications. The approaches to multiparadigm programming can
be categorised between new languages incorporating multiple paradigms, the addition
of new paradigms in existing languages, multiparadigm theoretical groundwork, and
multiparadigm frameworks.



Chapter 3

The Approach

Our approach to the problem of multiparadigm programming will be the following:

• decompose the problem into subparts (section 3.1),

• construct a design prototype for our system by starting from the end-user appli-
cations and moving towards the supporting software (section 3.2), and

• based on the basic design directions abstracted from the prototype, design each
part of the system starting from its structure and finishing with end-user appli-
cations (sections 3.3, 3.4, 3.5, and 3.6)

3.1 Problem Decomposition

The problem of multiparadigm programming can be tackled by realising that it can be
decomposed into a hierarchy of four different problems, each with a wider domain:

1. Multiparadigm applications: programs written in more than one programming
paradigms.

2. Multiparadigm programming environments: integrated systems or suites of tools
that allow the application programmer to develop an application in more than
one programming paradigm.

3. Multiparadigm environment generators: systems that can be used in order to
design and implement a multiparadigm programming environment.

4. The structure of multiparadigm systems: the general structure suitable for a
reliable and efficient implementation of such systems.

The relationship of these four problem areas is presented as an entity-relationship
diagram [Che76b] in figure 3.1. The separation of our domain into those areas, enables
us to concentrate on each one, clearly identify the specific problems that exist, and pro-
pose solutions that can be tested and evaluated in a controlled manner. Attempting to
solve the problems in all of the areas above at once, under the title “multiparadigm
programming”, may or may not be successful depending on the luck and the intuition
of the researcher. Certainly, the end result will be a monolithic system that must be

39
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accepted or rejected as a whole. In our approach, different parts of the system can
be judged independently, and can be individually refined, re-implemented or even re-
designed.

3.2 From Applications to Systems

In this section we will attempt to construct a rough prototype of our design using
a synthetic approach. This prototype will then be used as the building base for the
system. For each of the multiparadigm problem areas that we have identified in section
3.1, and starting from multiparadigm end-user applications, we will provide a short
description, identify the inherent requirements of the area, point-out the various design
alternatives, and choose from them a suitable design structure.

3.2.1 Multiparadigm Applications

A multiparadigm application is a system developed using more than one programming
paradigm.

Requirements

Multiparadigm programming applications can only be designed and implemented if
the following requirements are met1:

• support for a number of diverse paradigms,

• inter-operation of these paradigms,

• isolation from unwanted interactions between the paradigms, and

• an efficient application implementation.

Alternatives

These requirements can be met in the following different ways:

1. Write the application in a single language that will offer the facilities of all the
paradigms.

2. Try to integrate existing languages supporting the needed paradigms.

3. Implement the application using a number of communicating processes, each
using a different paradigm, using the underlying operating system inter-process
communication capabilities.

4. Structure the application around modules, each written in the most appropriate
paradigm.

1See also [KdRB92, p. 8].
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Structure

We chose to meet the requirements by structuring applications around modules writ-
ten in the most appropriate paradigms. This approach is realistic and offers guarantees
of paradigm isolation and system efficiency, which the other alternatives lack. Multi-
paradigm applications can be built by combining existing languages. Such efforts are
dependent on the underlying language, linker and operating system technologies. This
makes them unportable to other environments.

3.2.2 Multiparadigm Programming Environments

A programming environment is the system in which a multiparadigm application will
be written. The structure we proposed for multiparadigm applications makes it neces-
sary to design and implement a specialised programming environment.

Requirements

A multiparadigm programming environment must meet all the requirements set for-
ward by the multiparadigm applications and in addition:

• accommodate the diverse execution models and mechanisms of the various para-
digms (e.g. abstract machine interpreters, data structures, signals),

• manage the resources required for implementing the different paradigms (e.g.
memory, name-space, process attributes),

• offer an intuitive way to combine code written in different paradigms, and

• offer an orthogonal programming interface to those paradigms.

Alternatives

Given the structure of the multiparadigm applications, multiparadigm programming
environments can be structured in a number of different ways. An obvious way is to
structure them as a flat structure of different paradigms. A more advanced structure
would be a tree-like hierarchy according to similarities between the paradigms, or a
graph based on dependency relations between the paradigms. The structural views of
the environment user, and the environment implementor need not coincide.

Furthermore, a multiparadigm programming environment can be implemented, ei-
ther as a single compiler or environment, or as a collection of a number of compilers.

Structure

We have chosen to structure the multiparadigm programming environments implemen-
tor’s view as a tree of paradigms each compiled by a separate compiler (see figure 3.2
for an example). This structure offers the possibility of reusing part of one paradigm
in implementing another. Furthermore the division of the paradigm compilers gives
us a more modular and flexible system. This structure is hidden from the multipara-
digm programming environment user who views the same system as a flat collection
of paradigms (see section 3.3.12).
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3.2.3 Multiparadigm Environment Generators

Multiparadigm programming environments are complex collections of a number of
systems, such as compilers, run-time support libraries and the associated utility tools.
In order to organise the task of creating such environments we envisage the realisation
of meta-environments: multiparadigm environment generators. These will offer facil-
ities for making the task of developing multiparadigm programming environments as
easy as possible.

Requirements

Any multiparadigm environment generator must satisfy the requirements imposed by
the multiparadigm applications and the multiparadigm programming environments and
in addition:

• decrease the development time for multiparadigm programming environments,

• promote the creation of efficient and reliable environments, and

• support existing tools.

Alternatives

Given the multiparadigm programming environment structure such systems can be
based around two different models:

1. Regard the programming environment as a process that can be decomposed into
the paradigms forming the tree hierarchy. This model would lead to a top-down
process oriented design.

2. Think of modules written in a given paradigm as objects, paradigms as object
classes and use object-oriented design techniques.

Structure

Multiparagm systems change and evolve. The top-down process oriented design en-
tails the waterfall life-cycle model [Roy87] with all its shortcomings [LST82]. We de-
cided to use the object-oriented approach. Multiparadigm environment generators are
complex structures who would benefit from the robustness, extendibility and reusabil-
ity offered by the object-oriented design methodology.

3.3 Multiparadigm System Structure

In this section we present the general structure of a multiparadigm system. This is the
design structure upon which the concrete designs of the generators, the programming
environments, and the applications will be based. We first go through the requirements
that this design must satisfy, then list the important ideas on which our design is based,
and finally, present the design in detail.

The system structure of a multiparadigm system must be flexible enough to accom-
modate the different programming paradigms, yet offer a stable foundational structure
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for organising the development, at all levels, in a coherent way. Furthermore, it should
be possible to implement a system satisfying the above with the minimum of effort.
These three requirements can be contradictory, unless the suitable abstractions are cho-
sen. Being contradictory however, they serve as valuable guides and evaluation means
for our design. They guide us on the middle way between over and under-specification,
with the flexibility requirements forming the upper bound, and structure requirements
the lower bound of the specification required. In addition the quality of the design can
be judged by how far all three requirement categories are satisfied.

3.3.1 Flexibility Requirements

The system should be as flexible as possible and without arbitrary restrictions. This is
important, because programming paradigms have a breadth of syntactic, semantic and
implementation-related differences. The flexibility requirements are:

F1 Accommodation of different syntactic notations: Different paradigms are best
programmed in different syntactic notations. This will ensure that the most
suitable notation for each paradigm will be used and that the programmer will
receive the appropriate paradigm related clues when reading the code. Porting
code written in a given paradigm will be relatively easy, and in addition, existing
tools related each that paradigm can be used.

F2 Accommodation of diverse execution models: Different paradigms have differ-
ent execution models. Almost2 all of them can be modelled using a Turing ma-
chine; therefore they pose, in theory, no implementation problems. In practice,
the execution model of the system must be flexible enough to provide a base for
their efficient implementation.

F3 Support for different execution mechanisms: Some paradigms are usually im-
plemented by being directly compiled to target machine code, others have their
code interpreted, yet others have their code translated to some abstract machine
notation and provide the abstract machine execution mechanism as part of the
runtime support system. The choice of the execution mechanism depends on
the paradigm, the target architecture and space versus time efficiency consider-
ations. The system structure must support all these execution mechanisms to
make possible an optimum implementation.

F4 Ability to use existing tools: Implementing a programming paradigm can be
a complicated process. If the system structure makes the use of existing tools
that handle that paradigm (such as interpreters, compilers or runtime systems)
possible, then the resulting system can be implemented in less time, and by
capitalising on the existing tool investment, it can be more reliable and efficient.

F5 Arbitrary paradigm mixing and matching: For a multiparadigm environment to
be used by the application developers, its internal operation must be transparent,
and different paradigms should be easily combined.

2An exception would be a paradigm based on real non-determinism such as random number genera-
tors using a quantomechanical noise source.
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3.3.2 Structural Requirements

The same breadth of paradigm differences that dictated the flexibility requirements for
a multiparadigm system structure, combined with the notion that a number of diverse
paradigms will be combined in a single development system or application, dictate
a different set of structural requirements. These ensure that the system will have a
structure to aid its cognitive understanding by environment and application developers,
and that the different paradigms will not interfere with each other.

The environment developer must be provided with a conceptual structure on which
to base the realisation of the concrete multiparadigm programming environment. This
structure will guide his design and implementation steps. Absence of such a structure
will require a higher level of effort and possibly training, from the part of the envi-
ronment developer, in order to create a system that will be easy to understand and
use.

Similarly if an ordered system structure is reflected down to the multiparadigm
application development level, the application developer will find it easier to envisage
how the application will use the different paradigms, and how code using them will
function to achieve the intended result. Furthermore, should there be some unwanted
interactions between the paradigms, the structure will help the application developer
to isolate and correct it.

The structural requirements of multiparadigm systems are:

S1 Isolation of syntactic interactions: As mentioned in the flexibility requirements,
different paradigms are best programmed in different syntactic notations. The
system structure however, must ensure that these will not interact in unwanted or
unexpected ways. Given the complicated parsing rules for some languages such
as HASKELL and Prolog, it is also wise to separate the syntactic interactions
both at the system definition and at the implementation level, in order to ensure
that a multiparadigm programming system definition is easily understood and
consistent, and that its implementation is straightforward and correct.

S2 Isolation of execution models: The various execution models of different para-
digms call for a system structure where those will not interact in ways that are
difficult to specify or implement. Mixing different execution models together is
an interesting academic exercise, but from a software engineering point of view,
the idea of specifying what happens when, for example, when an exception is
raised while backtracking a lazily evaluated function, is obvious.

S3 Isolation of execution mechanisms: In the flexibility requirements we mentioned
that many paradigms need some kind of runtime support, either in the form of
an interpreter for the real code, or its abstract machine compiled notation, or
for handling concepts like dynamic memory allocation and garbage collection
or managing execution threads. In a multiparadigm application all support code
for different paradigms, will be bundled within a single application. The system
structure must be such that the runtime support mechanisms of each paradigm
will not interfere with the functioning of the others.

S4 Resource management: Related to the execution mechanisms that must coexist
within a single application, is the concept of the finite resources that a number
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of paradigms must use in a controlled manner. During the compilation phase
of an application, an important resource that must be correctly structured is the
application’s namespace. During execution the CPU, memory, and peripheral
devices required by different paradigms, must be managed in a way that ensures
that all paradigms function without interfering. A suitable system structure will
make it straightforward to satisfy this requirement.

S5 Documentation: A multiparadigm system is a complicated structure. Precise
documentation of its parts is an essential component of the system. Adding it as
a design requirement ensures that it will not be treated as an afterthought by the
support environment developer and the multiparadigm system implementor.

3.3.3 Efficiency Requirements

The efficiency requirements ensure that the system design will be of real practical
value. They serve to guide us towards a system structure that will be practical to
implement and use. The three efficiency requirements are:

E1 Efficient paradigm combination: For the application programmers to use multi-
paradigm programming, code written in different paradigms should be straight-
forward to combine by an easy to use and efficient mechanism.

E2 Efficient environment creation: We view multiparadigm programming environ-
ments as dynamic parts of the program development process. They should be
easily adaptable to different technologies, approaches, and projects. For this rea-
son it is important to try to make the design and implementation of multipara-
digm programming environments as straightforward as possible. In particular,
the addition of a new paradigm to an existing environment, or the modification
of an existing paradigm, should be actions efficiently supported by the system
structure.

E3 Efficient paradigm implementation: The system structure should make it possi-
ble to implement the optimum implementation for each paradigm.

In the following two sections we will describe two concepts that will be used in
section 3.3.7 to build up the whole system structure.

3.3.4 Paradigms as Linguistic Transformations

A programming paradigm is really a notation for describing an implementation for a
specific problem. This notation can resemble the notation used by the machine that
will execute the implementation or it can resemble some other notation suitable for
describing implementations in the problem domain. At some point however, the im-
plementation will be executed on a real machine and for this reason the semantic gap
between the implementation paradigm and the programming paradigm of the target
architecture must be bridged. This is usually done by an interpreter, a compiler or a
hybrid technique. We regard all these methods as linguistic transformations from the
paradigm notation to the target architecture notation. This view although not strikingly
impressive provides us with two important insights:
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1. A programming paradigm is nothing magical. All programming paradigms can
be implemented on all architectures. Furthermore, there is, in principle, no prac-
tical or theoretical reason for not being able to combine different paradigms,
since they can all be mapped into the same concrete architecture.

2. The target architecture plays an important role when thinking of programming
paradigms. The concept of the target architecture should be an integral part
of multiparadigm systems and not an externally imposed specification, or an
afterthought.

3.3.5 Abstract Description of Multiparadigm Systems

Examining the translation aspect of programming languages, we find that these can be
implemented either as a translator3 or as an interpreter. We use an extended symbolic
representation of T-diagrams [ASU85, p. 726] where, for example, the translatorACB
denotes a translator from languageA to languageB, implemented in language C, amd
the interpreter DE denotes an interpreter for language D implemented in language E
(figure 3.3). We use the term source language for the languages A and D, and the
term target language for the languages B and E. The language C is an implemen-
tation detail of the development environment and will not concertn us at this point.
It is apparent, that both types of implementation do not actually provide a complete
solution; they merely reduce the problem to another problem. The translator ACB
reduces the problem of implementing language A to that of implementing language
B, and the interpreter DE reduces the problem of implementing language D to that of
implementing language E. Languages B and E can only be implemented as a trans-
lator or as an interpreter; therefore any language implementation will consist of one or
more of the four possible different couplings illustrated in figure 3.4. Each coupling in
a series represents a level of reduction until the target language of the translator or the
interpreter is the machine language of the host machine. At every coupling the source
and target languages must match. The following are examples for each of the four
possible coupling types (as shown in figure 3.4):

1. Translator-translator Most compilers generate assembly language, which is
then passed to the system assembler; this is a translator-translator interface.
Some implementation of C++ [Str86b] and Eiffel [Mey88] languages compile
into C and use it as a “portable assembler”.

3We use the term “translator” to denote a compiler, an assembler, or a translator from one language
into another.
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2. Translator-interpreter Many languages are compiled into an abstract machine
instruction set which is then interpreted by an abstract machine emulator. Typi-
cal examples are most Smalltalk [Gol80] implementation and WAM-based [War83]
Prolog systems.

3. Interpreter-translator All interpreters imeplemented in a compiled language
fall into this category. Typicall examples include the Unix shell [Bou79] and the
Perl programming language [WS90].

4. Interpreter-interpreter The approach of meta-interpreters is often used to ex-
tend declarative languages such as Prolog [Coh86] or Lisp [Bon91].

Any combination of languages that run on a given uniprocessor system can be de-
picted in the form of a tree whose nodes are interpreters and translators. The root of the
tree is the system’s processor — an interpeter of the system’s machine language. All
translator that output machine language (e.g. assemblers and linkers) or interpreters
implemented in the native language, form the first level branches of the tree. Compil-
ers that output assemble language form the second level of the tree and so on. Figure
3.5 illustrates how the implementation of a number of seemingly unrelated languages
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is organised into a tree. Prolog is implemented as a compiler to WAM which is em-
ulated by an interpreter directly compiled into the native code. Lisp also has a native
code interpreter, but this is used to run a meta-interpreter [ASS85]. The C and Pascal
compilers generate assembly code which is then translated into machine language. C
is also used to implement a Basic interpreter and as the target language of an Eiffel
compiler.

Ever connection between two nodes is an interface between two different program-
ming languages. As we detailed above, there are four different interfaces betweem two
nodes, and each interface can be traversed in two directions, giving a total of eight pos-
sible inter-language calling possibilities. If all these possibilities are implmenetable,
then any language of the tree can call any other language of the tree — with the help
of auxilliary substroutines introduced at every node visited. The following list details
how every interface in figure 3.4 can be implemented:

1. Translator-translator For a subroutine SL implemented in L to call a subrou-
tine SK implemented in K, K must be written to conform with the L calling
conventions. As an example, the following SPARC assembly language routine
that returns the sum of its two arguments is callable from C4:

_SK:
retl
add %o0, %o1, %o0

For a subroutine SK implemented in K to call a subroutine SL implemented
in L, K must use the L calling conventions. For example the following SPARC

code calls the C exit function with 2 as an argument:

call _exit, 1
mov 2, %o0

2. Translator-interpreter For a subroutine SL implemented in L to call a subrou-
tine SK implemented in K, the subroutine K must be implemented using the
calling conventions expected by L. The following example shows the Prolog
clause loves(john, mary) written in SB-Prolog WAM assembler syntax:

label((loves, 2, 0)).
getcon(john, 1).
getcon(mary, 2).
proceed.

For a subroutine SK implemented in K to call a subroutine SL implemented
in L, the code in K must be written so as to use the L calling conventions.
In the following example the Prolog + predicate is directly called from WAM
assembly to move the result of adding 1 + 2 into variable X .

4Note that the SPARC transfer isntructions (jmp,, call, ret) are actually execute after the instruction
that follows them.
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label((is, 2, 2)).
getstr((’+’, 2), 2).
uninumcon(1).
uninumcon(2).
proceed.

3. Interpreter-translator For a subroutine SL implemented in L to call a subrou-
tine SK implemented in K, the interpeter must provide a way to add new sub-
routines to the list of routines callable by L. The routine written in K must dis-
assemble the arguments from the interpreter data structures. The following code
gragments show how the Unix curses [Gro86, curses(3X)] library raw function
can be added to the Perl [WS90] programming language:

int init_curses(void)
{

struct ufuncs uf;
char *filename = "curses.c";

make_usub("raw", US_raw, usersub, filename);
[...]
static int usersub(int ix, int sp, int items)
{

STR **st = stack->ary_array + sp;
switch (ix) {

[...]
case US_raw:

if (items != 0)
fatal("Usage: &raw()");

else {
int retval;
retval = raw();
str_numset(st[0], (double) retval);

}
return sp;

[...]

For a subroutine SK implemented in K to call a subroutine SL implemented
in L, the interpreter to L must provide an entry point for the K routine, and K
must use that entry point and provide a suitable environment for the invocation of
SL. The following example illustrates how a C routine can call the Perl routine
myperl with an argument of 42.

tmpstr = str_make("&myperl(42);", 1);
sp = do_eval(tmpstr, optype, curcmd->c_stash, FALSE, g, arglst);

4. Interpreter-interpreter For a subroutine SL implemented in L to call a sub-
routine SK implemented in K, the interpreter must provide an escape function
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to move from the meta-level to the K language level. The following example
fragment from a Prolog meta-interpreter shows how a term specifying addition
(plus(X,Y,Z)) is handled by calling the Prolog + predicate:

builtin_unify(plus(X, Y, Z), Env, [Binding | Enc]) :-
lookup(X, Env, X1),
lookup(Y, Env, Y1),
lookup(Z, Env, Z1),
logplus(X1, Y1, Z1, Binding).

logplus(X, Y, Z, bind(X, R)) :-
is_btrackvar(X),
is_integer(Y),
is_integer(Z),
R is Y + Z.

For a subroutine SK implemented in K to call a subroutine SL implemented
in L, the meta-interpreter must provide an entry point callable from K. In the
following example a Prolog program in K calls the fact clause which is imple-
mented in the meta-interpreter:

fact(N, N1) :-
rules(Rules),
metaprolog([fact(N, $N1)], Rules, Findings),
varval($N1, Bindings, N1).

3.3.6 Paradigms as Classes

The second major idea, that will be used in order to design the general system structure,
is to regard a programming paradigm as a class. Thus object-oriented programming
abstractions can be used when thinking about multiparadigm programming. It turns
out that the object metaphor suits the abstraction of a “programming paradigm”, and
that by using it we can satisfy all the flexibility, structure, and efficiency requirements
outlined in sections 3.3.1, 3.3.3, and 3.3.2.

In the following paragraphs we will examine how important aspects of object-
oriented programming can be related to programming paradigms and multiparadigm
programming. Let us use the equation [Weg87]:

object-oriented = objects + classes + inheritance

and the class definition from [Nel91]:

Class <class_name>
Superclasses: <superclass_1>, <superclass_2>, ...
Class Variables: <class_var_1>, <class_var_2>, ...
Instance Variables: <inst_var_1>, <inst_var_2>, ...
Methods: <method_name_1>, <method_name_2>, ...
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Objects

In object-oriented programming an object is an entity having a set of operations and a
state that remembers the effect of those operations [Weg87]. Objects are different from
functions in that the results from operations on them depend on their state, as that has
been defined by previous operations. In our case we use an object as the abstraction
mechanism for code written in a given paradigm. Such objects have at least three
instance variables (figure 3.6):

1. Source code. The source code contained in an object is the module provided by
the application programmer.

2. Compiled code. The compiled code is an internal representation of that spec-
ification (generated by the class compilation method) that is used by the class
execution method in order to implement the specification.

3. Module state. The module state contains local data, dependent on the paradigm
and its execution method, that is needed for executing the code of that object.

Every object has at least one method:

1. Instance initialisation method. The instance initialisation method is called once
for every object instance when the object is loaded and before program execution
begins. It can be used to initialise the module state variable.

As an example, given the imperative paradigm and its concrete realisation in the
form of Modula-2 [Wir85b] programs, an object written in the imperative paradigm
can correspond to a Modula-2 module. The source code variable of that object contains
the source code of the module, the object code variable contains the compiled source,
and the module state variable contains the contents of the global variables. In addition,
the instance intialisation method is the initialisation code found delimited between
BEGIN and END in the module body.

Classes

In most object-oriented programming definitions a class is defined as the template
used to create new objects. Objects created from the same class share the same oper-
ations and behaviour [Weg87]. Class variable and methods can be used to implement
an interface available to the clients of a class. In our object-oriented multiparadigm
programming approach all classes contain at least one class variable (figure 3.6):

1. Class state: contains global data needed by the execution method for all in-
stances of that class.

In addition paradigm classes contain at least four methods:

1. Compilation method. The compilation method is responsible for transforming,
at compile-time, the source code of that paradigm into the appropriate represen-
tation for execution at run-time.
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2. Class initialisation method. The class initialisation method of a paradigm is
called on system startup in order to initialise the class variables of that class. It
also calls the instance initialisation method for all objects of that class.

3. Execution method. The execution method of a class provides the run-time sup-
port needed in order to implement a given paradigm.

4. Documentation method. The documentation method provides a textual descrip-
tion of the class functionality. It is used during the building phase of the multi-
paradigm environment in order to create an organised and coherent documenta-
tion system.

The compilation and execution methods contain the machinery needed to implement
the import and export call gates described in section 3.3.13.

A nice example of a paradigm class is the logic programming paradigm realised as
Prolog compiled into Warren abstract machine instructions [War83]. On this case the
class state variable contains the heap, stack and trail needed by the abstract machine.
In addition, the compilation method is the compiler translating Prolog clauses into
abstract machine instructions, the class initialisation method is the code initialising the
abstract machine interpreter, while the execution method is the interpreter itself.

Inheritance

In object-oriented programming inheritance is used to provide a class with all oper-
ations of its superclasses, while allowing its subclasses to use the operations defined
by that class. In our approach to multiparadigm programming inheritance is used to
bridge the semantic gap between code written in a given paradigm and its execution
on a concrete architecture. We regard the programming paradigm of the target archi-
tecture as the root class. If it is a uniprocessor architecture it has exactly one object
instance, otherwise it has as many instances, as the number of processors. The execu-
tion method is implemented by the processor hardware and the class state is contained
in the processor registers. The compiled code and module state variables are kept in
the processor’s instruction and data memory respectively.

From the root class we build a hierarchy of paradigms based on their semantic and
syntactic relationships. Each subclass inherits the methods of its parent class, and can
thus use them to implement a more sophisticated paradigm. This is achieved because
each paradigm class creates a higher level of linguistic abstraction, which its subclasses
can use.

3.3.7 General System Structure

Based on the ideas presented on the previous sections we can now build up the general
system structure of a multiparadigm system. This structure must satisfy the flexibility,
structure, and efficiency requirements outlined in sections 3.3.1, 3.3.2, and 3.3.3. It
will be used as the design guide for designing and implementing multiparadigm pro-
gramming environment generators, multiparadigm programming environments, and
multiparadigm applications.

In general a multiparadigm system consists of a number of modules. Code written
in different paradigms is put into separate modules. These are separately compiled by
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the appropriate paradigm compilers. The paradigm classes are structured in a class
hierarchy and are used to encapsulate the properties of each paradigm.

3.3.8 Separate Modules

The smallest linguistic unit that can be used to program in a paradigm, is a module. We
loosely define a module as a part of a program that implements some functionality and
interfaces to the rest of the program through a set of import and export declarations.
These define the functionality implemented and the functionality required from other
modules. Modules can be handled independently in the various phases of program
development such as editing, compiling and linking.

A module is, in our opinion, the most appropriate unit for writing code in a given
paradigm. The unit granularity stands half-way between that of a single statement, and
that of a whole process. A statement, as a paradigm division unit, is too tightly bound
to the imperative paradigm to be a general purpose unit. Furthermore, the syntactic
differences between the different paradigms would make it impossible to satisfy the
requirements F1 and S1. In addition, the name spaces of the different paradigms would
interfere, making it difficult to satisfy S4. A process, as a paradigm division unit,
would satisfy F1, S1, and S4, but would not satisfy (on a standard operating system)
E1, because of the context switching times. Using lightweight processes would be a
viable option; for the purposes of this discussion, we regard them as modules.

3.3.9 Separate Compiler for Each Paradigm

As the code in each module is related to a single paradigm, it can be compiled by
a special compiler for that paradigm. This satisfies F1, because the compiler can be
designed to accept the syntax notation most appropriate for that paradigm, and also S1,
because the compiler need not be able to handle syntax notations of other paradigms.
For these reasons, existing compilers could be used (using inheritance as explained in a
following section), thus satisfying F4. This also satisfies E2 as the use of existing tools
cuts development time, and possibly E3 assuming that high quality tools are used.

3.3.10 Class and Object Encapsulation

Each programming paradigm forms a class and each module written in that paradigm
is an object of that class. As the execution method of each class is separate from the
other paradigm classes, different execution models are supported, satisfying F3 and
S2. The execution state of each paradigm is also encapsulated in the form of class and
instance variables, preventing interference and satisfying S4. Finally, S5 is satisfied by
providing a documentation method for every class.

3.3.11 Tree Class Structure

The classes in a multiparadigm programming environment are structured like a tree.
At the root of the tree lies the target architecture. This means that it is possible to map
any paradigm into it, without any intermediate efficiency burdening agents5. Thus F2

5In which case of course the tree degenerates into a linear list hanging from the target architecture. In
practice a compromise is reached between implementation efficiency and cost.
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and E3 are always satisfiable. The paradigms most related to the target architecture are
the first subclasses that are layered on top of the root class. Other paradigms that are
related to the new paradigms, exposed as “target” architectures, can now be built on
top of them. By using subclassing, an existing paradigm can be extended or modified
and, in this way E2 is satisfied. Existing tools can be used, satisfying F4, by matching
their output to one of the classes available, or by creating a special class to interface
their output.

3.3.12 Multiparadigm System Implementor vs. Multiparadigm Applica-
tion Programmer View

We must note at this point that the class hierarchy is not visible to the multiparadigm
application programmer. The hierarchy is useful for the multiparadigm programming
environment implementor, as it provides a structure for building the system, but is ir-
relevant to the application programmer, who only looks for the most suitable paradigm
to build his application. This is consistent with the recent trend in object-oriented pro-
gramming of regarding inheritance as a producer’s mechanism [Mey90], that has little
to do with the end-user’s use of the classes [Coo92].

3.3.13 Paradigm Inter-operation

In the following sections we will outline how code written in different paradigms6 can
be used to form a single system. The two main problems to be solved are the transfer of
control, and the transfer of data between the paradigms. Both types of transfer occur
when the boundaries between the paradigms are crossed. Control transfer passes the
execution control to the runtime machinery of another paradigm, and data transfer
passes data between the paradigms.

3.3.14 Control Transfer

Control transfer between the paradigms follows the control transfer conventions of
their superclass. This recursive definition is followed until we reach the root class,
the target architecture. Using the conventions of the parent paradigm ensures that
no unexpected interactions occur. By unexpected interactions we mean implicit and
unintended control transfer from one paradigm to the other. The subclasses are coded
using the features and caveats of the parent class; this ensures that no unexpected
interactions occur. We will attempt to clarify this statement by three examples:

Non-Preemptive Von-Neumann Target Architecture

The basic control transfer mechanism used is the explicit procedure call. Implicit
calls between other paradigms will be encapsulated within their respective classes and
therefore the paradigms remain isolated.

6We will use the term paradigm to denote ‘paradigm implementation’.
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Threads Subclass

We assume now the existence of the thread programming subclass with primitives
that allow the creation of multiple processes. Since this subclass was coded using the
mechanisms of the parent paradigm, the threads created will be non-preemptive and
therefore all implicit control transfers will happen within the threads paradigm. There-
fore no implicit control transfers can occur between paradigms, other than subclasses
of the threads paradigm. These subclasses will of course be coded to anticipate such
control transfers.

Event-Driven Target Architecture

In an event-driven target architecture, all paradigm compilers have to be able to cope
with non-deterministic control transfers. For this reason the paradigms provided will
— by definition — be able to cope with such transfers. A straightforward way to
implement such a system would be to disable interrupts when paradigms that are un-
suitable for such an environment are executed, a higher quality implementation would
provide a better solution.

Parallel Architecture

Here again the target architecture imposes some stringent requirements regarding syn-
chronisation, memory sharing, message passing etc. All these requirements are inher-
ited, and must be dealt, by all paradigm subclasses.

3.3.15 Data Transfer

Data transfer deals with the way data is transferred between paradigms. Each paradigm
can have a different representation for data, or data of a particular paradigm-specific
type. This problem is again solved within the class hierarchy. Every paradigm defines
mechanisms for transferring data to and from its superclass in the most efficient and
intuitive way. When data is transferred between two paradigms it is first converted
from the first paradigm, step-by-step, to the format of their common superclass and
then converted back to the format of the second paradigm. This is not as inefficient as
it sounds for two reasons:

1. Data formats usually do not vary a lot between efficient implementations.

2. We found that most of the transfers are between closely related paradigms.

3.3.16 Paradigm Inter-operation Design Abstraction

The two types of paradigm inter-operation are accommodated by the abstraction of a
call gate. A call gate is an interfacing point between two paradigms, one of which
is a direct subclass of the other. We define two types of call gates, the import gate,
and the export gate. In order for a paradigm to use a service provided by another
paradigm (this could be a procedure, clause, function, rule, or a port, depending on
the other paradigm)7, that service must pass thought its import gate to be mapped

7Static data can be passed between different paradigms using access functions.
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Figure 3.7: Paradigm inter-operation using call gates

from the conventions of the paradigm’s superclass to the conventions of that paradigm.
Conversely, on the other paradigm the same service must pass through its export gate to
be mapped from the conventions of that paradigm to the conventions of its superclass.
The call gates are design abstractions and not concrete implementation models. They
can be implemented by the paradigm compiler, the runtime environment, or a mixture
of the two. The role of the call gate is to implement the control and data transfer
functions of the two paradigms. Each paradigm provides an import and an export gate
and documents the conventions used and expected.

The input of the export gate, and the output of the import gate follow the con-
ventions of the paradigm, while the output of the export gate, and the input of the
import gate, follow the conventions of the paradigms’ superclass. The target architec-
ture paradigm combines its import and its export gate using the linked code as the sink
for its export gate and the source for its import gate. Figure 3.7 provides an exam-
ple case. Call gates make the paradigm inter-operation transparent to the application
programmer, satisfying requirement F5.
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3.3.17 Paradigm Inter-operation Limitations

In theory, any two paradigm implementations can communicate without any limita-
tions on the type of parameters that can be exchanged. Such communication could in-
clude the creation and passing of arbitrary data entities from one paradigm to the other
— even if one of the paradigms does not support such entities — the modification
of the execution strategy of one paradigm, or the invocation of code in one paradigm
within an arbitrary execution environment. This theoretical paradigm inter-operation
can be implemented, if the following two conditions can be satisfied:

1. Each paradigm has a construct that allows it to access and modify the data space,
of the process that is executing the code written in the other paradigm.

2. Full documentation is available on the internal workings of each paradigm, the
compilation strategy of its compilers, and the source code of the program being
executed.

In our approach, all paradigms are executing as a single process image, therefore
the first condition is always satisfied. The second condition must depend on the para-
digm implementation used. If the paradigm implementation is a black box, then the
paradigm inter-operation facilities that can be offered will be defined by the inputs
and outputs of that black box. In most cases however, the breadth of paradigm inter-
operation facilities offered will depend on the weighting of the following language
design related factors:

• their usefulness to the multiparadigm application designer and implementor,

• their implementation difficulty,

• efficiency considerations,

• their effect on the reliability and understandability of the multiparadigm pro-
gram, and

• semantic distance of the inter-operation facility between the two paradigms.

Consequently, the range of paradigm inter-operation facilities offered, is mostly a
design decision of the multiparadigm programming environment implementor.

3.4 Multiparadigm Environment Generators

Multiparadigm programming environment generators are based on, and support the
design we outlined in section 3.3. Their existence can induce a multiparadigm system
designer to adopt our approach and avoid ad-hocery. Furthermore, the development
time and implementation errors can be reduced. We hope that such systems can even
be used to create specialised paradigm classes for one specific application. In this
way we can provide a solid software engineering foundation for the concept of “little
languages” [Ben88, pp. 83-100, 128-131].
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3.4.1 Requirements

A multiparadigm programming environment generator must support the design based
around objects. We consider the following services to be essential:

• allow the high level description of paradigms as classes,

• convert a system described by paradigm classes into a multiparadigm program-
ming environment, and

• provide support for using existing tools.

The functions of the resulting multiparadigm programming environment can be di-
vided into four areas:

1. paradigm-specific compilers,

2. paradigm combination support,

3. documentation, and

4. run-time support.

Ideally support for all these areas should be provided by the generator.

3.4.2 General Structure

Based on the requirements outlined in the previous section we can now describe the
general structure of a multiparadigm programming environment generator. Such a gen-
erator will consist of a paradigm description compiler, which takes the class description
of a paradigm and creates its compiler, documentation, and run-time support. Other,
specialised tools, are used before the paradigm compiler to assist the process of cre-
ating paradigms using existing compilers. Generic run-time support must be provided
where possible, to implement functionality that will be required for all multiparadigm
programming environments: this avoids duplication of effort among multiparadigm
programming environment implementors. Finally a ‘system wrapper’ combines all
the tools, documentation and run-time support objects into a single distributable sys-
tem. The combination of these components can be seen in figure 3.8. In the following
sections we will describe the functionality of each of these components in more detail.

3.4.3 Paradigm Description Compiler

The paradigm description compiler takes a class description file containing the ele-
ments enumerated in 3.3.6 and converts it to the appropriate representations. Some
of the class methods and variables exist during the compilation of a module, others
during its run-time; the paradigm compiler must be able to handle both cases. Sub-
classing and inheritance are important parts of our design; the paradigm compiler must
support them. The source and the target code representations of the entities that the
paradigm compiler will be required to deal with are dependent on decisions made by
the multiparadigm environment generator developer and the target system and will not
be dealt with in this chapter. For example, the paradigm compiler can be realised as a
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function of an integrated environment, where paradigms are interactively described by
filling appropriate slots (e.g. an implementation extension to VOSE [FKG90, NF92],
or as a tool dealing with textual descriptions of paradigms. In the first case the target
code would be internal descriptions of the paradigm methods and hypertext links to
the documentation, in the second the compiler would generate new tools, formated
manual pages and run-time support files.

3.4.4 Support for Existing Tools

High quality and efficient implementations of paradigms are costly to implement. For
this reason a multiparadigm environment generator must allow existing systems to be
used wherever possible. This means that mechanisms must be provided to make such
systems conform to the conventions expected by the overall system design. These
mechanisms must transform independent systems into encapsulated paradigm objects.
Functions of these systems implemented as tools, or commands within an integrated
environment, must be converted to methods of the paradigm class. Potential resource
requirement clashes (in areas such as name-space, memory usage, and non-reentrant
functions) must be identified and dealt with. The format in which the elements of
the implementation are provided could be incompatible with the format required by
the generator; conversion tools should be provided. The actual support provided will
depend on the existing implementations, their common format, problems that are often
encountered, and the relative cost factors between re-use and re-implementation.

3.4.5 Generic Run-time Support

Many paradigms need run-time support. All classes contain a class initialisation method
and all objects an object initialisation method. These methods must be called in the
appropriate order during the startup sequence of a multiparadigm application. This
can be complicated (as it deals with system-dependent process initialisation code).
This is functionality that will be needed by all multiparadigm programming environ-
ments. In order to avoid duplication of effort among the multiparadigm environment
implementors, to ensure a correct and portable implementation, and to simplify the
task of implementing a multiparadigm programming environment, this functionality
can be provided by the environment generator. Environment implementors can then,
directly plug it into their systems with minimum additional effort. The design and
implementation of these functions is highly dependent on the target system. In an
open object-oriented integrated environment (such as Smalltalk) it could be as easy as
binding an additional method to the process class constructor. In a file-based system
using a link-editor it could require modifying the link-editor, the system startup code,
or providing a kernel within which multiparadigm applications are run.

3.4.6 System Wrapper

One further area where the multiparadigm environment implementor can be helped is
that of the final packaging. Multiparadigm environments could consist of tens if not
hundreds of separate elements, such as specialised tools, libraries, compilers, run-time
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support modules, documentation files etc. The process of organising these into a sys-
tem distribution can be automated thus minimising potential errors and relieving the
implementor of this mundane and error-prone activity. The actual design and imple-
mentation depends very much on the target system, the distribution method and the
range of activities that will be automated. These can reach from a simple system in-
stallation procedure in specified directories, to the creation of a distribution tape with
installation instructions and printed manuals. Some explorative, rapid-prototyping de-
velopment environments (such as Smalltalk), make it difficult to separate the product
from the environment where its development has taken place. In such cases additional
support will be required in order to make this distinction and create an isolated product.

3.5 Multiparadigm Programming Environments

Multiparadigm programming environments are based on the design we outlined in sec-
tion 3.3. Thus they consist of a number of paradigms organised into a class hierarchy.
Each paradigm is a separate class, modules written in that paradigm are instances of
that class. The design and implementation of multiparadigm programming environ-
ments is based around an environment generator. In the following sections we will
describe some features of the design and implementation that are general and do not
depend on a particular environment. In section 4.4 we describe the design of a multi-
paradigm programming environment based on MPSS — an environment generator —
and in section 5.3 its implementation.

3.5.1 Delegation of Features Using Subclassing

The object-oriented approach we have adopted supports the powerful notion of sub-
classing: subclasses inherit the methods of their superclass and can provide additional
ones, or substitute the existing ones. In the domain of multiparadigm programming
this abstraction can be used very effectively by delegating features common among
a number of paradigms to a superclass of those paradigms. Thus code duplication
is avoided and more effort can be spent in implementing a high quality solution for
the common features. When designing a multiparadigm environment it is essential to
try to organise the paradigms in a class tree recognising common features that they
share. For example most paradigms have a notion of dynamic memory, a class can
be created to provide this feature for these paradigms. Two subclasses can be derived
from that class, one for programmer-controlled memory allocation and deallocation
and another for automatic garbage collection. As another example a simulation para-
digm and a communicating sequential processes paradigm could both be subclasses of
a coroutine-based paradigm.

Subclassing is not only used for the run-time class execution methods. Syntac-
tic (i.e. compile-time) features of paradigms can be captured with it as well. Many
constraint logic languages share the syntax of Prolog, thus it is natural to think of a
constraint logic paradigm as a subclass of the logic paradigm providing its own solver
method, and extension to the Prolog syntax for specifying constraints.

A paradigm class tree based around these examples is shown in figure 3.7. Assume
that a module written in paradigm 2 imports a facility implemented in paradigm 1.1.
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The module written in paradigm 1.1 will export that facility (using the syntax and se-
mantics appropriate to paradigm 1.1) to its superclass (paradigm 1) throught its export
gate, thus converting it to the data types and calling conventions used by paradigm 1.
Paradigm 1 will again pass it through its export gate, converting it to the conventions
used by paradigm 0, the target architecture. (For example the calling conventions of
the Unix system, can include the passing of parameters through a stack frame, and
the naming of identifiers with a prepended underscore.) In this form the facility will
again be imported from the pool of linked code by paradigm 1 and made available to
its subclasses using its conventions. The facility can then be imported and used by
paradigm 2 which can understand the calling conventions of paradigm 1. Although
during the path described the facility crossed three paradigm boundaries, in all cases
each paradigm just needed to be able to map between its calling conventions and data
types and those of its superclass.

3.5.2 Using Inheritance

The fact that a subclass inherits all the methods of the superclass can be put into good
use by having the superclasses performing the bulk of the work and each paradigm
class perform only its specialised task. Thus a paradigm class method can often deal
with the special features of the paradigm and pass the rest to its superclass. This ap-
proach, implemented in an ad-hoc way, is quite common in the Unix environment, both
in programming and in text processing. In programming there are separate tools that
perform macro expansion, regular expression recognition, BNF parser generation. In
document processing this approach is even more apparent with a document processed
with as many as six tools, each of which understands a specific paradigm (e.g. tables,
chemical molecules, graphs, equations), and passes the rest to the next tools in the
pipeline [Ker89]. We formalise this approach with the idea of methods inherited by
the superclasses and thus provide a structured framework for its wide use.

3.5.3 Implementation Approaches

There are many ways in which a paradigm can be implemented. All of them are sup-
ported by our design. In this section we describe them, together with their advantages
and drawbacks.

Compile to Target Architecture

The classic way to implement a paradigm is to compile it into target architecture ma-
chine code. At run-time these instructions are directly executed by the processor. This
method is easy to understand and can result in very efficient implementations. How-
ever it requires a lot of effort on the part of the paradigm creator and good knowledge
of the target architecture and optimisation techniques. It is obvious that such an imple-
mentation of a paradigm will not be portable among different target architectures. If
exactly one paradigm will be implemented using this approach (often by making use
of existing tools) and other paradigms will use it as a way to access the target architec-
ture, the a good compromise between efficient execution and ease of portability will
be achieved.
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Interpret

Interpreting some form of the paradigm source code, has the opposite characteristics.
The implementation of the paradigm will be relatively straightforward, but the result-
ing execution speed will be slow. In many cases the memory required by this approach
may be a lot less than the memory required by directly compiling to target architecture.
The resulting paradigm compilation and execution methods will be portable among all
target architectures. This approach may be suitable when initially prototyping a para-
digm. At that phase it is important to receive feedback on the paradigm features as
they are used, and to be easy to modify the paradigm. Once the paradigm design has
settled a more efficient implementation can be chosen. Furthermore there exist cases
where the execution speed of the paradigm is not of vital importance (e.g. within the
user interface loop). In those cases the advantages of this approach may outweigh its
slow speed.

Compile to Superclass

An implementation strategy that lies between the two methods described above is that
of compiling to the superclass of a paradigm. Using this strategy the source code of a
paradigm is compiled into the source code of the superclass paradigm. Then the com-
piled method of the superclass paradigm is invoked in order to finish the compilation.
If the paradigms are closely related then the compilation effort is likely to be mini-
mal. A good implementation of the superclass will result in a good implementation
of the paradigm. In addition, future improvements in the implementation of the su-
perclass will directly positively affect the paradigm quality. This approach is portable,
since it only depends on the superclass. Using this approach a whole multiparadigm
environment is often structured as a single paradigm class that compiles to the target
architecture and a tree of other subclasses that directly, or indirectly compile to that
class.

3.6 Multiparadigm Programming Applications

Although this section is preceding the section on the design and implementation of a
concrete multiparadigm application (4.5, 5.4), some of its contents are based on lessons
learned from that exercise.

3.6.1 Structure

The tree class structure that was apparent to the multiparadigm programming envi-
ronment environment developer and to the multiparadigm programming environment
implementor, is not visible to the multiparadigm programmer. All the paradigms ap-
pear as a flat structure and there are no restrictions on how they are mixed and matched.
This flat structure, achieved by the use of the call-gates, encourages the selection of
the most suitable paradigm for each component. Furthermore the system structure is
determined by the actual interrelations of the system components and not by artificial
constraints placed by the paradigm tree class structure.
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3.6.2 Design

Multiparadigm programming environments developed using our method, will offer
access to multiple paradigms via call-gates. Consequently a single-entry, single-exit
interface to foreign paradigm code is offered and therefore structured programming
design techniques [ES89] are the best suited for designing a multiparadigm applica-
tion. After the main structural components of the system have been identified, the
application developer must examine each one and determine the appropriate paradigm
for that component. These components are then designed using a design strategy ap-
propriate for each paradigm. Other paradigms lend themselves to the application of
formal method design techniques, other favour experimentation and prototyping, and
others massive code reuse. A design environment supporting multiple design methods
such as VOSE [FKG90, NF92] can be used in this phase.

An important design maxim that we discovered is that of always using the most
appropriate paradigm. In some cases using the best paradigm may only offer minimal
advantages compared to implementing that part of the system within another paradigm
already used. In a high quality multiparadigm programming environment the cost of
using an additional paradigm, both at design and implementation time and at run-time
will be negligible. We found that using the appropriate paradigm often resulted in
important fringe benefits that we had not anticipated during the original design of the
system. For example during the implementation of the integrator we decided to use
the functional programming paradigm for the numeric evaluation of definite integrals.
The same code could probably be written in an imperative style, by using a cookbook
routine [PFTV88]. The method used was potentially more efficient and parameteris-
able. More importantly, we discovered when we decided to add function plotting, that
because function evaluation was already coded, evaluating a function was a matter of
a single function call.

3.6.3 Implementation

During the implementation phase of a multiparadigm application the implementation
methods, techniques and tricks of each paradigm will be used. The existence of mul-
tiple paradigms provides the ability to code a part that is particularly well suited for
a single paradigm in that paradigm. At later phases of the implementation the system
can be instrumented to gather profile data and performance bottleneck parts can be
re-implemented in more efficient paradigms.

For larger systems, it may be helpful to implement a custom paradigm, to capture
a specific part of the system in the most appropriate notation. This will require the
application developer to wear the hat of the multiparadigm environment developer, but
may pay back in terms of decreased implementation and maintenance efforts.

3.7 Summary

In this chapter we described our approach to multiparadigm programming. We first de-
composed the problem of multiparadigm programming into the four areas of, applica-
tion development in multiple paradigms, design and implementation of multiparadigm
languages, support environments for creating such languages, and a general approach
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covering the previous three areas. Then, starting from multiparadigm applications, we
examined, how these affect the design of multiparadigm languages, and those in turn,
the design of multiparadigm environment generators. Based on those requirements,
categorised in the areas of flexibility, structure, and efficiency, we developed the gen-
eral structure for multiparadigm environments. This is based on treating paradigms
as object classes, with paradigm inter-operation handled by the call-gate abstraction.
Finally, we examined in detail how relying on those principles, multiparadigm envi-
ronment generators, programming environments, and applications are to be structured.
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Chapter 4

System Design

In this chapter, we present the design of the systems implemented, in order to demon-
strate the viability of our approach. We outline the objectives of our design, present
the relationship of the constituent system parts, and describe each part in detail. In the
case of tools, we describe their input and output; in the case of languages we define
their lexical elements, syntax, execution semantics, and their built-in library functions.
Finally, we outline the design of our prototype multiparadigm application.

4.1 Objectives

The objective of this design and implementation exercise, is to try our ideas outlined
in the previous chapter on a real system. Our main goals are:

• provide an experimentation platform, and experiment with multiparadigm pro-
gramming environment generators, multiparadigm programming environments,
and multiparadigm applications,

• locate and rectify any missing details in our approach, and

• hopefully, show the viability of our approach.

We have to stress here, that we are designing and implementing prototype systems.
They are robust and useful enough to handle the outlined objectives, but will certainly
need more work, if they are to be used in real applications.

4.2 System Structure

In order to verify our design objectives outlined in the previous section we designed
and implemented three distinct systems corresponding to the bottom three tiers of the
hierarchy described in section 3.1. The inter-operation of the three systems forms a
concrete version of the top tier i.e. the general structure. Their relationship is illus-
trated in figure 4.1. The three systems we design are:

1. A multiparadigm programming environment generator, MPSS. This is a tool
suite, suitable for designing and implementing multiparadigm programming en-
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Figure 4.1: Entity-relationship diagram of the implemented systems
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vironments. This system corresponds to the general approach described in sec-
tion 3.3. We will outline its design in section 4.3 and its implementation in
section 5.2.

2. A multiparadigm programming environment, blueprint, designed and imple-
mented using MPSS. It offers six programming paradigms: imperative, rule-
rewrite, BNF grammars, regular expressions, lazy higher-order functions and
logic programming. The approach corresponding to this system is outlined in
section 3.4. The design will be described in section 4.4 and the implementation
in section 5.3.

3. A multiparadigm application, integrator, a program allowing the symbolic and
arithmetic evaluation of integrals. Its design and theory of operation will be
described in section 4.5 and its implementation in section 5.4.

4.3 MPSS: A Multiparadigm Environment Generator

MPSS is a multiparadigm programming environment generator, providing the support
functions described in section 3.2.3 (page 44). In the following sections we present
the design of MPSS. After a discussion of design alternatives, we outline the general
structure of the system, then we detail the design of each of its parts.

4.3.1 Design Alternatives

The functionality of an environment generator can be provided in two different ways:
either as a tool suite, or as an integrated environment. The tradeoffs between the two
approaches are the following:

User friendliness: An integrated environment will be easier to use, as all its parts
will be integrated in a single integrated package. A tool suite, requires the user
to familiarise himself with every tool, and the way the tools can be combined.

Consistency, and process enforcement: The integrated environment can enforce the
development process, since it will only provide support for the actions the de-
velopment process describes. In a tool suite the process can be overridden, by
using different tools, or combining the existing tools, in non-standard ways.

Flexibility, and extendibility: The tool suite approach provides a more flexible sys-
tem, since unanticipated requirements can be met by using the tools in different
ways. In an integrated environment, problems that were not anticipated in the
environment’s realisation, can be impossible to solve.

Integration with development platform: Our development platform, Unix, is based
on tools. An integrated environment would be awkwardly integrated with the
rest of the system, whereas a tool suite would be perfectly matched with the
underlying system philosophy.

Implementation difficulty: Implementing an environment is likely to be a lot more
difficult, than implementing a set of tools, as Unix provides a lot of support for
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tool implementation, by almost no support for integrated environment imple-
mentation.

We chose to implement the system as a tool suite, because we found flexibility, ex-
tendibility, integration with the development platform, and implementation ease, much
more important than process enforcement, and user friendliness. Implementing multi-
paradigm programming environments is not a trivial task. We expect the users of our
generator to know what they are doing.

4.3.2 General Structure

MPSS consists of a number of separate tools that support the implementation task of a
multiparadigm programming environment. This is consistent with the Unix philosophy
of small individual tools that can be combined with each other [Rit84].

The design philosophy behind MPSS is that of paradigm classes. Every program-
ming paradigm forms a class, with the target architecture paradigm being the root of
the class structure tree. The interaction of the different MPSS tools can be seen in
figure 3.8, page 63. For every paradigm, the implementor provides a paradigm class
description file, that defines the paradigm class. This is then compiled, by the para-
digm description compiler provided by MPSS, into a compiler for that paradigm and its
manual page. The multiparadigm programming environment (e.g. blueprint) user, can
use that compiler, to convert source code from the given paradigm into object code.
When the source code of all paradigms has been compiled a special link editor, the
multiparadigm link editor can be invoked to link all the paradigm objects, and associ-
ated support libraries together into a runnable system. Two additional tools detect and
protect the private variables of each class.

4.3.3 Paradigm Description Compiler

The paradigm description compiler (pdc) compiles a paradigm class description file
into a compiler for that paradigm and its manual page. Paradigm description files are
text files, containing definitions for class variables and methods. Possible variable and
method definitions are the instructions for compiling paradigm code, variables that
need to be protected, the run-time support library name, and the paradigm compiler’s
manual page. Some of the variables must be defined for every paradigm, others can
be optionally defined if relevant. The class variables currently supported are listed in
table 4.1. In addition, the multiparadigm system builder can introduce more variables
according to the structure of the system. For example, typechecking support can be
added in the form of additional class methods.

Lines beginning with a # character are regarded as comments and ignored. Vari-
ables and methods are defined by the method or variable name starting at the begin-
ning of a line, followed by a colon, followed by the value. The value of the variable,
or method, can extend to multiple lines, as long as these lines start with a whitespace
character. Within the file the programmer can refer to a variable value by using its
name mapped to uppercase characters within curly brackets, preceded by a dollar sign,
e.g. ${SELF.TOOL}. The variable SOURCE is automatically set within the code gen-
erated by the paradigm compiler to reflect the name of the filename source parameter
defined by the multiparadigm programming environment user.
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Variable name Meaning
SUPER Superclass name (TARGET for root class)
TOOL Name of the compiler to generate
EXTENSION Paradigm source filename extension
COMPILE Compilation instructions
INSTANCEV Class member instance variables
SYSTEM Multiparadigm environment name (e.g. blueprint)
SYNOPSIS Summary of the paradigm’s operation
DESCRIPTION Paradigm documentation
SOURCE User filename parameter

Table 4.1: Class variables supported by the paradigm compiler

The paradigm description compiler performs variable substitution for the variables
of the class and its superclass using the usual SELF. and SUPER. variable prefixes.
Using an undefined variable within a class description will produce a compilation error.
A sample paradigm description file, is listed in figure 4.2.

4.3.4 Instance Variable Detection

MPSS offers the capability of implementing a the paradigm using existing tools and
facilities. One major problem when using such tools is that of name-space pollution.
Some tools create code with global identifier names (function or variable identifiers)
that cannot be specified or changed by the user. Such code can be used only once
within a given program. This is for example, the case with the lex [Les75] and yacc
[Joh75] utilities. Having such tools as part of a multiparadigm environment is not pos-
sible, as they can only be used to create a single instance of a code object. The instance
variable detection tool, instancev, when run on the object code that such a utility gen-
erates, prints a list of the global variables that are defined in it. These can then be
listed in the instancev section of paradigm class description file to be automatically
converted to private instance variables.

4.3.5 Private Variable Protection

Many of the paradigm translators, either because they are built based on existing util-
ities, or because of the translator design, or due to features of the implemented lan-
guage, will contain global variables or procedures that should be private to the class
instance. Protect is a tool that generates unique identifier names. The names of the
private variables and procedures are listed in the instancev section of the paradigm
class description file. Given this name list, protect will create regular expressions, that
when applied to the assembly language output of the target architecture paradigm will
automatically convert them to class private variables by prepending to them the name
of the module in which they occur. A limited version of this tool, yyhide [Gli91] is
part of the Andrew Toolkit [PHS+88]. Yyhide only deals with output generated from
yacc and lex, while our tool can handle output from any program generator.
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# Paradigm description file for the backtracking paradigm
#
# $Id: design.tex,v 1.2 1993/05/03 15:33:55 dds Exp dds $

# Environment name
system: blueprint

# Paradigm name
name: btrack

# Superclass name
super: term

# Source file extension
extension: pb

# Target tool name
tool: btrackpc

# Instance variables and functions. These variables and functions are
# duplicated across instances of the paradigms runtime machinery
instancev: rules_1 mpss_needlib_lbtrack_0 btrack_3

tryall_5 solve_4 import_unify_3

# Compilation instructions
compile:

rm -f ${SOURCE}.${SUPER.EXTENSION}
bt2term ${SOURCE}.${SELF.EXTENSION} >${SOURCE}.${SUPER.EXTENSION}
${SUPER.TOOL} ${SOURCE}.${SUPER.EXTENSION}

# Runtime support modules
runtime: lbtrack.o

# Paradigm description for automatic manual creation
synopsis: backtracking and unification

description:
\fIBtrack\fP is a pradigm for handling problems that can be
solved using backtracking and unification. The \fIbtrack\fP
programming style intentionaly resembles that of Prolog. Many
pure Prolog programs can be ported to \fIbtrack\fP without change.

Figure 4.2: Sample paradigm description file
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4.3.6 Multiparadigm Link Editor

Once the code of every paradigm is converted into target architecture object code, the
object modules must be linked together in order to create the final running system.
This is handled by the multiparadigm link editor, mpld. In addition to the duties of the
system link editor (resolving references between the modules, and creating executable
code) [PW72], the multiparadigm link editor has three additional duties to perform
(see also 3.3.6):

• initialise every paradigm class by calling its class initialisation method,

• initialise every separate module in each paradigm, by calling its initialisation
method, and

• link in the runtime machinery of each paradigm, by instructing the system linker
to include the appropriate libraries.

The class initialisation must be performed before the instance initialisation, as the
second one might depend on an initialised class instance. Furthermore initialisation
must proceed from the top to the bottom of the class hierarchy, as a class might depend
on its superclass for its initialisation.

4.3.7 System Wrapper

A multiparadigm programming environment will typically consist of a number of
translators, libraries, preprocessors, manual pages and other auxiliary files. An mpss
tool, the system wrapper will find the parts of the programming environment and or-
ganise them into a suitable distribution format. This ensures that the system distribu-
tion and its updates can be created reliably and with the minimum effort.

4.3.8 Building a Multiparadigm Programming Environment

We recommend the following approach when building a multiparadigm programming
environment using MPSS:

1. Decide the programming paradigms that will be supported, and the names that
will be given to their classes.

2. Organise the paradigms into a tree class structure. Paradigms that are extensions
of another paradigm should have that other paradigm as their superclass. The
target architecture paradigm must be at the root of the class tree. If two para-
digms share an important characteristic, try to abstract that characteristic into a
separate class which will be the common superclass of the two other classes.

3. Every paradigm needs a class definition file. This, as a minimum, must define:

• the name of the paradigm,

• the name of its superclass,

• the extension of the filenames containing source code for that paradigm,

• the name of the compiler for that paradigm and,
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• instructions for compiling code written in that paradigm into code of the
target architecture. These instructions can simply translate the code to the
code of the paradigm’s superclass and invoke the paradigm’s superclass
compiler to complete the operation. Interpreter-based implementations
must provide at this point any preprocessing needed for the interpreted
source code files.

4. For every paradigm create a translator that transforms the code of that para-
digm into code of the target architecture. This is normally done by translat-
ing into the code of its superclass and invoking the superclass compiler via
SUPER.COMPILE. The invocation code for that translator is given in the compile
section of the paradigm class definition file.

5. Each paradigm must have a mechanism for interfacing to the paradigm of its
superclass. The two facilities that must be provided are the ability to use func-
tionality provided by the super-class ( import call gate), and the ability to make it
possible for its super-class to use the functionality it provides ( export call gate).

6. If an existing tool is used for translating the paradigm code use instancev to find
out which variables must be made private for every class member instance.

7. If the code generated by the translation process contains some global variables
that need to be private to a class member instance, list those in the instancev
section of the paradigm class definition file.

8. Compile all class definition files to create the compilers for all paradigms.

9. Wrap up the system, using the system wrapper, for distribution or installation.

4.4 Blueprint: A Multiparadigm Programming Environment

The MPSS tool suite, described in sections 4.3 and 5.2 forms a system suitable for cre-
ating multiparadigm environment generators. Blueprint is a multiparadigm program-
ming environment, built using the MPSS philosophy and tools. Its name is derived
from the acrostical spelling of the paradigms provided1, namely:

• BNF grammar descriptions (bnf),

• lazy higher order functions (fun),

• unification and backtracking (btrack),

• regular expressions (regex),

• imperative constructs (imper) and,

• term handling (term).

1In order to find the name the Unix command “grep b /usr/dict/words | grep u |
grep l | grep r | grep i | grep t” was executed. Blueprint was selected from the 29
words that matched the specification.
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All these paradigms are provided in the form of paradigm compilers: tools that
convert the code expressed in a given paradigm, into object code that can be linked
and executed together with code from other paradigms.

In the following sections we present the design of the system and its parts.

4.4.1 Design Objectives

Blueprint was designed as an experimental prototype system in order to demonstrate
the viability of our approach. Therefore our design was centred around the following
objectives:

• realisation of a wide variety of diverse programming paradigms,

• provision of a non-trivial class hierarchy, including the abstraction of common
characteristics in a special superclass,

• usage of all the features provided by MPSS and in particular an implementation
involving a combination of existing tools, new ones, compilers, and interpreters,

• suitability for the implementation of a useful application, and

• ability to bootstrap the system in order to test and use it as much as possible.

4.4.2 System Structure

Blueprint is designed using the MPSS paradigm class hierarchy notion. The target
paradigm is the imperative paradigm provided by the target architecture, which in our
case are Sun SPARC computers. The paradigm classes that are implemented can be
seen in figure 4.3. Terms are the natural data objects, for both functional and logic
languages; the provision of the term class is based on this observation and, in addition,
provides a practical vehicle for their implementation.

It is important to note, that the tree structure is only used in order to design and
implement the system using MPSS. The structure is transparent to a programmer using
blueprint who is presented with a flat structure of all the paradigms (figure 4.4).
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bnftermimper funbtrackregex

Figure 4.4: Programmer’s view of blueprint

4.4.3 Imperative Paradigm

The imper, imperative construct, paradigm is used for interfacing with the operating
system, building user interfaces, accessing the machine at a low level and in cases
where efficiency is the first priority. Its syntax and semantics are exactly those of the
C programming language [KR78, ANS89].

The paradigm is used for providing the entry function for the blueprint program.
The entry function is called mpss main. The usual main function used in the hosted
C programming environments [ANS89, §2.1.2.2.1] should not be used as a duplicate
definition error will appear at link time.

4.4.4 Rule-rewrite Paradigm

Term is a term pattern-matching rule-rewrite paradigm modelled after the struct pro-
gramming language [Spi91a]. Its main data object is a term which can also be used to
construct lists. Pattern matching is used to select a rule from a set of rules that com-
prise a term program. Once a rule is selected, its antecedents are recursively invoked.
If one of them fails the next rule whose pattern matches is tried.

Term is suitable for implementing language translation systems. Its determinis-
tic, first-order execution model makes it very efficient compared to higher order or
nondeterministic languages, and therefore, a suitable vehicle for succinctly expressing
algorithms that do not need the full power of a more advanced paradigm. In our expe-
rience, many of the programs found in logic or functional programming textbooks can
be expressed in term without any important changes.

In the following sections we will describe term in more detail.

Language Elements

Term source is organised in files. C-style comments (matching /* and */ pairs) and
white space are ignored when reading a file. The basic data structure of term is the
term. A term can be an atom, a variable, or a composite term. Atoms can be one of the
following:

1. Sequences of alphanumeric characters beginning with a lowercase letter or a
dollar sign.

2. Arbitrary text enclosed within single quotes.

3. integers and floating point numbers — expressed as a sequence of digits or as a
sequence of digits including a decimal point optionally followed by an exponent
respectively.
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Operator Type Binding Precedence
∗ infix left 1
/ infix left 1
+ infix left 2
− infix left 2
< infix left 3
> infix left 3
>= infix left 3
<= infix left 3
\ == infix left 3
== infix left 3
= .. infix left 3
is infix left 3
not prefix right 4

Table 4.2: Term operator list

Variables are written as sequences of alphanumeric characters starting with an up-
percase letter or an underscore. A composite term is an atom followed by an open
bracket, followed by a comma-separated list of terms, followed by a close bracket
character. There are two notations for expressing lists, which are in turn a shorthand
for expressing the term “.(head, tail)”.

1. The cons notation where a list is expressed as [ head | tail ].

2. The element notation, where a list is expressed as [e1, e2, ...].

An empty list is expressed as []. The operators listed in table 4.2 can be used in order
to express some terms in infix notation.

Terms expressed in infix notation can be grouped using brackets.
The following sequences of characters have special meaning when not separated

by white space:

\== == =.. :- -> >= <= not is

Syntax

A term program consists of a series of rules. A rule consists of a head optionally
followed by a comma separated list of terms, followed by a full stop. The special
keyword import can precede the head of a rule, to indicate that the body of that rule
is defined in another module. The head of a rule consists of the rule name, optionally
followed by the input and output terms enclosed in brackets. The two comma separated
lists of terms, are separated by a -> sign. The first list contains the terms that are input
to that rule, the second, the terms that are output. For example the rule to append two
lists can be written in term as follows:

append([], L -> L).

append([H | T], L -> [H | L2]) :-
append(T, L, L2).
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program:
EMPTY
clause program

clause:
head :- term-list .
head .

head:
atom ( opt-term-list -> opt-term-list )
atom

opt-term-list:
EMPTY
term-list

term-list:
term
term , term-list

term:
atom
element-list
cons-list
atom ( term-list )
term-expression
( term )

term-expression:
term infix-operator term
prefix-operator term

cons-list:
[ ]
[ term | cons-list ]
[ term | term ]

elem-list:
[ term-list ]

Figure 4.5: Term BNF grammar

The BNF grammar syntax of term can be found in figure 4.5.

Execution

Execution can be understood in terms of a goal. A goal is the name of a rule, together
with the values for the input terms of that rule. Given a goal the execution mechanism
goes through all the rules with a matching name looking for a rule whose input part of
the head matches the input terms of the goal. Matching is performed recursively:

• atoms match identical atoms,

• composite terms match if their names and components match, and

• a variable in the head of a rule will match any term that appears in that position,
setting that variable to that term.
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When a matching rule is found execution continues with each clause of that rule as a
goal. When the last clause of a rule has been successfully executed, the execution of
that goal has succeeded. At that point, execution continues with the next clauses of the
rule that called the initial rule, with any variables that were passed in the output part
of the rule head, set to the values given to them during the execution of the rule. If
at some point the execution of a rule fails, alternative matching rule bodies are tried.
If none of them succeed, then the execution fails. The execution can also fail, if no
matching rule head is found.

Built-in Predicates

Term has a library with a number of built-in rules. These perform functions that are
often needed when writing term programs. A list of them is provided in table 4.3.

Interfacing with Imper

The inter-paradigm communication conventions based on the call gates abstraction
require each paradigm implementation to provide the capability to call functions from
its super-class and for programs in its superclass to call functions defined in it. In
term this is achieved by documenting (in the language) the way to call term functions
from imper and the converse. A more programmer-friendly alternative would have
been the implementation of an interface builder that would automate this task, given
the suitable type specifications of the data to be used between the paradigms. We felt
this was not needed in this prototype and evaluation version of the system; it could be
added in a production version.

Calling Term from Imper

All term rules are exported by default to the imper execution environment. These can
be called as C functions of the form term-name arity. For example the append rule
can be called as append 3. All the input parameters are pointers of type struct
s Term defined in the include file term.h. All the output parameters are pointers
to variables of type struct s Term. These variables are set on return from term.
All the term rules return TRUE on success and FALSE on failure. A set of utility
functions in the term library allow the easy creation of term data types to be passed
as parameters to term rules. These are shown in table 4.4. A complimentary set of
functions — shown in table 4.5 allows the disassembly of terms and accessing their
parts.

Calling Imper from Term

Any imper function that is coded according to the following guidelines can be called
from inside term.

• The header term.h is included at the start of the source file.

• The name of the imper function must end with an underscore, followed by the
number of its arguments.
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Name Function
(<)(A, B ->) Succeed if A < B
(>)(A, B ->) Succeed if A > B
(\==)(A, B -> ) Succeed if A does not match B
(=..)(T -> L) Convert term T to a list L
(==)(A, B -> ) Succeed if A matches B
anint(A -> B) Round B towards A
append(L1, L2 -> L3) List L3 is list L2 appended to list L1
arg(N, T -> A) Set A to the Nth argument of term T
atom(A) Succeed if A is an atom
cos(A -> B) B = cos(A)
exp(A -> B) B = eA

fail Always fail
functor(T -> N , A) Set N to the name and A to the arity of functor T
head(L -> H) Set H to the the head of a list L
integer(I ->) Succeed if I is an integer
is(A <- B(C, D)) Set A to the value C ⊗B D

where B can be ’+’, ’-’, ’*’, or ’/’
length(L -> N) N is the length of the list L
log(A -> B) B = log(A)
makefunctor(L -> T) Convert a list L to a functor term T
member(X, L -> ) Succeed if X is a member of list L
nameio(A -> L) Convert an atom A to a list L of integers representing

the character ordinal values of its name
nameoi(L -> A) Convert a list of integers L representing character

ordinal values into an atom
nl Print a new line on the standard output
pow(X, Y -> Z) Z = XY

print(T ->) Print the name of term T on the standard output
real(R ->) Succeed if R is a real number
reverse(L1 -> L2) List L2 is the reverse of list L1
sdebugflag Succeed if the subclass debugging flag is set
sin(A -> B) B = sin(A)
tab(N ->) Print N tab characters on the standard output
tail(L -> T) Set T to the the tail of a list L
tan(A -> B) B = tan(A)
termdebug(F ->) Set the term debug flag to F
var(V ->) Succeed if V is a variable
write(T ->) Print term T on the standard output

Table 4.3: Term built-in rules



4.4. BLUEPRINT: A MULTIPARADIGM PROGRAMMING ENVIRONMENT 85

Name Function
struct s Term *mktermbyname Create an arbitrary term
(int arity, char *name, ... )
struct s Term *mkint(int i) Create an integer term
struct s Term *mkdouble(double d) Create a floating point term
struct s Term *mkvar(char *s) Create a variable
struct s Term *mkatom(char *s) Create an arbitrary atom term
struct s Term *TNULL The empty list term

Table 4.4: Term term creation functions

Name Function
char *functorname(struct s Term *t) Return the name of the functor
stab handle tgetname(struct s Term *t) Return a handle to the name of a term
int tgetarity(struct s Term *t) Return the arity of a term
int tgetarg(struct s Term *t, int i) Return the ith argument of a term
bool tislist(struct s Term *t) Return TRUE if the term is a list
struct s Term *tgethead(struct s Term *t) Return the head of a list term
struct s Term *tgettail(struct s Term *t) Return the tail of a list term
bool tisint(struct s Term *t) Return TRUE if the term is an integer
int tgetint(struct s Term *t) Return the value of an integer term
bool tisdouble(struct s Term *t) Return TRUE if the term is a floating

point number
double tgetdouble(struct s Term *t) Return the value of a floating point term
bool tisvar(struct s Term *t) Return TRUE if the term is a variable

Table 4.5: Term term access functions

• Each input argument is of type struct s Term* and each output argument
is of type struct s Term **.

• Input terms are accessed using the functions listed in table 4.5 and created using
the functions listed in table 4.4.

• The function will return TRUE for success and FALSE for failure.

Debugging

Term provides a simple trace port debugging facility — in the form of a tracer — for
code written in term and for its subclasses. Two rules, termdebug and sdebugflag
control the operation of the debugging system. The tracer is modelled around the Byrd
model [Byr80], except that as term is deterministic, there is no backtrack port. Specif-
ically in the Byrd model, a predicate can be invoked by calling it, or by backtracking
into it, and can terminate either by failure, or by successful exit. In our modified ver-
sion, shown in figure 4.6, a rule can be invoked only by calling it, and can terminate
either by failure, or by successful exit.
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Predicate
Fail

Exit

Backtrack
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Figure 4.6: Byrd debugging model as modified for term

Bibliographical Notes

Our goals for implementing the rule rewrite paradigm language were the provision
of data structures found in declarative languages (terms, lists), and compilation into
efficient imperative code. The handling of recursive data structures, like the ones used
in our language is described in depth in [Hoa73]. Ease of manipulation of tuples
and lists is available in the imperative language SETL [Dew79] and its interactive
implementation ISETL [Lev89]. Motivation for using our language to implement itself
and other parts of the system, was provided by data transformation using sets [Abb89],
and the suitability of Prolog for compiler writing [War80], and software engineering
tasks [CL93].

On the design side, our first-order approach is corroborated by [Gog90] and the
firstification approach described in [Jr.91]; empirical evidence supporting our ‘shal-
low’ backtracking implementation can be found in [Smo84, p. 311], and support for
the input/output modes in [Smo84, p. 320]. Automatic transformation of logic pro-
grams into functional programs (that would be executed in a manner similar to the
term execution model) is described in [DW89]. Similar choices have been made in the
design of Parlog [Cla88], and Strand [SRA89, FT90].

Finally, regarding the implementation, description of how Prolog predicates can be
compiled to an imperative language (Pascal) can be found in [Coh85]. The integration
mechanism with C is similar to the one used by PIC [BK90].

4.4.5 Regular Expression Paradigm

The regex paradigm is used to handle another aspect of programming language im-
plementation, that of lexical analysis. A specification written in the regex paradigm
contains regular expression descriptions of the input tokens. The description file is in
the same format as that expected by the lex lexical analyser generator [Les75]. As it is
implemented as a paradigm class, an arbitrary number of lexical analysers for different
lexical grammars can coexist in the same program.

The generated lexical analyser is invoked by the function yylex prefixed by the
name of the source file, followed by an underscore. The same rule applies for accessing
all the lex global variables and functions such as yyin and yytext.

Bibliographical Notes

Declarative expression of string specifications using regular expression is in most cases
a feature found in compiler toolboxes, or stand-alone tools, supporting the generation



4.4. BLUEPRINT: A MULTIPARADIGM PROGRAMMING ENVIRONMENT 87

of lexical analysers. Compiler toolboxes containing support for specifying strings us-
ing regular expressions are described in [GE91, PDC92, DP90]. Stand alone lexical
analyser generators based on regular expressions, and the compile-time generation of
perfect hash tables are described in [Les75] (lex), [HL87] (mkscan), [Pax89] (flex),
[Sch90] (gperf), [AMT89] (ML-lex), [Heu86], [Gra88] (γ-GLA), and [Gro89] (rex).

In addition, regular expression libraries are part of many languages; Snobol4 [GPP71],
Icon [GG83],and Perl [WS90] offer string pattern matching. A language with regular-
expression-like pattern matching is presented in [Liu86]. Its pattern definitions are
built using six basic operations: alternation, concatenation, immediate value, intersec-
tion, difference and complement. Our implementation was based on lex [Les75], the
lexical analyser generator available under Unix.

4.4.6 BNF Grammar Paradigm

The bnf paradigm is used for expressing context free grammars. The input file syntax
is a small superset of the files accepted by the yacc parser generator [Joh75]. It is typi-
cally used for building parsers for programming languages, handling complicated user
interaction models or even expressing complicated communication protocols. As bnf
is implemented as a paradigm class, an arbitrary number of grammars can coexist in
the same program. This makes the description and implementation of nested grammars
(like C with its pre-processor) clean and relatively straightforward.

The one addition to the syntax accepted by yacc is the provision of the %import
keyword. Every bnf source file must contain a line with that keyword followed by
the name of the function that will be used for providing the input tokens (the default
function expected by yacc is yylex. When a source file is processed by the bnf
compiler a corresponding header file is generated containing the declarations for all
global variables and token identifiers. The global variable names are, as usual, prefixed
by the name of the source file, followed by an underscore. The same rule applies for
using the generated parser function yyparse.

Bibliographical Notes

In the case of the BNF grammar paradigm, support again can be found in compiler
toolboxes and stand-alone parser construction tools. Compiler toolboxes containing
parser generators are described in [GE91, DP90, PDC92]. Stand-alone tools are de-
scribed in [Joh75] (yacc), [Jon85] (yacc in SASL), [TA90] (ML-yacc), and [DS88]
(bison).

An integration scheme for using an arbitrary parser generator in a system (by
means of an expert system coordinator) is given in [GHL+92]. A way to isolate the
global variables produced by the yacc and lex generators is described in [Gli91]. Our
solution to the same problem uses a more general technique. Finally, a browser for
examining the output of such tools is described in [FSO91].

4.4.7 Logic Programming Paradigm

The btrack paradigm provides a subset of the Prolog programming language [Kow74,
CM84b]. Full backtracking and unification (without occurs check) are provided. The
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“Edinburgh” syntax [BBP+81] with fixed operator precedence is used.
Btrack is naturally suited for declaratively expressing non-deterministic algorithms.

Examples can be found in most Prolog textbooks [SS86b, CM84b, CM84a].

Language Elements

The language elements of btrack are the same as those of term, described in section
4.4.4, i.e. atoms and variables.

Syntax

The syntax of btrack is akin to the “Edinburgh” Prolog syntax. There are no infix
operators other than the :- which is used to separate the clause head from its body.
Clauses are terminated with a full stop. The path-find program is expressed in btrack
as follows:

path(X, X, [X]).

path(X, Y, [X | W]) :-
edge(X, V),
path(V, Y, W).

edge(a, b).
edge(c, f).
...

At the end of a btrack file a single line containing a double percent mark %% signi-
fies the end of the code and the start of the import/export section. In that section lines
stating with the keyword import or export followed by the signature of a term rule
are expected. These can then be used from btrack or term respectively.

Execution

The Prolog execution and unification mechanism is used. There is currently no way to
affect backtracking since the cut extralogical feature is not provided.

Built-in predicates

Btrack has a small number of built-in predicates show in table 4.6. All of them have
full logical semantics i.e. will behave differently according to the parameters that are
non-ground or instantiated. Thus plus(X, Y, Z) can be used for adding Y and Z,
or for subtracting Z or Y from X, or finally, for testing if X is the sum of Y and Z.

Interfacing with Term

The signatures appearing in the import/export section of the btrack source code desig-
nate the predicates and rules that can be called from each paradigm. For all exported
predicates the export signature specifies the number of arguments and their mode (in-
put or output) for the predicate to be called from term, whereas for all imported rules,
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Name Function
plus(X, Y, Z) X = Y + Z
times(X, Y, Z) X = Y ∗ Z
integer(X) Succeed if X is an integer
less(X, Y) Succeed if X < Y

Table 4.6: Btrack built-in predicates

the signature specifies the number of arguments and their mode as expected by the
term rule. The following fragment of code implements the cos function in btrack and
exports it again to term.

btcos(A, B) :-
cos(A, B).

%%

import cos(A -> B).
export btcos(A -> B).

When a term rule is called from within btrack the arguments on the left of the arrow
must be ground and the arguments on the right of the arrow must be non-ground. If
this is not the case the rule call from btrack will fail. When a btrack predicate is called
from term the arguments on the left of the arrow will always be ground. The predicate
must succeed with the arguments on the right of the arrow instantiated to non-ground
values, otherwise the predicate call from term will fail.

Debugging

We provide a simple trace printing debugger. This provides access to the call and fail
ports of the predicates as named in the Byrd model [Byr80].

Bibliographical Notes

The logic programming paradigm [Kow74] is described in introductory form in [Hog84,
SS86b]. A number of articles cover implementation details. The unification [Rob65]
procedure is described in [Kni89], memory management issues in [Bru82], structure
sharing in [BM72], optimisations in [Mel85], and compilation to abstract-machine
instructions in [War83]. Our implementation is based on an interpretative scheme im-
plemented our rule-rewrite system term. A similar such implementation is described
in [Car84].

4.4.8 Functional Programming Paradigm

Fun offers lazy higher order functions and thus programming in a pure functional
programming style. The syntax of fun resembles that of Miranda [Tur85] omitting the
guard and pattern matching constructs.

Many of the functional programming examples found in the literature can be writ-
ten in fun with minimal syntactic changes.
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Operator Type Binding Precedence
Function application prefix left 1
∧ infix left 2
∗ infix left 3
/ infix left 3
+ infix left 4
− infix left 5
<= infix left 5
== infix left 6

Table 4.7: Fun expression precedence rules

Language Elements

When a fun program is processed, white space and /* */ delimited comments are
ignored. Identifiers start with an alphabetic character and can optionally be followed
by a sequence of alphanumeric characters. Integers are written as sequences of decimal
digits; floating point numbers always contain a single decimal point and are optionally
followed by a decimal exponent preceded by the e character. Infix operators can be
expressed as identifiers by enclosing them within brackets e.g. (*).

Syntax

A fun program consists of a series of function definitions followed by a single line
containing %%, followed by the the import/export declarations. Functions are defined
by giving the function name, followed by all arguments the function expects, followed
by an equal sign and the function value, terminated by a full stop. A function value is
an expression. Expressions consist of function applications and can be grouped using
brackets. Many built-in function applications can be expressed in shorthand notation
using the corresponding infix operator. The factorial function expressed in fun looks
like the following code fragment:

fac x =
cond (x == 0)

1
(x * fac (x - 1)).

%%
export fac n.

The BNF syntax of fun can be found in figure 4.7 and the expression precedence
rules in table 4.7.

Program Execution

Fun expressions are evaluated using call-by-name [FH88, p. 129] normal-order [FH88,
p. 129] evaluation. Function currying [FH88, p. 81] is supported and therefore, pro-
grams can be written using the higher-order functional programming style.
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module:
functions %% export-list

functions:
EMPTY
declaration functions

declaration:
variable variable-list = expression .

expression:
( expression )
expression infix-operator expression
expression expression
variable
primitive
integer-number
floating-point-number

variable-list:
EMPTY
variable variable-list

export-list:
EMPTY
export export-list

export:
export variable variable-list .

Figure 4.7: Fun BNF syntax



92 CHAPTER 4. SYSTEM DESIGN

Name Description Infix Operator
(+) addition +
(-) subtraction -
(*) multiplication *
(/) division /
(∧) exponentiation ∧
(==) equal ==
(<=) less or equal <=
cond two way conditional N/A

evaluation
log2 base 2 logarithm N/A
anint round towards n N/A

Table 4.8: Fun primitive functions

Name Description
app(E1, E2) Function application
num(X) Number
var(V) Variable identifier
prim(P) Primitive function
lam(V, E) Lambda expression
let(V, E1, E2) Let expression

Table 4.9: Fun data structure building terms

Built-in Functions

A number of primitive functions are provided. These implement the δ rule reductions
[FH88, p. 115] needed in order to write useful programs. Some of the primitive
functions have corresponding infix operators. The primitive functions available in fun
can be found in table 4.8. In addition to the primitive functions, a number of functions,
defined in fun, are available. Their definition is provided in figure 4.8.

Interfacing with Term

A fun function of the form name arg1 arg2 . . . argn can be imported into term with
the signature name(arg1, arg2 . . . , argn-> Result). Arguments to and results
from fun programs must be packaged within special terms. Table 4.9 contains the
terms that can be used in order to build the appropriate fun data structures.

In the reverse direction, term rules of the form name(arg1, arg2 . . . , argn-> Result)
can be imported into fun as function taking n arguments. Again, the terms listed in ta-
ble 4.9 should be used on the term side to disassemble the arguments passed, and to
assemble the result.

Debugging

During the expression evaluation, when debugging is turned on, fun will provide trac-
ing information on some operations. These can be used in order to locate program
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true x y = x.
false x y = y.
head l = l true.
tail l = l false.
nil x = true.
cons h t s = s h t.

dec x = (-) x 1.
inc x = (+) x 1.

foldr f x l =
cond (l == nil)

x
(f (head l) (foldr f x (tail l))).

fac x =
cond (x == 0)

1
(x * fac (x - 1)).

sum n l =
cond (n == 0)

0
(head l + (sum (n - 1) (tail l))).

from x = cons x (from (inc x)).

Figure 4.8: Fun standard library functions
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Paradigm Filename extension Compiler
Imperative .c imperpc
Rule-rewrite .pt termpc
Logic programming .pb btrackpc
Functional .pf funpc
Rgular expression .pr regexpc
BNF grammar .py bnfpc

Table 4.10: Paradigms, source filename extensions, and their compilers

mistakes. The evaluation of the following expressions will cause a trace line to be
printed:

• numbers,

• variables,

• built-in functions and,

• conditional functions.

The evaluation of these expressions usually happens at the bottom of the evaluation
tree and thus minimises the amount of information printed.

Bibliographical Notes

Good introductions to the functional paradigm, advocated in [Bac78a], can be found
in [FH88, ASS85]. The same references include implementation details. More spe-
cialised implementations are described in [Pey87] (compilation based on the abstract
G-machine), and [AM87] (the standard ML compiler). Our implementation is based
around the eval/apply model first introduced in [McC60]. Other relevant implementa-
tion descriptions can be found in [Lic86, Bai85, Lan63].

4.4.9 Using Blueprint

The blueprint compilers are used in the same way as the traditional compilers avail-
able under the Unix system. The program is implemented as a set of modules in
different paradigms. A separate compiler is used to compile each paradigm into object
code. The paradigm languages, together with the extensions used, and the names of the
compilers, are listed in table 4.10. For example the command btrackpc sint.pb,
would compile the source file sint.pb containing btrack source code, into the ob-
ject file sint.po. At the end all the object files are linked together into the single
executable file, by runing the multiparadigm link editor mpld, with their names as
arguments. Again, the command mpld sint.po main.po, would link together
the two object files sint.po, and main.po generated by the appropriate paradigm
compilers, to create a single executable file, named a.out2.

2The name a.out is a Unix system convention.
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Function Paradigm
Lexical analysis regex
Expression parsing bnf
Symbolic integration btrack
Numeric integration fun
Interfacing term
Expression simplification term
Graph creation imper

Table 4.11: Integrator functions and paradigms

4.5 Integrator: An Exemplar Multiparadigm Application

Function integration is an interesting aspect of mathematical assistance software pack-
ages [gro77, Wol91]. The numeric evaluation of definite integrals is a subject of nu-
merical analysis, while the symbolic evaluation of (typically) indefinite integrals has
been an early goal of the AI community. We decided to design and implement inte-
grator, a system that would provide both facilities, as an example of a multiparadigm
program implemented in blueprint.

The paradigms provided by blueprint match the needs of a system like integra-
tor. Symbolic integration can best be implemented using Prolog-like nondeterministic
rules, while a functional language is ideal for describing higher-order numeric evalu-
ation methods. In addition, the user input can best be described as a stream of tokens
and a BNF grammar. In the following sections we describe in more detail the design
of integrator.

4.5.1 Specification

Integrator accepts commands from the standard input. Three commands are imple-
mented:

1. symbolically evaluate an indefinite integral w.r.t. a variable (sint),

2. numerically evaluate a definite integral from a to b w.r.t. a variable within a
specified precision (aint) and,

3. create a graph for an expression given an initial and final value (plot).

4.5.2 Paradigm Delegation

As described in the previous section, the design of integrator can naturally be divided
into different paradigms. Table 4.11 lists the various system modules and the para-
digms they were implemented in. When the integrator starts, it begins parsing using
the input grammar which forms the command interpreter loop. The grammar forms the
tokens generated by the lexical analyser into commands. When a command is parsed
the relevant term rule is called. The term rule converts the arguments to the form
needed and then calls the function that handles that command. After the command
returns the term rule prints the result and finally returns to the command interpreter
loop.
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4.5.3 Numeric Integration

Numeric integration is performed by creating potentially infinite lists of converging
series of better approximations as described in [Hug90]. The basic formula used is:

∫ a

b
f(x) dx = lim

δx→0

b∑
x=a

δxf(x)

We approximate this formula by recursively subdividing the interval. Furthermore,
according to [Hug90, p. 30], we can obtain better approximations A from a converg-
ing sequence an by eliminating the error terms between the approximations using the
formula:

A =
an+12

n − an
2n − 1

where an estimation of the order n can be found by evaluating three consecutive values
of the series as follows:

n = round log2(
a0 − a2
a1 − a2

− 1)

These calculations can easily be expressed as function compositions over — poten-
tially — infinite lists, using the features of fun.

4.5.4 Symbolic Integration

Symbolic integration can be programmed using a set of heuristic rules since no sys-
tematic algorithm for performing it is known. The predicates can be structured as
follows:

1. See if the function matches a standard form,

2. If the function can be factored w.r.t. an integer, remove the integer, and integrate
the rest. Check if the function is a product or fraction involving the function and
its derivative.

3. Try to integrate a product using the “by parts” [BC78, p. 306] integration method
using the identity: ∫

v
du

dx
dx = uv −

∫
u
dv

dx
dx

In the case of symbolic integration, the backtracking and unification features of
btrack allow for a succinct expression of the rules, as logic predicates.

Bibliographical Notes

A system with similar functionality, but built on top of existing applications and li-
braries is described in [DR90]. Other multiparadigm applications documented in the
literature are a telephone exchange simulator [Zav89], and a system for mainframe
peripheral fault diagnosis [Rol87].

An overview of the process of symbolic integration, together with a review of
available software and many references can be found in [Sam71]. A description of an
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algorithmic approach towards symbolic integration is detailed in [Mos71b]. Risch’s al-
gorithm concerning the integration of rational functions containing nested exponentials
and logarithms is described in the classic paper [Ris67]. The subject of simplification
of algebraic expressions is treated in [Mos71a]. A number of systems that implement
symbolic integration are available, some of them are: Reduce [Hea87], MACSYMA
[gro77], MAPLE, and Mathematica [Wol91].

Many methods for numerical integration are described in [DR67]. That reference
provides a thorough treatment of all methods known at that time, including a chapter
on “automatic integration using a computer,” and many program listings. More modern
treatment of the subject — in the context of the imperative paradigm — can be found
in [PFTV88, pp. 111–141], and [Sti92]. Our implementation is based on the evalua-
tion of infinite terms of converging series using the functional programming paradigm.
Methods for accelerating the convergence of series are discussed in [PFTV88, pp.
143–146] The applicability of the functional paradigm can be contrasted with prob-
lems experienced in a logic programming implementation described in [CMS82]. The
suitability of functional languages for numeric work is illustrated in [TP86], which
also provided the basis for our approach. A more detailed and in-depth description of
the exploitation of the laziness characteristic of the functional paradigm, for numerical
work can be found in [HS88].

4.6 Summary

In this chapter we have presented the design of our prototype implementations. We
first defined our design objectives, and the systems that we were going to design. We
started with the design of the multiparadigm environment generator, MPSS. This in-
cluded the evaluation of possible design alternatives and the description of its con-
stituent tools, namely the paradigm description compiler pdc, the instance variable
detector isntancev, the private variable protector protect, the multiparadigm link ed-
itor mpld, and the system wrapper wrap. We finished our MPSS design description,
by giving guidelines on how MPSS would be used to implement a multiparadigm pro-
gramming environment. The next part we designed, was the blueprint multiparadigm
programming environment. It supports five paradigms: BNF grammar descriptions,
backtracking and unification, lazy higher order functions, regular expressions, imper-
ative constructs, and term handling. For every paradigm not based on existing tools,
we described the underlying language lexical elements, syntax, execution semantics,
built-in support functions, interfacing with other paradigms, and debugging support.
We finished, by describing the design of the integrator, a multiparadigm application.
The integrator was designed to utilise all six paradigms supported by blueprint.
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Chapter 5

Implementation

In this chapter we describe the implementation of all the system parts. The implemen-
tation was done in order to demonstrate the viability of the approach. In particular,
our implementation description of blueprint can be seen as an experience report on
the use of MPSS, and the implementation description of the integrator can be seen as
an evaluation of blueprint for practical applications. We first provide an overall de-
scription of the implementation of all the parts. Then, we proceed to describe in detail
each of the parts of the three implemented systems. Thus, we will describe the imple-
mentation of the tools comprising MPSS, then the implementation of the six blueprint
paradigms, and finish with the implementation details of the integrator application.
Novel tools and implementation methods are described in detail, whereas parts that
are documented elsewhere (such as the implementations of the declarative paradigms)
are only summarised. Detailed notes on our implementation of those systems can be
found in appendix A.

5.1 Overall Description

The three systems that we will describe were implemented on top of each other, as de-
scribed in the previous chapter, and illustrated in figure 4.1, page 72. The bottom layer,
the MPSS multiparadigm programming environment generator, was implemented as a
set of Unix tools. These were written as small interpreted scripts, using as a basis either
the Bourne shell [Bou79], or the Perl programming language [WS90]. Using the tools
provided by MPSS we implemented the blueprint multiparadigm programming envi-
ronment. The imperative (imper), BNF grammar (bnf), and regular expression (regex)
paradigms, were implemented using existing compilers, with the help of the tool sup-
port utilities (instancev, and protect) provided by MPSS. The term handling (term),
logic programming (btrack), and functional (fun) paradigms were all implemented in
term. Finally, the integrator multiparadigm application was implemented by using all
six paradigms provided by blueprint.

5.2 MPSS: The Multiparadigm Environment Generator

Implementing the MPSS tools as interpreted scripts significantly eased the task of ex-
tending and modifying them, during the time they were being used for implementing

99
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Tool Language and utilities used for implementation
instancev sh [Bou79], nm(1), and awk [AKW79]
protect perl [WS90]
mpld perl, and nm
pdc perl
wrap sh

Table 5.1: Implementation languages and Unix utilities used in MPSS

blueprint. Table 5.1, lists the implementation languages and Unix utilities that were
used in each one of the MPSS tools. In the following sections we will describe each
tool implementation in detail.

5.2.1 Pdc: Paradigm Description Compiler

As we described in section 4.3.3, the paradigm description compiler compiles the para-
digm description file for a paradigm into a compiler for that paradigm and the asso-
ciated documentation for that compiler. Pdc is implemented in the Perl programming
language [WS90]. The first step of a paradigm compilation is to set the various vari-
ables to their values. This is performed by reading the paradigm description file. Pdc
variables can refer to other variables in the superclass of the paradigm. In order to be
able to resolve references to such variables, pdc will read the paradigm class definition
module of the paradigm’s superclass, unless the paradigm is the target architecture
paradigm. After reading the two paradigm description files, pdc will replace all ref-
erences to the variables with their values. The next step is to check for undefined
variables. This is simply performed by checking for variable names that have not been
replaced. At that point pdc can construct the compiler for that paradigm. The compiler
created is a Bourne shell script [Bou79, KP84]. An example of a compiler generated
by pdc is listed in figure 5.1. The shell script will perform the following actions:

• evaluate the base-name of the source file (e.g. append.pl become append),

• check to see if this is the first compiler in a compilation chain, or it is invoked
by the compilation process of a subclass,

• remove any files from previous compilations,

• execute the compilation instructions specified in the COMPILE variable (listed
in table 4.1),

• protect any instance-specific variables specified in the INSTANCEV variable
(also listed in table 4.1), and

• if the compiler was not executed by another compiler (as part of the compilcation
process of a subclass), run the assembler on the assembly file to create an object
file.
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#!/bin/sh
# Automatically generated file. Do not modify!
# Generated by /home/dds/bin/pdc fun on 28 June 1992

# Evaluate the base name (source ends in .pf)
SOURCE=‘expr $1 : ’\(.*\).pf’‘

# If some sublass has not set MPSS_COMPILER set it to funpc
MPSS_COMPILER=${MPSS_COMPILER:-funpc}
export MPSS_COMPILER

# Execute the compilation instructions specified by COMPILE
rm -f ${SOURCE}.pt
fun2term <${SOURCE}.pf > ${SOURCE}.pt
termpc ${SOURCE}.pt

# Protect instance-specific variables
protect ${SOURCE} funs mpss_needlib_lfun_0 import_builtin_3 |
perl -pi - ${SOURCE}.s

# If this was not executed by a subclass run the assembler
if test ${MPSS_COMPILER} = funpc
then

${CC:-cc} ${CFLAGS} -c ${SOURCE}.s &&
${RM:-rm} -f ${SOURCE}.s

fi

Figure 5.1: Example of a compiler generated by pdc

5.2.2 Instancev: Instance Variable Detection

Instancev is used in order to solve name-space pollution problems by identifying global
symbols used by various utilities. These symbols are then protected by protect. In-
stancev works by examining the object code generated by a compiler looking for sym-
bols with a global scope. It is implemented as a Bourne shell [Bou79] script. First,
the nm [BSD86b, nm(1)] Unix system command is used to print the global symbols
contained in the object file. From these symbols, the text, data and common references
are filtered and printed on the standard output by an awk [AKW88] command. The
symbols printed, are the ones that need to be protected in order to use them as instance
variables.

5.2.3 Protect: Private Variable Protection

Protect works at the target architecture assembly language level, in order to handle all
paradigms up to the root class, and to avoid dealing with complications arising from
parsing the structure of the other paradigms. In this way, protect can be used as a tool
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for all multiparadigm environments, regardless of the paradigms supported. Protect
is currently used by the code generated by the paradigm description compiler. Pro-
tect is implemented in the Perl programming language [WS90]. Its parameters are the
module name on which to operate, and a list of entity names to protect. The output of
protect is another Perl program that contains instructions which, when applied to the
assembly language form of the module, will prepend to all references to those entities
the name of the module followed by an underscore. As an example, in the assembly
language output of the yacc compiler-compiler in a module called cgram all defini-
tions and references to the routine yyparse will be mapped to cgram yyparse.
The script generated will work on any Unix assembly language, thanks to the lexical
conventions used by the Unix assemblers.

5.2.4 Mpld: Multiparadigm Link Editor

Paradigm classes must be initialised, so that the runtime support of the paradigm will
work. In addition, some paradigms require or allow for every module written in that
paradigm, some initialisation code to be preformed. These two functions correspond
to the class and instance initialisation methods. For example, in the term paradigm,
provided by the blueprint environment, the hash tree used for the global runtime sym-
bol table must be initialised for the whole term class (class initialisation method). In
addition, for every module written in term, the atoms used in it must be individually
entered into the symbol table before execution begins (instance initialisation method).
Mpld solves these two problems by examining the object code that will be linked, for
special symbols that indicate that a function is a class or object constructor. These
symbols are pushed onto a stack. After all modules have been examined, code for
two new functions is created: the one function initialises all classes, while the other
initialises all instances. When the resulting code is executed, first all paradigm classes
are initialised, and then their instances. This ensures, that instance constructors that
depend on the correct functioning of the underlying paradigm will work as expected.

In order to link the runtime machinery (libraries) of each paradigm mpld again
relies on examining the object code produced by the paradigm compilers. Each para-
digm compiler adds a special symbol to the object code, denoting the name of the
library that must be loaded. When mpld encounters such a symbol, it adds the denoted
library to the list of libraries that must be linked, and recursively scans that library for
other paradigm support code that must be loaded. This ensures, that a paradigm whose
runtime machinery depends on its superclass paradigm, will link correctly, even if no
module written in the paradigm language of its superclass is linked into the system.
Mpld keeps a dictionary of libraries that have been scanned, in order to avoid loops.
The operation of mpld is illustrated in terms of pseudo-code in figure 5.2.

Mpld is implemented in the Perl programming language [WS90]. The associa-
tive arrays, stacks, string processing capabilities, easy system interaction and regular
expression handling syntax of Perl, significantly eased the task of implementing mpld.
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Push object modules on stack
REPEAT

FOR every object module DO
Remove module from stack
FOR every symbol in module DO

IF class initialiser THEN add it to class list
ELSE IF instance initialiser THEN add it to instance list
ELSE IF library reference AND NOT library used THEN

Mark library used
Push library on stack

END IF
END FOR

END FOR
UNTIL stack empty
Create code to:

Initialise all classes in class list
Initialise instances in instance list

Invoke system linker to link created code, object modules, and libraries used.

Figure 5.2: Mpld operation pseudo-code

Paradigm Implementation Tools and Languages
imper pdc, cc (existing)
term pdc, blueprint (imper, bnf, regex, term)
bnf pdc, yacc (existing)
regex pdc, lex (existing)
btrack pdc, blueprint (term)
fun pdc, blueprint (bnf, regex, term)

Table 5.2: Blueprint implementation summary

5.3 Blueprint: The Multiparadigm Programming Environ-
ment

Blueprint was implemented within the MPSS environment, following the paradigm
creation guidelines outlined in section 4.3.8. Every paradigm was implemented as a
translator from its source code to the source code of its super class, together with a
library containing the run-time support for the paradigm and its individual instances.
The paradigm description file containing the description of the paradigm, was auto-
matically compiled by pdc into the paradigm compiler and its manual page.

For the paradigms that used existing tools, instancev was used to list the per-class-
member instance private variables. These were then listed in the paradigm description
file, to be automatically protected by the paradigm compiler produced by MPSS. All
paradigms were either implemented in blueprint, or using existing tools. Table 5.2
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Function Paradigm
Lexical analysis regex
Parsing bnf
Code generation term
Symbol table imper
Term support imper
Library routines term, imper

Table 5.3: Term functions and paradigms

provides an overview of the implementation methods used. It should be noted, that
imper, bnf, and regex were implemented using existing tools, by creating a suitable
paradigm description file. The rest were implemented by writing — in addition to
the paradigm secription file — the requisite translators and run-time support. The
blueprint paradigms used are listed in table 5.2.

5.3.1 Imper: Imperative Paradigm

Imper is implemented as a front end to gcc — the project GNU C compiler [Sta92] —
using special arguments to allow the post-processing of its output. This is needed, in
order to provide class encapsulation of the runtime mechanisms. Specifically, the gen-
erated output does not consist of object files, but target architecture assembly language
source code.

5.3.2 Term: Rule-rewrite Paradigm

The term paradigm implementation consists of the following parts:

• lexical analyser: converts the source-code input into tokens,

• parser: converts the stream of tokens into a syntax tree,

• code generator: converts the syntax tree into imper code,

• symbol table: provides a mechanism for the efficient storage and comparison of
strings,

• term support: a set of functions providing support for the basic term datatype,
the term, and

• library routines: a number of routines providing useful term functions.

The term compiler and the runtime system are implemented using the blueprint multi-
paradigm programming environment. The implementation paradigms of the various
term components are summarised in table 5.3. In appendix A.1 (page 183) we de-
scribe each of the parts in more detail.
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Figure 5.3: Term paradigm inter-operation schematic representation

Multiparadigm Structure

It is interesting to examine the way in which the various parts of the term implemen-
tation work together. Figure 5.3 provides a schematic representation of it. Execution
of the term compiler starts at the main function written in imper. That function calls
the parser, which in turn calls the lexical analyser. Both call the term handling support
(written in imper) in order to build the complex terms that will later be passed to term.
Once the parsing is finished, control returns back to the main function, which then
invokes the code generator (written in term). The code generator makes use of the
term library routines (written in term and imper), which in turn rely on the basic term
handling routines and the symbol table.

Bootstrapping

Another interesting aspect of the term implementation process, is its bootstrapping
attribute: the term code generator is implemented in term. For our discussion we will
use the symbolic representation of T-diagrams as explained in section 3.3 (page 48).
In our case we will use P to denote Prolog, C for C, and T for term.

The first version of term was written in Prolog. Care was taken, to avoid using
any features of Prolog that would not be available in term, such as full unification and
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C

P

P

C

C

T

C

C

T

C

TC

P

T

T

Figure 5.4: Term bootstrapping sequence T-diagram

non-determinism. Furthermore the parameters of all rules were split according to their
mode (input / output), by a special comment. That first implementation, PPC in the
T-diagram illustrated in figure 5.4, was translating from a subset of Prolog to C and
was implemented in that subset of Prolog. The compiler from term to C, written in
Prolog, TPC, was compiled with it and generated the compiler from term to C, written
in C TCC. At that point the compiler was hand-translated from Prolog to term (a trivial
process) and thus the compiler from term to C, written in C TCC was generated. That
compiler was compiled by TCC, to create the final TCC: the bootstrapped term to C
compiler.

5.3.3 Regex: Regular Expression Paradigm

Regex is implemented as a front end to lex using a paradigm description file. Running
instancev on some lex output, generated a list of 28 instance variables. These were
listed in the paradigm description file in order to for them to have their own name-
space.

5.3.4 Bnf: BNF Grammar Paradigm

Bnf is implemented as a front end to yacc using a paradigm description file. Running
instancev on some yacc output generated a list of 21 instance variables. These were
listed in the paradigm description file in order for them to have their own name-space.
A small sed [McM79] script implements the %import extension for specifying the
name of the lexical analyser function.

5.3.5 Btrack: Logic Programming Paradigm

Btrack is implemented via an intepreter that executes btrack code in its abstract repre-
sentation form as a term data structure. The syntax of btrack is relatively near to that
of term; for this reason btrack is translated into a term term data structure by a small
Perl [WS90] script. An abstract code interpreter based on a solve/unify loop [Coh85,
p. 1313], [ASS85, p. 335–380], [SS86b, p. 150], is implemented in term. The btrack
to term translation detects all the import and export declarations and generates
the appropriate term call gates. Thus, for every exported predicate, an equivalent term
rule is generated, and for every imported term rule, btrack access code is generated.
Appendix A.2 (page 192) contains a detailed description of the btrack implementation.
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5.3.6 Fun: Functional Programming Paradigm

Fun is also implemented using the blueprint multiparadigm programming environ-
ment. Lexical analysis is done in regex, parsing in bnf, intermediate code generation in
imper, and intermediate code interpretation in term. An eval/apply interpreter [FH88,
p. 193–195] written in term provides the runtime machinery. In appendix A.3 (page
198) we describe the implementation of fun in more detail.

5.3.7 Paradigm Inter-operation

The astute reader may have noticed by now, that although we describe the inter-
operation of each paradigm with its superclass, we never describe how we imple-
mented the more general facilities that allow any paradigm to call any other paradigm.
The reason for this ‘omission’ is that these facilities were never implemented. Sys-
tems built using MPSS need only provide for the inter-operation with each paradigms’
superclass. The inter-operation with all other paradigms is performed automatically
by MPSS using the call-gate mechanism described in section 3.3.16. As an example, a
call of an imper function from fun (which only interfaces to term) is mapped to a call
to term. The term code in turn, will call the imper function. The following section
contains a more detailed example.

5.3.8 Paradigm Inter-Operation Example

In order to demonstrate how we implemented paradigm inter-operation in the blueprint
environment, we created a small artifical example, where all paradigms with non-trivial
inter-operation requirements (all except bnf and regex) call all others. In the example
we have implemented in all four paradigms a function that increments its single integer
parameter by one. In this way we demonstrate both the passing and the returning of
parameters. In addition, each module contains a function that returns the number three
by calling the increment function written in the three other paradigms with a starting
value of zero. The functions we described together with any needed import and export
statements for the imper, term, btrack and fun paradigms are listed in figures 5.5, 5.6,
5.7, and 5.8 respectively.

As we described in section 3.3.13, call gates are used to map the functionality of a
subclass to the conventions expected by its superclass. In the following paragraphs we
will examine how each of the paradigms implements the call gate abstraction.

In order for term rules to be available in btrack, the btrack compiler adds new
patterm matching rules to the Prolog engine with the name import unify for all
term rules that are imported. These look-up any variables in the Prolog environment,
call the term rule, and create a new environment with the term rule result bound to the
variable passed. The btrack rule for the fun add one rule is shown in figure 5.91.
Similar rules are used for importing the rules from the other paradigms — always using
the term calling conventions.

The exporting of the btrack rule to term is handled in a similar way. A term rule is
created that calles the btrack interpreter to solve the query, and looks up the result in

1fun add one t is the name of fun add one after passing through the term import gate. In
general, for manually implemented call gates, we use the convention of name x to denote that name has
been converted to follow the convnentions of paradimg x.
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/* Imper function to be exported to the other paradigms */
int
imper_add_one(int a)
{

return a + 1;
}

/* Imper function that uses fun, btrack and term */
int
imper_three(void)
{

return term_add_one(btrack_add_one(fun_add_one(0)));
}

Figure 5.5: Imper example functions

import fun_add_one(a -> b).
import btrack_add_one(a -> b).
import imper_add_one_t(a -> b).

/* A term rule exported to the other paradigms */
term_add_one(A->B) :-

B is A + 1.

/* A term rule that uses fun, imper and btrack */
term_three(->C) :-

btrack_add_one(0, A),
fun_add_one_t(A, B),
imper_add_one_t(B, C).

Figure 5.6: Term example functions
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/* Simple btrack function to be exported */
btrack_add_one(A, B) :-

plus(B, 1, A).

/* A btrack function that uses fun, imper, term functions */
btrack_three(C) :-

fun_add_one_t(0, A),
imper_add_one_t(A, B),
term_add_one(B, C).

%%
import fun_add_one_t(A -> B).
import imper_add_one_t(A -> B).
import term_add_one(A -> B).

export btrack_add_one(A -> B).
export btrack_three(-> B).

Figure 5.7: Btrack example functions

/* Simple fun function to be exported */
fun_add_one x = x + 1 .

/* Fun function that uses btrack term and imper */
fun_three = btrack_add_one_f (term_add_one_f (imper_add_one_f 0)) .
%%
import btrack_add_one_f x.
import term_add_one_f x.
import imper_add_one_f x.

export fun_add_one x.
export fun_three.

Figure 5.8: Fun example functions

/* Automatically generated import code */
import fun_add_one_t(A -> B).
import_unify(fun_add_one_t(V0, V1), Env -> [bind(LV1, R0) | Env ]) :-

lookup(V0, Env, LV0),
lookup(V1, Env, LV1),
not btrackvar(LV0),
btrackvar(LV1),
fun_add_one_t(LV0, R0).

Figure 5.9: Term code generated for importing a fun rule into btrack
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/* Automatically generated export code */
btrack_add_one(A -> B) :-

rules(Rules),
btrack([btrack_add_one(A , $B)], Rules, Bindings),
varval($B, Bindings, B).

Figure 5.10: Term code generated for exporting a btrack predicate to term

/* Automatically generated import code */
import imper_add_one_f(V0-> R).
import_arity(imper_add_one_f -> 1).
import_builtin(imper_add_one_f, [V0] -> R) :-

eval(V0, [], V0L),
imper_add_one_f(V0L, R),
fundebug(import_built, imper_add_one_f(V0, R)).

Figure 5.11: Term code generated for importing a fun function from term

the new environment. The rule for exporting the btrack add one predicate to term is
listed in figure 5.10.

The situation with the functions that fun imports and exports is similar, but not
identical. As we indicated in section 4.4.8, the programmer is responsible for imple-
menting a part of the call gate functionality, by adhering to the documented fun data
structuring conventions using fun constructors. The fun compiled code that imports
the imper add one function is listed in figure 5.11, and the code that exports the
fun add one to term is listed in figure 5.12. The manually implemented part of the
call-gate functionality is listed in figure 5.13.

The interface between term and its superclass imper is analogous to the one be-
tween fun and term. The term rules are compiled into C programs, but the calls must
conform to the term calling conventions. The C compiled form of the term add one
rule is listed in figure 5.14.

On the imper end, some parts of the term call-gate functionality are again manually
implemented. Figure 5.15 contains a listing of some interface functions written in
imper to follow the term coding conventions.

Having described the example of arbitrary paradigm interoperation we need to em-

/* Automatically generated export code */
fun_add_one(V0-> R) :-

funs(F),
feval(rlet(F, app( var(fun_add_one), V0)), [], R).

Figure 5.12: Term code generated for exporting a fun function to term
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/*
* Manually implemented import call gate functionality

* Import of term functions into fun

*/
btrack_add_one_f(num(A) -> num(B)) :-

btrack_add_one(A, B).

/*
* Manually implemented export call gate functionality:

* Export of a fun function to term

*/
fun_add_one_t(A -> C) :-

fun_add_one(num(A), B),
getnum(B, C).

Figure 5.13: Manually implemented parts of the fun call-gate functionality

/* Automatically generated export code */
bool
term_add_one_2(struct s_Term *i0, struct s_Term **o0)
{

if (1) {
struct s_Term *v0;
if ( is_2(&v0, mkterm(2, et_C5, i0, mkint(1))) && 1) {

*o0 = v0;
return TRUE;

}
}
return FALSE;

}

Figure 5.14: Imper code generated for exporting a term rule to imper
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/*
* Manually implemented import call gate of term:

* Imper_add_one converted to term conventions

*/
bool
imper_add_one_t_2(struct s_Int *a, struct s_Term **b)
{

*b = mkint(imper_add_one(tgetint(a)));
return TRUE;

}

/*
* Manually implemented export call gate of term:

* Btrack_add_one converted to imper conventions

*/
int
btrack_add_one(int a)
{

struct s_Int *b = (struct s_Int *)mkint(0);

(void)btrack_add_one_2(mkint(a), &b);
return tgetint(b);

}

Figure 5.15: Manually implemented parts of the term call-gate functionality
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phasize that the manually implemented functionality of the call-gates is a result of the
design of the various languages. The manually implemented call-gates are needed to
overcome language deficiencies in the areas of type systems, and supported language
elements.

5.3.9 Implementation Experience

The tools and the design philosophy of MPSS made the implementation of blueprint
easy and straightforward. Once the structure of the system was decided, the imple-
mentation consisted of providing the translation and runtime mechanisms for each
paradigm class, together with the relevant paradigm description file. The paradigm
compilers and manual pages were produced automatically. Details irrelevant to the
specific systems, such as the encapsulation of classes, and the class and instance ini-
tialisation mechanisms, were automatically handled by MPSS.

The number of diverse paradigms provided and used, convinced us that our un-
derlying philosophy is suitable for implementing multiparadigm systems, irrespective
of the paradigms that have to be supported. In addition to the breadth of supported
paradigms, our method was successfully used in conjunction with many different im-
plementation methods. The paradigms chosen included some whose compilers already
existed (imper, bnf, regex), others that were compiled (imper, term), and still others that
interpreted some semi-compiled or abstract machine code (bnf, regex 2, btrack 3, fun
4).

5.3.10 Implementation Metrics

To give our reader a rough idea of the implementation effort that went into blueprint,
the relative size of its parts, and the way different paradigms were used, we summarise
in table 5.4 the lines of code written to implement each paradigm. Each row of the
table contains a breakdown of the implementation of a specific paradigm. The PDF

column contains the number of lines written for the paradigm description file. The
number includes any documentation written for that paradigm, that was included in
that file. The other columns contain the number of lines of code written in the specific
paradigm. All numbers are inclusive of blank lines and comments. Finally, the last
rows and columns, contain totals and percentages, for their respective groups. The
table shows that the blueprint implementation effort was quite modest, at 4259 lines
of code. Furthermore, there was a fair distribution among the paradigms used.

5.4 Integrator: The Multiparadigm Programming Applica-
tion

The integrator was implemented utilising all six paradigms provided by blueprint.
The delegation of the various software functions among the different paradigms is de-
scribed in section 4.5.2 (page 95), and summarised in table 4.11 (page 95). In the

2Automata.
3Horn clauses.
4λ expressions.
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Paradigm PDF imper bnf regex term fun Total %
imper 43 70 1.6
term 70 1192 119 84 666 2269 53.3
btrack 60 316 554 13.0
fun 140 305 59 237 43 840 19.7
bnf 95 121 4.3
regex 379 405 9.5
Total 787 1192 424 143 1219 43 4259 100.0
% 18.5 28.0 10.0 3.4 28.6 1.0 100.0

Table 5.4: Blueprint paradigm implementation summary

following sections we will describe the implementation of each part. Where appropri-
ate, we will include small source code excerpts to illustrate the discussed implementa-
tion technique or paradigm. We will finish the integrator description by presenting a
sample session with it and a summary of relevant metric information.

5.4.1 Lexical Analysis

The lexical analyser converts the characters that the user types into the tokens expected
by the parsing grammar. Apart from single characters (such as “+ - ; ( ) * /”),
four other tokens are recognised:

• the commands sint, aint and plot and,

• integers, floating point numbers and function and variable symbols which are
returned as term atoms.

The code fragment listed in figure 5.16 contains most of the lexical analyser func-
tionality.

The term support functions mkatom and mkint allow the easy interfacing be-
tween the imperative rules of regex and term.

5.4.2 Parsing

The grammar of the integrator can be expressed in three rules using operator prece-
dence disambiguifying statements. These are: the definition of an integrator session, a
command and an expression. The actions for the expression just build the expression
tree; the actions for the commands call the relevant term rules. The grammar is listed
in figure 5.17

5.4.3 Numeric Integration

The following functions create a list of better and better approximations:

integrate f a b = integ f a b (f a) (f b).

integ f a b fa fb = cons ((fa + fb) * (b - a) / 2.0)
(map addpair (zip2 (integ f a m fa fm)
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/* Commands */
"aint" { return tAINT; }
"sint" { return tSINT; }
"plot" { return tPLOT; }

[a-z]([a-zA-Z_]|[0-9])* { /* Function and variable symbols */
parse_yylval.t = mkatom(yytext);
return tATOM;

}
[+-]?[0-9]+ { /* Handle integers */

parse_yylval.t = mkint(atoi(yytext));
return tATOM;

}
[ \t\n]+ { /* Eat white space */ ; }
[-;()+*/ˆ] { return *yytext; }

Figure 5.16: Integrator user-interface lexical analyser

(integ f m b fm fb)))
where m = (a + b) / 2

fm = f m.

addpair l = (head l) + (tail l).

We can now define a function that takes an infinite list of better and better approx-
imations and returns the approximation when the difference between it and the next is
within a given interval eps.

within eps l = cond (abs((head l) - (head (tail l))) <= eps)
(head (tail l))
(within eps (tail l)).

Given this function we can define

aint fun a b eps = within eps (integrate fun a b).

The higher-order error elimination formuli can be expressed in fun as:

elimerror n l =
cons (( (head (tail l)) * (2.0ˆn) - (head l)) / ( 2.0ˆn - 1.0))

(elimerror n (tail l)).

order l = anint (log2 (((head l) - (head (tail (tail l)))) /
((head (tail l)) - (head (tail (tail l)))) - 1.0)).

improve s = elimerror (order s) s.
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%left ’+’ ’-’
%left ’*’ ’/’
%left ’ˆ’
%%
session : /* EMPTY */

| session command
;

command : error ’;’ { /* Error recovery */ yyerrok; }
/* Symbolic integration */

| tSINT expr tATOM ’;’ { seval_2($2, $3); }
/* Numeric integration */

| tAINT tATOM tATOM expr tATOM tATOM ’;’
{ aeval_5($4, $5, $2, $3, $6); }
/* Graph plotting */

| tPLOT tATOM tATOM expr tATOM tATOM ’;’
{ plot_5($4, $5, $2, $3, $6); }

;
expr : ’(’ expr ’)’ { $$ = $2; }

| expr ’*’ expr { $$ = mktermbyname(2, "mul", $1, $3); }
| expr ’/’ expr { $$ = mktermbyname(2, "div", $1, $3); }
| expr ’+’ expr { $$ = mktermbyname(2, "add", $1, $3); }
| expr ’-’ expr { $$ = mktermbyname(2, "sub", $1, $3); }
| expr ’ˆ’ expr { $$ = mktermbyname(2, "raise", $1, $3); }
| tATOM ’(’ expr ’)’ { $$ = mktermbyname(2, "fun", $1, $3); }
| tATOM
;

Figure 5.17: Integrator user-interface grammar
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We can now get even more sophisticated, by noting that improve takes a series of
approximations and, by eliminating the error term, creates a new one. This can be
applied to the result of the original integ function, but it can also be applied to itself!
Taking the second value of these approximations is probably the best action, since it
is already computed (by order) and is better than the first. We can thus define a higher
order method as:

super s = map second (repeat improve s).

second l = head (tail l).

and in terms of it, the numerical integration function:

aint fun a b eps = within eps (super (integrate fun a b)).

5.4.4 Symbolic Integration

The general form of the symbolic integration predicate is:

sint(FX, X, Loop, DFX) :- ...

where FX is the function to be integrated, X is the variable with respect to which the
integration is performed and DFX the integrated function. The variable Loop, is used
to avoid infinite loops in cases where recursion is used. For example in the “by parts”
integration, the result contains a new integral. Sometimes it is necessary to apply the
“by parts” rule again on that integral, but on other cases recursively applying the rule
again and again does not lead anywhere. A heuristic rule is included which increments
the Loop variable and blocks the search after three recursive applications.

The standard forms are expressed as follows:∫
xn dx =

1

n+ 1
xn+1 +K

sint(raise(X, Y), X, L, mul(div(1, add(Y, 1)), raise(X, add(Y, 1)))) :-
integer(Y).

∫
ex dx = ex +K

sint(raise(epsilon, X), X, L, raise(epsilon, X)).

∫
1

x
dx = lnx+K

sint(div(1, X), X, L, fun(ln, X)).

∫
cosx dx = sinx+K

sint(fun(cos, X), X, L, fun(sin, X)).
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∫
sinx dx = − cosx+K

sint(fun(sin, X), X, L, mul(-1, fun(cos, X))).

Factoring out the integers is expressed, by a predicate for taking the factor out and
integrating, and a predicate for factoring.∫

nf(x) dx = n

∫
f(x) dx

sint(Product, X, L, mul(Integer, Integral)) :-
getintprod(Product, Integer, Rest),
sint(Rest, X, L, Integral).

getintprod(mul(X, Y), X, Y) :-
integer(X).

getintprod(mul(X, Y), Y, X) :-
integer(Y).

getintprod(mul(X, mul(A, B)), Z, mul(X, W)) :-
getintprod(mul(A, B), Z, W).

getintprod(mul(mul(A, B), Y), Z, mul(Y, W)) :-
getintprod(mul(A, B), Z, W).

Fractions of the form
du
dx
u are integrated using the rule:

∫ du
dx

u
dx = ln | u | +K

sint(div(A, B), X, L, fun(ln, fun(abs, B))) :-
ssdiff(B, X, A).

The predicate ssdiff performs symbolic differentiation on the function, with respect
to a variable, and simplifies the result. Although one would think that the same predi-
cates that express the integration rules, could be used for differentiation, this is not the
case. The process of symbolic integration is not deterministic. Running the predicates
backwards will spawn off an infinite search tree. One example where this would occur
is the factoring out of constant integers. Since the function to be integrated would not
be instantiated, the pattern match would succeed. Then the factoring predicate would
loop factoring the un-instantiated variable again and again producing a tree of the form

A == mul(A1, mul(A2, mul(A3 ... B ...

(where all the variables would be non-ground) which although mathematically correct
is not terribly useful. This can be avoided, by using an extra-logical predicate like
ground. We opted to define some separate predicates for sdiff:
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sdiff(X, X, 1).

sdiff(raise(X, N), X, mul(N, raise(X, N1))) :-
integer(N),
plus(N, N1, 1).

a predicate for the simplified differentiation:

ssdiff(X, Y, Z) :-
sdiff(X, Y, Z1),
simplify(Z1, Z).

and a set of predicates for simplifying arithmetic expressions:

simplify(mul(1, A), A1) :-
simplify(A, A1).

simplify(mul(A, 1), A1) :-
simplify(A, A1).

simplify(mul(-1, mul(-1, A)), A).

simplify(sub(A, mul(-1, B)), add(A1, B1)) :-
simplify(A, A1),
simplify(B, B1).

simplify(mul(A, B), mul(A1, B1)) :-
simplify(A, A1),
simplify(B, B1).

simplify(raise(X, 1), X1) :-
simplify(X, X1).

simplify(X, X).

The next set of predicates deals with integration of products. First we examine if
the function is of the form du

dxe
u and can thus be integrated using the formula:∫

du

dx
eu dx = eu +K

sint(mul(DU, raise(epsilon, U)), X, L, raise(epsilon, U)) :-
ssdiff(U, X, DU).

The final predicate embodies the “by-parts” integration mechanism:∫
v
du

dx
dx = uv −

∫
u
dv

dx
dx

sint(Fun, X, L, sub(mul(U, V), N)) :-
less(L, 3), /* Prevent loops */
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part(Fun, V, DU), /* Will backtrack here */
plus(L1, L, 1),
ssdiff(V, X, DV),
ssint(DU, X, L1, U),
ssint(mul(U, DV), X, L1, N).

Part is simply a non-deterministic predicate which returns the left or right hand side
of a multiplication expression. Thus, if an expression can not be integrated by parts
using the left hand side as the differentiated function, the search process will backtrack
and try the right hand side.

part(mul(A, B), A, B).

part(mul(A, B), B, A).

5.4.5 Printing the Resulting Expression

After the result is symbolically evaluated, it must to be printed on the standard output.
A set of functions written in term handle this aspect. The process is deterministic and
thus the power of btrack is not needed. All of the term rules are like the following one:

flatprint(raise(X, Y)->) :-
write(’(’),
flatprint(X),
write(’ ˆ ’),
flatprint(Y),
write(’)’).

5.4.6 Graph Generation

Graphs are plotted using the Unix plot utility. For it to be used, the output of the
program needs to be redirected to the graph process. This is accomplished using two
functions written in imper. Both are written using the conventions needed in order to
be called from term. The first one saves the current output stream and opens a pipe to
the graph process:

static FILE stdout_back;

bool
startplot_0(void)
{

stdout_back = *stdout;

*stdout = *popen("tee values.out | graph | xplot", "w");
return TRUE;

}

The second function waits for the forked process to terminate and restores the standard
output:
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bool
endplot_0(void)
{

pclose(stdout);

*stdout = stdout_back;
return TRUE;

}

Both of the functions are called from term which loops over the function values:

plot(Tfun, Var, X1, X2, Step ->) :-
mkfun(Tfun, Var, Ffun),
startplot,
points(Ffun, Var, X1, X2, Step),
endplot.

Points just generates a list of point values on the standard output:

points(Fun, Var, X1, X2, Step->) :-
X1 < X2,
evalfun(lam(Var, Fun), num(X1), Y),
getnum(Y, Ny),
write(X1), write(’ ’), write(Ny), nl,
XX is X1 + Step,
points(Fun, Var, XX, X2, Step).

points(_, _, _, _, _->).

The function is, of course, evaluated in fun by the sophisticated evalfun function:

evalfun fun v = fun v. /* Wow ! */

5.4.7 Sample Session

In order to demonstrate the capabilities of the integrator, in the following paragraphs
we will present a small session with the finished system.

First we symbolically evaluate the integral∫
x2 sinx dx

This is evaluated by twice using the process of integrating by parts [BC78, p. 306].
This is based on the identity:∫

v
du

dx
dx = uv −

∫
u
dv

dx
dx

Let {
v = x2

du
dx = sinx

⇒
{

dv
dx = 2x
u = − cosx
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Then ∫
v du
dxdx = (− cosx)(x2)−

∫
(− cosx)(2x) dx

= −x2 cosx+ 2
∫
x cosx dx

Now we need to evaluate
∫
x cosx dx, again integrating by parts.

Let {
v = x

du
dx = cosx

⇒
{

dv
dx = 1
u = sinx

and therefore ∫
x cosx dx = (sinx)(x)−

∫
(sinx)(1) dx

= x sinx+ cosx+K

From the above we can conclude that∫
x2 sinx dx = −x2 cosx+ 2x sinx+ 2 cosx+K

In the following example the same integral is evaluated on the integrator:

skid% integrator
--> sint x ˆ 2 * sin(x) x ;
Integral(((x ˆ 2) * sin(x))) =
((-cos(x) * (x ˆ 2)) - (2 * -((sin(x) * x) + cos(x))))

Factoring the R.H.S. evaluates to the expected result.
Next we try the numeric evaluation of definite integrals. We evaluate∫ 0

1

1

1 + x2
dx

with a precision of 0.001. The result should be π
4 .

skid% integrator
--> aint 0.0 1.0 1.0 / (1.0 + x * x) x 0.001 ;
Integral (0, 1) ((1 / (1 + (x * x)))) x = 0.785398 +-0.001

Finally, we create a graph of a function x3−x2

1+x2 in the range 0.01–1 in 0.01 increment
steps:

skid% integrator
--> plot 0.01 1 (x ˆ 3 - x ˆ 2) / (1 + x ˆ 2) x 0.01 ;

and the graph shown in figure 5.18 appears on our screen.

5.4.8 Implementation Metrics and Paradigm Inter-operation

Integrator was implemented within a period of three days. We believe that each part
of the system was implemented in the most suited paradigm. Table 5.5 has a list of
the modules and their size, and figure 5.19 provides the paradigm inter-operation call
graph of the system. It seems, that implementing the system in the blueprint envi-
ronment resulted in a concise and thus inherently (though always relatively) correct
and easily maintainable system. Writing the implementor in an imperative language
would result in an order of magnitude larger system, while choosing a single declara-
tive language as the implementation vehicle would still make the system at least twice
as complicated.
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Figure 5.18: Graph created by the integrator

5.5 Summary

In this chapter we have presented the implementation details of all our system parts.
We first described the implementation of the MPSS tools, — all implemented as inter-
preted scripts — namely, the paradigm description compiler pdc, the instance variable
detector instancev, the private variable protector protect, and the multiparadigm link
editor mpld. We then described the implementation of each of the paradigms supported
by the blueprint multiparadigm programming environment. The bnf (BNF grammar),
regex (regular expression), and imper (imperative) paradigms were all implemented
using existing tools. The term (term description), btrack (logic programming), and fun
(functional) paradigms were implemented using the blueprint facilities. We finished
by describing the implementation of the integrator multiparadigm application.
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Function Paradigm Module Lines
Symbolic integration btrack sint.pb 127
Lexical analysis regex scan.pl 47
Expression parsing bnf parse.py 76
Numeric integration fun aint.pf 75
Interfacing term ui.pt 131
Graph creation imper main.c 51
Total blueprint 507

Table 5.5: Integrator line count table
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Figure 5.19: Integrator paradigm inter-operation call graph



Chapter 6

Critical Analysis

In this chapter we try to provide a critical evaluation of our work. Different aspects
of our work must be evaluated using different evaluation criteria. The aspects that
we evaluate are: its contributions to multiparadigm research, its standing as a pos-
sible programming language offering, the process support available under the MPSS

environment, and multiparadigm programming support under the blueprint system.

6.1 Multiparadigm Research Contributions

6.1.1 Multiparadigm System Structure

We started our work on multiparadigm programming by describing a suitable structure
and approach for developing multiparadigm systems. Existing systems can be divided
into multiparadigm applications built by combining single paradigm languages, special
purpose multiparadigm languages and general purpose multiparadigm programming
frameworks. All three, attack the problem of multiparadigm programming in an ad
hoc way, at different levels of abstraction. In our work, we defined these levels of
abstraction by distinguishing between a multiparadigm application, a programming
environment, and an environment generator. Thereby, different approaches can be
developed for each abstraction level, and each approach can be designed and evaluated
independently.

We based our approach on object-oriented principles: structuring paradigms using
a class tree. The compilation of code written in a given paradigm was abstracted as a
class method for that paradigm. Class methods, were furthermore used to encapsulate
the run-time behaviour of paradigms, thereby isolating them from unwanted inter-
actions. Inheritance was used to provide a basis for common characteristics across
paradigms. Thus, in contrast to other object-oriented approaches to multiparadigm
programming, we used objects to capture the behavioural, as well as the semantic
model of a multiparadigm system. Furthermore, our approach considers the target ar-
chitecture to be an integral part of our model extending the multiparadigm environment
down to the hardware implementation level.

For the communication between modules written in different paradigms we devel-
oped the call gate abstraction. This is used as the mechanism to convert the tree class
model view seen by the multiparadigm programming environment developer into a

125
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flat multiparadigm environment seen be the application programmer. The call gate ab-
straction, is a global inter-paradigm communication mechanism, with only local com-
munication complexity overhead i.e. each paradigm need only implement the calling
mechanism for its super-class.

Our approach provides a multiparadigm environment development process model
that can be used to engineer multiparadigm environment generators. The object-based
encapsulation of each paradigm allows virtually unlimited extensibility of the system.
Furthermore, the integration of the hardware architecture in our model, allows effi-
cient, orthogonal implementations.

On the other hand, the rigidity of the development process that we provide may
preclude more innovative approaches. Our model, as described, does not provide con-
crete support for reasoning on a global inter-paradigm scale. Furthermore, the weak
coupling of the paradigms might limit the functionality of the system, as possible syn-
ergistic effects that could be exhibited between strongly coupled paradigms will not
be seen in our system. Also, the incorporation of the hardware architecture into our
design model may limit an implemented system’s portability, and the call gate ab-
straction can be inefficient in the case of frequent calls between semantically distant
paradigms. Since multiparadigm application programmers are unaware of a system’s
the class structure, this inefficiency may come as a surprise.

We feel that the most important refinement in our system would be stronger sup-
port for reasoning about programs. This could be implemented at a local level for each
paradigm by developing the equivalent of a logic call gate, which would allow the im-
port of external theories into the reasoning model of the logic used by each paradigm.

6.1.2 Multiparadigm Environment Generators

There are not many systems that provide a framework suitable for implementing multi-
paradigm programming environments. The inter-process communication facilities pro-
vided by the Unix operating system can be used as a basis for creating a multiparadigm
environment as described in section 2.3.1 (page 30). In addition the MLP system, de-
scribed in section 2.3.2 (page 30), could be used as a platform for developing multi-
paradigm programming environments by utilising the support it provides for cross-
language procedure calls.

Our system provides a complete framework for integrating existing tools and new
paradigm implementations. These are uniformly described using class definition files
as outlined in section 4.3.3 (page 74). Special tools are provided to ease the effort of
integrating existing implementations of specific paradigms into the integrated system.
The multiparadigm link editor allows the linking of arbitrary paradigm classes into a
single executable file.

The advantages of our system lie in its efficiency, as the multiparadigm applica-
tion will be implemented as a single executable file, avoiding expensive kernel context
switches, and modularity as the paradigm description files isolate the paradigm im-
plementations from each other. Furthermore, by making it possible to use existing
tools, the implementation effort of multiparadigm programming environments can be
significantly reduced.

On the negative side, the system as currently implemented, requires from the multi-
paradigm environment developer, a fair amount of understanding of the paradigm im-
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plementation mechanisms. The implementation support provided is relatively low
level; support for value mapping, calling convention normalisation, and type check-
ing across paradigms must be implemented by hand. The same lack of automatic
support is apparent during the design effort of a multiparadigm environment: no tools
are available for checking consistency across paradigms, or browsing the paradigm
tree class structure. On the implementation side, the system as currently implemented,
is closely tied to the functionality provided by the Unix operating system. Its porta-
bility to other platforms is questionable. Finally, having used the system for a single
prototype implementation leaves some questions on its robustness and completeness.

Most of the possible refinements of the system could be made possible through its
wider and more extensive use. Using the system in more applications would provide us
with better insight into the design issues of such systems. Hopefully, a more extensive
use of the system would provide the necessary clues for understanding the type of
high level design and implementation support tools needed. Furthermore, the system
could be enhanced by providing generic (i.e. paradigm and implementation method
independent) multiparadigm debugging and program instrumentation support.

6.1.3 Multiparadigm Programming Environment

In contrast to the sparsity of multiparadigm environment generators, there are many
systems supporting multiparadigm programming. These were categorised in chapter 2
(page 3) into new languages, language extensions, and support systems.

Multiparadigm programming environments based on our approach provide isola-
tion and weak coupling between an arbitrary number of paradigms. The blueprint
system allows the application programmer to implement a system using any combi-
nation of the six paradigms provided. Some of them were based on tried, existing
tools, thus providing efficient and reliable implementation of those paradigms. The
model of the system presented to the application programmer is a flat collection of
paradigms that can be mixed and matched according to the system’s needs. Finally,
uniquely in our approach, features common to a number of paradigms were abstracted,
and implemented by delegating their realisation to a superclass level.

The system, as implemented, provides a wide range or programming paradigms
that can be used to implement a multiparadigm application. Due to the weak cou-
pling between the paradigms, it is easy to reason about any of them, using the logic
associated with that paradigm.

On the other hand, as blueprint is a prototype implementation, some paradigms
are implemented in a suboptimal manner1. Thus the execution speed of applications
heavily relying on those paradigms will suffer. In addition, the system requires the
programmer to know how the paradigms interface with each other. Some interfaces
(e.g. fun-term) are less transparent than others; the former require from the application
programmer to pay attention to the types and values of the parameters used in cross-
paradigm calls.

Blueprint could be refined by providing type checking and data mapping support
for calls across paradigms. Thus, the programmer would not need to worry about
compatibility of data values across different paradigms. Some of the paradigms could

1The implementations of fun and btrack are based on theoretical — non-optimised — interpretation
models.
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have been implemented an order of magnitude more efficiently by utilising existing
industrial-strength compilers that are available for them.

6.1.4 Multiparadigm Programming Applications

We did not find in the literature many descriptions of applications implemented in
multiparadigm languages or environments. The few that we found, are described in
section 4.5.4, page 96.

Our implementation of the integrator application illustrates a practical application
using a number of programming paradigms. The integrator uses all six paradigms
provided by blueprint. We feel that each paradigm was used, because that part of the
integrator was best expressed in it. However, compared to the commercial mathemat-
ical software packages described in sections 4.5.4 and 4.5.4 (page 96), integrator is a
toy application. Its uses are very limited; it should best be thought as a demonstration
of technology, rather than as a mature application program.

We believe that there are many applications that can benefit from being imple-
mented in a multiparadigm programming environment. Mathematical packages form
one of the possible application domains, and integrator can definitely be extended to
handle more interesting problems. Many other applications can also be implemented,
in order to further prove the viability of multiparadigm programming.

6.2 Evaluation as a Programming Language

In the following sections we will evaluate our system using classical programming
language evaluation criteria [GJ82, pp. 255–265].

Simplicity

Simple languages are easy to learn, and reason about. Our system provides simplicity
by separating the different paradigms into different modules, and only providing weak
coupling between the paradigms. Of course, a multiparadigm environment will, by its
very nature, be more complicated than a language based on a single paradigm. One
other source of complexity in our system is the data mapping needed in order to pass
values between the interfaces. As we indicated in section 6.1.3 this complicated task
can be eased by automating it.

Expressiveness

The provision of many paradigms by our system positively contributes to the expres-
siveness of it. The programmer can choose the paradigm that is best suited for the part
of the application he is trying to express.

Orthogonality

A programming language is orthogonal when its constructing elements can be com-
bined without any arbitrary restrictions. A classic example of a language lacking or-
thogonality is Pascal, which places a number of arbitrary restrictions on the types of
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elements that can be passed and returned from functions, the type declarations, and
initialisation constants [Ker81]. Our system is orthogonal on the type of limited the
interaction allowed between its paradigm components: the same mechanism is used
to communicate between any two paradigms. On the other hand, most of the features
provided be each paradigm can not be used in modules expressed in other paradigms;
this is a severe lack of orthogonality, which we felt was necessary for the sake of sim-
plicity. A more orthogonal approach should be based on a unifying logic, such as the
one described in [GM87], but would be less extensible than ours.

Definiteness

Definiteness is an aspect of the programming language description. Programming lan-
guages described in vague and imprecise terms will be difficult to read and implement.
We tried to provide support for definiteness in our system, by explicitly requiring para-
digm documentation as part of a paradigm class. The weak coupling between the para-
digms makes the description of paradigm interactions straightforward. However, the
bottom line lies in the definiteness of the actual paradigm description. We feel that this
area could be improved.

6.2.1 Readability

We feel that our approach enhances the readability of multiparadigm programs, by
isolating the paradigms in different units. In this way, the understanding of a mod-
ule’s functionality only requires following the abstraction model of a single paradigm.
Furthermore, the breadth of paradigms provided will allow declarative descriptions of
many aspects of the problem, thereby increasing the readability of the overall system.
On the other hand, a programmer must be proficient in all the paradigms used by the
system.

6.2.2 Reliability

Programs written using our multiparadigm programming approach can be more re-
liable than programs written in a single paradigm in cases where the utilisation of
the multiparadigm approach yields programs that are smaller and consequently con-
tain less errors. The weak coupling between the paradigms should furthermore in-
crease program reliability, by minimising unwanted interactions between paradigms.
On the implementation side, reliability is enhanced by support tools like protect, and
the multiparadigm linker mpld described in sections 4.3.5 (page 75), and 4.3.6 (page
77). Furthermore, existing, field tested, paradigm implementations can be utilised.
However, the modularity of the system, and the large number of components used, can
be a source of unreliability, especially in cases where new versions of existing tools
coming from diverse sources are introduced in a stable, functioning system.

6.2.3 Efficiency

We distinguish efficiency in terms of CPU utilisation (time efficiency), and in terms of
memory utilisation (space efficiency).
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Time

Our system has great potential for compiling programs that will be executed in the
least possible time. The separation between the paradigms and the support for existing
implementations help by ensuring that each paradigm can be translated without taking
into account complexities of other paradigms, and by making it possible to use compil-
ers that generate the most efficient code. The module division between the paradigms
allows the implementor to choose classic efficient compilation approaches described
in the literature, instead of having to invent new compilation schemes. In addition,
the class structure of our system allows for multiple optimisations to be performed at
different levels of the paradigm class tree. For example, we can envisage that a declar-
ative logic programming paradigm can be optimised at its class, by providing mode
annotations using abstract interpretation, further optimised at the imperative level by
doing a global data flow analysis, and optimised a third time at the target machine
paradigm class by instruction scheduling.

Space

We do not consider our system to be very efficient in terms of space overhead needed
by the various paradigms. There are two sources of this inefficiency: the modularity of
our approach which requires a separate run-time mechanism for each paradigm, and
the inter-paradigm calls which require space-consuming mapping of variables from the
type expected by one paradigm to the type expected by the other. On a brighter side,
it is possible to abstract behaviour common to two paradigms into a superclass of the
two, thus saving the space that would have been required by two separate implemen-
tation mechanisms. We did this in blueprint, by providing support for the handling of
terms used by the functional and logic programming paradigms, in the term paradigm
superclass, as described in section 4.4.4, page 80.

In summary, we believe that our approach can be favourably compared to existing
programming languages. The programming language evaluation criteria as applied, re-
vealed an expected variety of the tradeoffs that are common in programming language
design. We feel that our choices were reasonable and justified.

6.3 MPSS as a Process Support Environment

MPSS can be evaluated as a multiparadigm environment generator and, more generally,
as a process support environment. The process that MPSS is supporting, is that of the
design, implementation, and evolution of multiparadigm programming environments.
Our process support environment evaluation criteria are based on [Ste87]. A more
detailed evaluation methodology can be found in [Wei87].

6.3.1 Process Support and Evolution

A process support environment should support the underlying process, and provide
a basis for its evolution. MPSS is specifically targeted towards the design and im-
plementation of multiparadigm programming environments. It was built in order to
support the object-oriented abstraction based process, that we envisaged as central to
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the development of such systems. It is designed to be used together with the other
tools available under the Unix operating system, supporting databases, configuration
management, and version control. One can criticise it, because it fails to provide an
integrated environment where all these facilities can be used together in a coherent
way. As MPSS is built as a set of cooperating tools that use the Unix communication
mechanisms, it can be easily extended, and thus support the evolution of our process.

6.3.2 Integration with the Conceptual Schema

A process support environment must be properly integrated around a well-defined
conceptual schema [Ste87, p. 34]. As we indicated in the previous section MPSS is
based on, and very tightly integrated with the conceptual schema (paradigms as object
classes) of our process. We found it a great help when implementing the blueprint
multiparadigm programming environment. Some of the shortcomings of the initial
versions were identified in that stage and are now rectified. The support for our pro-
cess’s conceptual schema could be further improved as explained in section 6.1.2.

6.3.3 Evolution

The software process is — like the software itself — a constantly evolving entity. The
support environment should therefore be capable of following and supporting this evo-
lution. As explained in section 6.3.1, MPSS depends on the tools available under the
Unix operating system for many areas of the process support. Although this means that
MPSS does not provide a tightly integrated support environment, it provides the advan-
tage that new and enhanced tools can be easily integrated into the support environment,
by simply making them compatible with the Unix and MPSS system conventions.

6.4 Blueprint as a Programming Environment

In this section we will evaluate the paradigm support provided by the blueprint proto-
type multiparadigm environment implementation. We will base our analysis on para-
digm support evaluation criteria described in [Bob84, KTMB86].

6.4.1 Linguistic Support

A system provides linguistic support for a paradigm when there is a close correspon-
dence between a program’s linguistic expression and the programmer’s intentions. We
believe that in blueprint, the correspondence between the program’s linguistic expres-
sion and the programmer’s intentions is comparable with the state of the art for the
paradigms implemented. In the paradigms implemented by existing tools (impera-
tive, BNF grammar, and regular expression), the tools provide a close linguistic map-
ping. The logic programming paradigm closely resembles the Prolog syntax, which is
widely used for programming in that paradigm. The functional paradigm, allows the
representation of functions as first class objects. It lacks however, many features that
are usually found in functional programming languages, such as list comprehensions,
polymorphic type checking, and pattern matching.
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6.4.2 Program Semantics

The semantics of programs implemented in the various paradigms should be clear and
simple. The programs implemented in each paradigm should be easily understandable
by humans, and also susceptible to machine analysis and transformation. Again, we
feel that the semantics of the paradigms supported are clear, and — where appropriate
— susceptible to machine analysis and transformation. In particular, the clear division
between the different paradigms allows for standard techniques, documented in the
literature, to be applied to the appropriate paradigms. The cases of inter-paradigm
communication must be treated in a special way. Some propositions for reasoning
in mixed-paradigm systems, were listed in sections 2.2.1 (page 8) (functional with
logic programming), 2.2.2 (page 10) (imperative and logic programming), 2.2.3 (page
16) (imperative and functional), and 2.2.7 (page 24) (imperative, functional, and logic
programming). General techniques for dealing with this problem have been proposed
in [Zav89]. Unfortunately, in our approach, the semantics of the whole system can
only be understood in terms of the root class paradigm; in our case the imperative
paradigm.

6.4.3 Execution Support

The system must efficiently support the execution of code written in every paradigm.
We think that our system supports the rapid execution of the parts written in the im-
perative, BNF-grammar, regular expression, and rule-rewrite paradigms. The execu-
tion speed of programs written in term is about the same as that achieved by popular
compiled-Prolog systems such as SB-Prolog [Deb88]. The logic programming, and
functional paradigms are implemented in a suboptimal (interpreter-based) way, which
results in slow program execution. The execution speed of programs written in them
is about an order of magnitude slower than that of compiler-technology based declar-
ative systems such as New Jersey ML [AM87] and SB-Prolog [Deb88]. Furthermore,
the rule-rewrite paradigm and its subclasses lack a garbage collection mechanism, and
therefore consume inordinate amounts of storage space.

6.4.4 Error Reporting, Tracing, and Monitoring

Tracing and monitoring facilities are specifically targeted towards program debugging.
The view of the program state should be the one most appropriate to the paradigm.
Blueprint provides some debugging information on the program being executed. We
have tried to use the most appropriate format, for the debugging information associ-
ated with each paradigm, and therefore debugging can always be performed at the pro-
gramming paradigm level, rather than at the implementation paradigm level (initially
our debugging for all paradigms was done using a C language symbolic debugger).
Still, the debugging support provided for most paradigms is in the form of a trace list-
ing. Higher-level support should be provided in the form of a multiparadigm symbolic
debugger.
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6.4.5 Analysis and Performance Tuning

Analysis and performance tuning tools are needed in order to improve the performance
of real-world applications. Performance analysis tools enable the programmer to make
meaningful time-space tradeoffs and to direct his optimisation efforts to the program
parts from which the highest performance benefit can be expected. The tracing output
mentioned in the previous section, can be used as a primitive instrumentation facility.
We have used it in some tests, in order to measure the number of calls made for a given
predicate. Although there is a lot of room for improvement, such improvement will
only be meaningful in conjunction with more efficient paradigm compilers.

6.4.6 User Interface Tools

A programming environment can be enhanced by the existence of user-interface edi-
tors, and automated application builders. As blueprint uses a number of standard para-
digm representations and the Unix standard calling conventions most user-interface
tools (such as [BCH+90]) that generate code compatible with one of the paradigms
supported by blueprint can be used.

6.4.7 Peaceful Paradigm Coexistence

In a multiparadigm programming environment, each paradigm should be well inte-
grated with the rest, with no unwanted interactions. This is achieved in blueprint by
the weak paradigm coupling. Thus, within code implemented in a single paradigm
there are absolutely no interactions from other paradigms. Functions from other para-
digms must be explicitly imported and used. In that case however, the semantics of
the paradigm using those functions are diluted by the semantics of the imported para-
digm’s functions. As an example, importing an imper function into fun can be used to
create functions with side effects. The runtime mechanisms of all paradigms are also
well isolated, thanks to the object-oriented class encapsulation provided by MPSS.

6.4.8 Support for New Paradigms

A system supporting the transparent addition of new paradigms can be a significant
asset for the evolution of programs implemented in it. Blueprint does not provide such
support. However, its class-based implementation using the MPSS generator, guaran-
tees that paradigm additions will be easy, and transparent. Arbitrary paradigms can be
added to the blueprint environment, either as subclasses of existing paradigms, or by
making the entire blueprint structure a subclass of another paradigm.

6.5 Summary

In this chapter we attempted a critical analysis of our work, and specifically, its con-
tributions to multiparadigm research, its standing as a possible programming language
offering, the process support available under the MPSS environment, and multipara-
digm programming support under the blueprint environment. Our main contributions
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to multiparadigm research, are an identifiable multiparadigm system structure, the de-
scription of multiparadigm environment generators, the object-based design of multi-
paradigm programming environments, and the documentation of a multiparadigm ap-
plication. We evaluated our system using the programming language evaluation cri-
teria of writability, readability, reliability, and efficiency. We examined the process
support offered by MPSS, by looking into its scope, integration with the conceptual
schema, and evolution. Finally, blueprint was evaluated as a programming environ-
ment, in the areas of linguistic support, program semantics, execution support, moni-
toring, and paradigm support.



Chapter 7

Future Work

Multiparadigm programming is a relatively new research area in computer science.
Any research in it is bound to raise many new questions; this thesis is no exception.
In previous chapters we already hinted at possible enhancements to our work. In this
chapter we summarise and categorise these enhancements, and outline some promis-
ing new research directions. We will start by describing how our approach can be
improved, proceed by outlining possible enhancements to the design of MPSS and
blueprint, and finish by outlining possible new applications of our work.

7.1 Approach Improvements

Our approach, although completely guiding us in the design and implementation of the
MPSS, and blueprint prototypes, has only very lightly touched three important aspects
of multiparadigm systems. These are:

• a development methodology for multiparadigm applications,

• the formal semantics of multiparadigm systems, and

• type checking across paradigms.

In the following sections we will discuss each one of these aspects in turn.

7.1.1 Development Methodology

A development methodology, is a set of rules that guide the application programmer
in the task of designing the application. Most programming paradigms, are associated
with a suitable design methodology. Examples are the structured analysis / structured
design method which is mainly applicable to the imperative paradigm, and the explo-
rative, or rapid prototyping design method which is associated with the logic program-
ming paradigm, or interpretative implementations of the object-oriented paradigm.
There is no methodology, specifically targeted towards multiparadigm programming.
Such a methodology would guide the designer in decomposing the problem, choosing
the appropriate programming paradigms, and dividing the implementation work across
the paradigms. The methodology would have to take into account the breadth of char-
acteristics that would exist among the paradigms. Factors like the abstraction level
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of each paradigm, the ability to reason about specific parts of the program, execution
efficiency, and the cost of inter-paradigm communication, would have to be part of
the methodology’s decomposition criteria. The methodology should of course extend
throughout the system’s life-cycle, and therefore, the relative modifiability and main-
tainability characteristics of different paradigms, should also be taken into account.

7.1.2 Formal System Semantics

Some of the paradigms used in the blueprint environment, are based on an underlying
logic that allows one to precisely define the language and program semantics. Unfor-
tunately, the same is not true for the resulting, composite, multiparadigm environment.
As we indicated in section 6.4.2 (page 132) the reasoning level of the composite sys-
tem, is that offered by the root paradigm, in our case the imperative paradigm. Even
that, is a theoretical possibility, due to the diverse systems used in creating blueprint:
none of the systems is described by rigorous semantics. One possible solution to this
problem is a unified underlying logic on which the whole system will be based. In sec-
tion 2.4.3 (page 36) we criticised this approach as lacking modularity and extendibil-
ity. An approach compatible with the modular composition of our system, would be a
method for interfacing logics of different paradigms, in a way similar to the mechanism
used for interfacing the inter-paradigm calls, using call gates. As with call gates, only
a small number of such interfaces would be needed to cover the whole paradigm tree.
However, the procedure for translating a logic theory from one paradigm to another, is
likely to be extremely complicated. For this reason, we feel that this method is only
suitable for automatic implementation, on a computer aided multiparadigm reasoning
system.

7.1.3 Type Checking Support

Our approach does not deal with the type systems of the underlying paradigms. We
came away with this omission, by imposing the responsibility for type correctness
across paradigm calls on the application programmer. Although this can be acceptable
— and indeed practical — for a prototype system, support for a type-system is indis-
pensable for real multiparadigm implementations. The problem of supporting types
across paradigms, is due to the diversity of the type systems that are found on different
paradigms. Thus, the approach must handle anything, from the typically typeless logic
programming languages, to the strong polymorphically typed functional languages, to
the run-time dynamic type checking found on some object-oriented implementations.
We feel, that this significant challenge should again be solved by a method similar to
the one used for call interfacing using call gates. Each paradigm should be able to
convert the types of procedures imported from its superclass to the types supported by
it, and the the types of its exported procedures to the types supported by its superclass.
A database containing the type information from the definition modules of all files,
will be implemented at the root paradigm class level, as illustrated in figure 7.1.

The methods for performing this type conversion must exist at compile-time, in
the form of specialised type compilers, and — where required1 — at run-time as well.

1E.g. dynamic type checking.
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Figure 7.1: Multiparadigm type checking using type gates

Every source file will have a definition module associated with it. All procedures im-
ported and exported from that module will be listed in that file. A paradigm-specific
type converter will compile the definition module to conform to the type system ex-
pected by the paradigm’s superclass. It will also perform type checking for procedures
that match at that level.

This approach, although practical, has the disadvantage that the quality of type
systems of paradigms between two communicating paradigms affects the quality of
the type checking between them. For example, if two strongly typed paradigms have
a typeless paradigm as their common superclass, all type checking between them will
be eliminated. Similarly, the communication of two paradigms that have as a common
superclass a run-time type checking paradigm, will have the overhead of run-time type
checking. Judicious arrangement of the paradigms in the class tree is therefore very
important.



138 CHAPTER 7. FUTURE WORK

name

super

extension

tool

instancev

runtime

fun

term

.pf

funpc

arity0

lfun.a

fun.pdef

fun

btrack

term

bnf

regex

imper

Class Tree

Figure 7.2: Paradigm class browser interface

7.2 MPSS Enhancements

We will now examine the specific improvements that could be made to the prototype
implementation of the MPSS generator. MPSS was designed with the narrow scope
of proving the practicality of our approach. Therefore, tools that were not absolutely
needed for that goal, were not implemented. In the following sections, we will roughly
describe some possible tools that would enhance MPSS. These tools, would ease the
task of creating multiparadigm environments, and raise the quality of the resulting
systems.

7.2.1 Paradigm Class Browser

A multiparadigm programming environment can have a very complicated class struc-
ture. Currently the structure of the system, is reflected by the variable relationships as
described in the various class definition modules. This can be a source of confusion
and errors. High quality object-oriented environments offer a class browser [Gol80,
pp. 297–307]. We envisage, that such a tool, would be also very useful in the case of
MPSS. The paradigm browser should provide a graphical picture of the system’s struc-
ture, and allow the user to interactively modify the structure and its elements. Figure
7.2 illustrates a hypothetical screen dump of the browser in operation.

The browser would automatically maintain the integrity of the structure, and ensure
that the classes were always connected in the form of a tree. The user should be
able to view and change the elements of each paradigm class, by identifying the class
and the element, using a “point and click” interface. Additionally, the browser could
be extended to be the front end of the whole multiparadigm environment generator,
offering controlled access to the source code of the paradigm implementations, and
the other related tools.
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7.2.2 Name-space Verification

The multiparadigm programming environments produced by MPSS create the final ex-
ecutable program file, by linking the object modules of the various source files, to-
gether with the run-time libraries of the associated paradigms. The run-time libraries
are typically developed independently from the multiparadigm programming environ-
ment. Consequently, there is a possibility that symbol names used by one paradigm
implementation, may conflict with symbol names used by another. The instancev tool
handles all such cases, where the symbol names, appear in every module generated by
the compiler of a paradigm. It does not however, check for global variables that might
conflict across paradigms. This task, must be manually performed by the programmer.
When the programmer discoverers such conflicts, he must devise ad hoc solutions de-
pending on the type of the problem. This task could be automated, by a special tools
that would search all the libraries and object modules containing paradigm support
code 2 and report any global name conflicts. An improved version of this tool, could
resolve the conflicts by using a suitable renaming strategy.

7.2.3 Type Checking Support

As we indicated in section 7.1.3, our approach would benefit from supporting type
checking across paradigms. The approach we outlined in that section, could be per-
formed by MPSS using an enhanced version of the paradigm compiler. The paradigm
class definition files would be augmented with a section describing the type system of
each paradigm using a sufficiently general notation, possibly with references to strate-
gies implemented as class methods. The paradigm compiler, would then compile the
type system descriptions into type call gates, that would provide the interface from the
type system of each paradigm to the type systems used by the other paradigms.

7.2.4 Automatic Call Gate Implementation

Currently, the call gates for each paradigm must be hand-crafted by the multiparadigm
environment implementor. Using an approach similar to the one outlined in the pre-
vious section for the automatic type call gate implementation, the calling convention
type mapping, and hence the implementation of call agates, could also be automated.
In this case, the paradigm class definition files would be augmented with description
of the calling conventions used in each paradigm, again complemented by program
code, if needed. The paradigm description compiler, would then use this description,
to create the import and export call gates for each paradigm.

7.2.5 Debugging Support

Program debugging in the multiparadigm environment, is currently separately imple-
mented for each environment developed. MPSS does not provide any support for this
task. As we hinted in section 6.1.2 (page 126) MPSS could ease the task of creating
facilities for multiparadigm debugging, by providing a multiparadigm debugger. This
would be a generic support tool, similar in nature to the multiparadigm link editor: it

2Compiler-generated object modules are checked by instancev.
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would be provided by MPSS to be distributed with every multiparadigm programming
environment developed under it. Such a debugger would offer a common interface for
debugging code implemented in any paradigm. A possible structure for such a system
is shown in figure 7.3.

Paradigm specific issues, such as data and code representation would be handled
by special routines that would be provided by each paradigm (possibly described in the
paradigm class definition file). Furthermore, the handling of the code in its compiled
form, would be made possible by special debugging hooks provided by the implemen-
tations of each paradigm. Such hooks would provide the ability to insert breakpoints
into the code, and modify data values. The interfacing between the paradigm specific
interfaces, and the multiparadigm debugger, would be handled by a special paradigm
selector module. That module would intercept requests form the debugger, and direct
them to the appropriate paradigm specific module. A special tool would be needed,
to map the debugging support provided by existing paradigm implementations, to the
format expected by the multiparadigm debugger.

7.2.6 Instrumentation Support

Instrumentation support for the multiparadigm programming environment should also
be provided in a form similar to that provided for debugging, i.e. a multiparadigm call
graph analyser and profiler. These tools would probably utilise the same hooks pro-
vided for debugger support, to create a call graph and a timing profile of the executed
code. An interesting feature of such a tool would be the capability to categorise the
time among paradigms, and also — where applicable — indicate what percentage of
the time was spent executing paradigm code, and what part was used by the paradigm
support machinery (e.g. the garbage collector). This could help the multiparadigm
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application implementor, decide which parts to implement in which paradigms.

7.2.7 Other Language Tool Support

Programmers often use a number of language-specific tools to enhance their produc-
tivity. Specific examples are:

• source file tag generators that create index files for all program public symbols
(such as the Unix ctags utility),

• pretty-printers and source formaters (such as the Unix tgrind, cb, and indent)
utilities, and

• language-specific editor modes (e.g. the c-mode of the Emacs [Sta84] editor.

All these can be handled in a multiparadigm environment by adding new methods to
the paradigm description class. Thus, every paradigm description will be augmented
with specific methods for the features indicated. The method descriptions can be
declarative (e.g. a list of keywords that must be emboldened for pretty-printing, or
a regular expression for locating public symbols), or imperative for more complex
tasks (e.g. Emacs-lisp code for an editor mode).

7.3 Blueprint Enhancements

The blueprint prototype multiparadigm programming environment can be improved in
three different ways:

1. more efficient paradigm implementations,

2. additional programming paradigms, and

3. incorporation of MPSS enhancements.

In the following sections we will offer more details on these possible enhancements.

7.3.1 Efficiency

The paradigm implementations provided by blueprint are implemented, as mentioned
in section 6.1.3 (page 127), in a suboptimal way. The implementations of the func-
tional and logic programming paradigms, are merely technology demonstrations, and
are not suitable for heavy-duty work. The execution speed of the code generated for
those two paradigms is very slow, because the implementation is based on an inter-
preter. The execution speed can be vastly improved, by implementing a new compiler,
or using one of the existing compilers, adapted for blueprint. In addition, the imple-
mentations of btrack, fun, and term, consume inordinate amounts of memory space,
which are never returned to the application memory pool. This situation could be
improved by an improved implementation of fun and btrack. For term, we had iden-
tified during its design, that many of the memory allocations were superfluous, and
could thus be eliminated with some additional management overhead. Furthermore,
there are many optimisations that are possible on the term code generation, such as tail
recursion elimination, will also result in significant memory savings.
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Figure 7.4: Blueprint paradigm extensions

7.3.2 Additional Paradigms

Another way to make blueprint a more attractive programming environment would
be the provision of additional programming paradigms. Two paradigms that would
easily fit the model and scope of the system, are a paradigm based on communicating
sequential processes (CSP), and a constraint logic programming paradigm (CLP). The
class structure of such a system is illustrated in figure 7.4. In the following sections,
we will provide a short description of the way each paradigm could be added to the
system.

Communicating Sequential Processes

A communicating sequential process [Hoa78] paradigm, would probably be a sub-
class of the imperative paradigm, in the case of a single processor machine. Under the
SunOS operating system it would be implemented by using the lightweight process
(LPW) library and the associated routines. The call gate for communication with the
other paradigms should be provided by the root process, in order to ensure that no un-
wanted interactions result, from the reentrancy limitations of the underlying C library.
By this approach, we can ensure that whenever the call gate is used, the system is in a
stable state, and it is not processing a C library function within an execution thread.

Constraint Logic Programming

Constraint logic programming would naturally be provided as a subclass of the logic
programming paradigm. The constraint logic programming implementation would
offer additional methods for constraint solving, inheriting from the logic programming
superclass all other methods.

7.3.3 Integration of MPSS Improvements

Most of the MPSS enhancements that were mentioned in section 7.2, will apply to the
blueprint implementation, making blueprint a higher quality programming environ-
ment. The most significant improvements on blueprint will be the provision of type
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checking, data mapping, and debugging.

Type Checking

Currently type checking within blueprint is only performed at the level of the imper
paradigm. The types used in the calls among the other paradigms are not checked.
During the development of the integrator application, we spent time chasing errors,
that a type checking system would have identified at compile time. If MPSS had the
support needed for easily creating such systems, then the better paradigm implementa-
tions used within blueprint, would be integrated with the inter-paradigm type checking
support mechanism, so that full type checking would be available throughout the sys-
tem.

Automatic Paradigm Call Data Mapping

The blueprint environment, as implemented, requires from the application programmer
to convert all values passed between the paradigms using functions, such as those
listed in tables 4.4 (page 85), and 4.9 (page 92). Using the automatic inter-paradigm
call data mapping facilities of an improved MPSS, data types would be transparently
mapped across calls. The application programmer would call functions from foreign
paradigms, using the normal paradigm data values, and these would automatically be
converted to the appropriate format for that paradigm.

Debugging and Instrumentation

Finally, the multiparadigm debugging and instrumentation facilities provided by the
enhanced version of MPSS would be used on the code created by blueprint. The data
needed for the multiparadigm debugger is already provided by the tracing output func-
tions of all paradigms, as detailed in pages 85, 92, and 89. The multiparadigm de-
bugger and profiler, would interpret that data to provide a user-friendly, and consistent
multiparadigm debugging interface.

7.4 Interesting Applications of our Approach

In this final section of our chapter, we examine other possible applications of our
approach.

7.4.1 Parallel Processor Target Architecture

One possible application of our approach would be the development of a multipara-
digm programming environment, targeting a MIMD parallel processor architecture.
Such architectures, are supposed to be ideal execution vehicles for declarative para-
digms such as the logic programming and the functional paradigms, but also tradition-
ally offer industrial-strength compilers for the imperative paradigm (typically for the
Fortran language). It should be apparent, that basing a multiparadigm environment
on such an architecture, can be a rewarding exercise. Such an environment, would
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Figure 7.5: Multiparadigm Unix tool composition

be based on a class abstracting the hardware capabilities of the architecture, and pro-
viding process scheduling and communication mechanisms. On top of that class, we
would then place the imperative paradigm. The declarative paradigms, would — as in
the blueprint design — share a common superclass. That superclass would handle the
allocation of processes to processors, by virtualising the processor pool into an infi-
nite number of processors, thereby potentially simplifying the task of the declarative
paradigm implementations.

7.4.2 Multiparadigm Language Development Systems

One area where multiparadigm programming is a long tradition, is the implementation
of language processors. There, the lexical analysis is typically specified using a regular
expression based paradigm, the parsing using a BNF grammar based paradigm, and the
code generation phase is often described in terms of operations on trees [AG85, Tji86,
Rin89]. [GHL+92] describe Eli, a system that is supposed to integrate such tools, with
the help of an expert system. We believe that our approach, can also be used for such a
purpose. The blueprint prototype system, already contains support for lex-like lexical
analysers and yacc-like parsers. It could be extended to provide support for tree pattern
matching, and other paradigms that would increase the productivity of the language
processor implementor. Possible candidates would be, a machine description notation
paradigm, and a language offering a backtracking capability for register allocation.

7.4.3 Multiparadigm Unix Tool Composition

We noted in section 2.3.1 (page 30), that Unix can be thought off as a multipara-
digm programming environment. Our approach can be applied, to integrate many of
the Unix system tools, together with the Bourne shell [Bou79], in the form of a sin-
gle multiparadigm programming language. This integrated language, would be much
more efficient than the schemes based on the interprocess communication mechanism
of Unix, since all process context switches, would be eliminated.

The superclass of that system, would be a paradigm offering a communicating se-
quential process abstraction, with a syntax similar to that of the Bourne shell. All other
paradigms, would be implemented as direct descendants of that superclass, following
the traditional Unix parameter mechanism syntax. A sample class structure for such
a system is illustrated in figure 7.5. This system could be implemented, using the
MPSS multiparadigm programming environment generator. The instancev and protect
tools would be very valuable for integrating the code of all the Unix tools into a single
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executable program.

7.4.4 Multiparadigm Document Processing

Programming languages are not the only computer-related area that can benefit from
our multiparadigm approach. One other area where a number of paradigms can be
found, and multiparadigm programming would be useful, is that of document process-
ing. Exactly as in programming, we can distinguish in document processing declar-
ative document preparation languages such as pic [Ker82] , tbl [Les79], eqn [KC74],
and macro packages such as LATEX [Lam85], and mm [MM884], as well as impera-
tive ones such as MacDraw, troff [Oss79], TEX [Knu89], and Postscript [Inc85] . In
addition, [MK89] describe Monk, a high level text compiler for the sort of declar-
ative constructs implemented by macro packages. Just as in programming different
paradigms are suited for different tasks. In addition — in the domain of document
processing — it is common for documents to be created by teams whose members use
different document preparation tools. A multiparadigm document processing system,
would allow the seamless integration of the output of all the paradigms into a final
product, such as a book.

A sample class structure of such a configuration is shown in figure 7.6. The root
class of such a system, would be a low level page description language, similar to the
one used for describing the end product. A possible example would be the Postscript
language. The other paradigms would be organised as a class tree in the usual fashion,
with lower level languages such as TEX, troff and RTF 3 acting as the superclasses of
higher level languages such as LATEX, mm, pic, and Microsoft Word. Paradigm com-
munication, in this case means the integration of the output of the different paradigms
into the final document. The call gates provided would allow for metric information
to be passed from one paradigm to the other, in order to communicate the size of ob-
jects expressed in different paradigms across them. Many of the paradigms described,

3Rich Text Format: a common inter-application document exchange format.
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offer a facility for incorporating Postscript code, this is one more reason for choosing
Postscript as the common superclass.

7.4.5 Reduced Feature Languages

We finish our discussion of future work, with a personal view of programming lan-
guage design issues, as related to multiparadigm programming. While implementing
blueprint, we found that the modularity of our approach, significantly eased our im-
plementation task. We therefore propose the notion of reduced feature languages, lan-
guages that do only one thing, well. As each language will be very simple, significant
effort can be put into optimising its implementation, by creating a very high quality
compiler, producing very efficient code. The small size of each language, could even
afford us the luxury of formally defining the semantics of the language, and building
a formally proved correct compiler for it. These languages can then be combined, us-
ing our multiparadigm programming approach, to create a programming environment,
offering all the programming paradigms, as correct and efficient implementations.

7.4.6 Application Specific Paradigms

Finally, we would like to mention the possibility of application specific paradigms.
This was already hinted in [Hoa83, p. 37]. With a system like MPSS, the implementa-
tion, and integration of new paradigms, can be made part of the application program-
ming process. Thus, the application programmer can develop paradigms, that contain
the abstractions relevant to the application domain. Such paradigms can for exam-
ple be, a menu hierarchy description language, for applications using a menu user-
interface system, or an operating system function interface description language, for a
system call instrumentation facility like the SunOS trace command [SUN90, trace(1)].
The application programmer, would design the language and, using rapid prototyping
tools, craft a compiler for that language. The language would probably be compiled
into the superclass paradigm of it; therefore, the compilation will be a relatively easy
process. The new language can then be painlessly integrated into the programming
environment, by writing the suitable paradigm class definition module.

7.5 Summary

In this chapter, we summarised and categorised some possible enhancements to our
work, and outlined promising new research directions. Our approach can be im-
proved by describing a precise development methodology, providing formal seman-
tics to multiparadigm environments, and type checking across paradigms. These en-
hancements can be utilised in the MPSS implementation. Additionally, MPSS can be
enhanced by providing a paradigm class browser, automatic call-gate implementation,
and debugging support. Similarly blueprint can be improved by the incorporation of
the new MPSS capabilities. Furthermore, the blueprint paradigms can be more ef-
ficiently implemented, and additional paradigms such as communicating sequential
processes, and constraint logic programming can be added to it.

We outlined possible new research directions based on our approach, by describ-
ing how it can be used to, create multiparadigm environments on parallel architectures,
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provide a conceptual basis for the design of language development systems, implement
an efficient Unix tool composition mechanism, and integrate diverse document prepa-
ration systems. Finally, we proposed the notions of reduced feature languages, based
on a single programming paradigm, and application specific paradigms, developed to
support the implementation of a single application.
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Conclusions

Multiparadigm programming allows the programmer to express the implementation of
a system in a number of different paradigms. The use of multiparadigm programming
techniques, can lower implementation costs, and result in more reliable and efficient
applications. In this thesis, after describing the work related to this area, we presented
our approach to multiparadigm programming, based on a multiparadigm system devel-
oped using object-oriented principles. The problems of multiparadigm programming
were separated into the areas of application development in multiple paradigms, design
and implementation of multiparadigm environments, and generators for creating such
environments. This separation, allowed the methodical study of the different issues
and solutions that exist on each level.

For each area, we identified the problems and requirements, and proposed our
solution. Based on our proposed approach, we then designed and implemented, the
multiparadigm programming environment generator MPSS, providing tools for imple-
menting multiparadigm environments, the multiparadigm programming environment
blueprint which supports programming in six different programming paradigms, and
the integrator application utilising the paradigms provided by blueprint. The critical
evaluation of the implemented systems, and the many exciting extensions of our work,
lead us to believe that our novel approach is sound and practical.

Our main contributions to the area of multiparadigm programming have been the
clear identification of the problem areas, the study organised along that identification,
the use of object-oriented principles in the design of multiparadigm environments, the
call-gate abstraction for the inter-operation of arbitrary paradigms with linear imple-
mentation overhead and flat paradigm structure representation, and the proposal for
multiparadigm environment generators based on our approach. These contributions
were made concrete, by the design and implementation of systems based on our pro-
posed approach.

The area of multiparadigm programming is still young and under development.
We hope that our contribution will provide a basis for new, interesting, and exciting
work.
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[GM86b] Joseph A. Goguen and José Meseguer. Extension and foundations of
object-oriented programming. ACM SIGPLAN Notices, 21(10):153–162,
October 1986. Proceedings of the Object-Oriented Programming Work-
shop held at Yortown Heights, June 9–13, 1986.

[GM87] Joseph A. Goguen and José Meseguer. Unifying functional, object-
oriented and relational programming with logical semantics. In Bruce
Shriver and Peter Wegner, editors, Research Directions in Object-
Oriented Programming, pages 417–477. MIT Press, 1987.



BIBLIOGRAPHY 161

[Gog90] Joseph A. Goguen. Higher-order functions considered unnecessary for
higher-order programming. In David A. Turner, editor, Research Top-
ics in Functional Programming, chapter 12, pages 309–351. Addison-
Wesley, 1990. Written in 1987.

[Gol80] Adele Goldberg. Smalltalk 80: The Language and its Implementation.
Addison Wesley, 1980.

[GPP71] R. E. Griswold, J. F. Poage, and I. P. Polonsky. The Snobol 4 Program-
ming Language. Prentice Hall, 2nd edition edition, 1971.

[Gra88] Robert W. Gray. γ-GLA. In Proceedings of the Summer 1988 USENIX
Conference, pages 147–160, San Francisco, CA, USA, June 1988.
Usenix Association.

[Gre80] John C. Greene. The Kuhnian paradigm and the Darwinian revolution
in natural history. In Gary Gutting, editor, Paradigms and Revolutions,
pages 297–320. University of Notre Dame Press, Notre Dame, London,
1980.

[Gri84] Ralph E. Griswold. Expression evaluation in the Icon programming lan-
guage. In Conference Record of the 1984 ACM Symposium on LISP and
Functional Programming, pages 177–183, Austin, Texas, USA, August
1984. ACM, SIGPLAN, SIGACT, SIGART.

[gro77] MACSYMA group. MACSYMA reference manual. Technical report,
MIT, Massachusets, USA, 1977.

[Gro86] Computer Systems Research Group. UNIX Programmer’s Reference
Manual. Computer Science Division, Department of Electrical Engineer-
ing and Computer Science, University of California, Berkeley, California
94720, April 1986. 4.3 Berkeley Distribution.

[Gro89] J. Grosch. Efficient generation of lexical analysers. Software: Practice
& Experience, 19(11):1089–1103, November 1989.

[GTC+90] Simon Gibbs, Dennis Tsichritzis, Eduardo Casais, Oscar Nierstrasz, and
Xavier Pintado. Class management for software communities. Commu-
nications of the ACM, 33(9):90–103, September 1990.

[Hai86a] Brent Hailpern. Multiparadigm languages. IEEE Software, 3(1):6–9,
January 1986.

[Hai86b] Brent Hailpern. Multiparadigm research: A survey of nine projects.
IEEE Software, 3(1):70–77, January 1986.

[Ham76] Richard G. Hamlet. High-level binding with low-level linkers. Commu-
nications of the ACM, 19(11):642–644, November 1976.

[Han90a] M. Hanus. Compiling logic programs with equality. In Programming
Language Implementation and Logic Programming. International Work-
shop PLILP 90 Proceedings, pages 387–401, Linkoping, Sweden, Au-
gust 1990. Springer-Verlag. Lecture Notes in Computer Science 456.



162 BIBLIOGRAPHY

[Han90b] Michael Hanus. A functional and logic language with polymorphic types.
In A. Miola, editor, Design and Implementation of Symbolic Computa-
tion Systems: International Symposium DISCO’90 Proceedings, pages
215–224, Capri, Italy, April 1990. Springer-Verlag. Lecture Notes in
Computer Science 429.

[Han91] Michael Hanus. The ALF system: An efficient implementation of a func-
tional logic language. In H. Boley and M. M. Richter, editors, Processing
Declarative Knowledge: International Workshop PDK ’91 Proceedings,
pages 414–416, Kaiserslautern, Germany, July 1991. Springer-Verlag.
Lecture Notes in Computer Science 567.

[Har86] Robert Harper. Introduction to standard ML. LFCS Report Series ECS–
LFCS–86–14, University of Edinburgh, Department of Computer Sci-
ence, Edinburgh EH9 3JZ, UK, November 1986.

[Hea87] Anthony C. Hearn. Reduce User’s Manual. The RAND Corporation,
Santa Monica, CA, USA, version 3.3 edition, July 1987.

[Heu86] V. P. Heuring. The automatic generation of fast lexical analysers. Soft-
ware: Practice & Experience, 16(9):801–808, September 1986.
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Glossary

blueprint: The prototype multiparadigm programming environment — we developed
using MPSS — allowing programming in the imperative, rule-rewrite, BNF gram-
mar, regular expression, logic programming, and functional paradigms.

btrack: The implementation of the logic programming paradigm under the blueprint
environment.

call gate The abstraction used for describing the calling convention mapping between
the imported and exported routines of a paradigm and its superclass paradigm.
See also import call gate, and export call gate.

class definition file: A file defining the variables and methods of a paradigm. This file
is compiled by pdc — the paradigm description compiler of MPSS — to create
the compilers and documentation for that paradigm.

class initialisation method: The method that is used to initialise the runtime machin-
ery of a whole paradigm class. For example, for a paradigm supporting dynamic
memory this method would initialise the memory allocation heap.

existing tool support: Support for tools already available in the programming envi-
ronment. These tools are typically interpreters or compilers for some program-
ming paradigms. The support provided, allows the seamless integration of those
tools into the multiparadigm programming environment.

export call gate: An abstraction used for describing a paradigm’s conversion of ex-
ported routines calling conventions, to conform with the conventions expected
by its superclass paradigm.

fun: The implementation of the functional programming paradigm under the blueprint
environment.

generic run-time support: Support libraries and tools provided our a multiparadigm
programming environment generator, for integration into a multiparadigm pro-
gramming environment, that do not depend on the paradigms that will be im-
plemented. In the case of MPSS, this support includes the multiparadigm link
editor, and the class and instance initialisation libraries.

imper: The implementation of the imperative paradigm under the blueprint environ-
ment.
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import call gate: An abstraction describing the calling convention conversion, of rou-
tines that are imported from the superclass paradigm, to the conventions used
within the importing paradigm.

input / output mode: Referring to the arguments of a predicate, specifies whether an
argument is an input variable or a return variable.

instance initialisation method: The method that is used to initialise each separate
module of a paradigm. For example, each BEGIN / END block in a Modula-2
program would be implemented as a separate instance initialisation method.

instance variable: A variable related to the state of a paradigm’s implementation ma-
chinery. Every module implemented in a given paradigm needs a distinct set of
instance variables.

instancev: A tool — part of MPSS — that identifies which of the variables that appear
in the output of an existing compiler, should be made paradigm instance specific.

integrator: The example multiparadigm application allowing the symbolic and nu-
meric integration of expressions. It is implemented in the blueprint multipara-
digm environment.

mpld: See multiparadigm link editor.

mpss: Multiparadigm Programming Support System. A prototype tool suite for build-
ing multiparadigm programming environments. Our implementation of a multi-
paradigm environment generator.

multiparadigm application: A program written in more than one programming para-
digm.

multiparadigm environment generator: A system that can be used in order to de-
sign and implement a multiparadigm programming environment.

multiparadigm framework: A system providing a methodology, and the technologi-
cal support for creating multiparadigm applications consisting of arbitrary para-
digms. MPSS provides such a framework.

multiparadigm link editor: A tool — part of MPSS — that links together object code
from different programming paradigms. It automatically handles paradigm class
and instance variable initialisation, and runtime library integration.

multiparadigm programming environment: A programming language, integrated
environment, methodology, or tool suite that allows the application programmer
to develop an application using more than one programming paradigm.

multiparadigm programming system: A combination of some of the following: multi-
paradigm environment, multiparadigm framework, multiparadigm environment
generator, and multiparadigm application.
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multiparadigm system structure: The overall design on which multiparadigm pro-
gramming systems and multiparadigm applications are based. This includes the
design strategy, the components and their combination, and the way paradigms
inter-operate.

object-oriented paradigm: A programming paradigm based on a combination of ob-
jects containing methods and state, organised in classes, and structured using an
inheritance mechanism.

paradigm description compiler: A tool — part of MPSS — that converts a paradigm
class definition files into a compiler for that paradigm, together with its docu-
mentation.

paradigm class: A set of methods and variables defining the implementation of a
programming paradigm. Paradigm objects, are the modules implemented in that
paradigm.

paradigm description file: A file containing the source description of a paradigm
class. It is compiled by the paradigm description compiler to make the para-
digm described part of a multiparadigm programming environment.

paradigm: A set of laws, theories, applications, and experimentation relevant to a
scientific theory. See section 2.1, page 4. In all other sections of this thesis we
use paradigm to denote programming paradigm.

pdc: See paradigm description compiler.

primitive function: A function defined within the language, and not in terms of other
language elements.

programming paradigm: An abstraction used to express aspects of a system’s im-
plementation. A way of expressing the programmer’s intents. See section 2.1,
page 4.

protect: A tool — part of MPSS — that given a list of variables that should be instance
specific within the implementation of a paradigm, modifies the output of an
existing compiler to isolate those variables.

regex: The implementation of a programming paradigm based on character regular
expressions under the blueprint environment.

signature: A declaration of the arity, and possibly input output modes, of a function
or procedure.

system wrapper: A tool — part of MPSS — that creates a distribution package out of
all components of a multiparadigm environment.

term: The implementation of a term-based rule-rewrite paradigm under the blueprint
environment.

variable protection: The task of hiding the names of some global variables before the
linking process, typically, by prepending to their names, the name of the object
file.
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Appendix A

Implementation Notes

In this appendix we provide detailed implementation notes on term, btrack, and fun.
Code examples have been provided where appropriate.

A.1 Term: Rule-rewrite Paradigm

The term paradigm implementation consists of the following parts:

• lexical analyser: converts the source-code input into tokens,

• parser: converts the stream of tokens into a syntax tree,

• code generator: converts the syntax tree into imper code,

• symbol table: provides a mechanism for the efficient storage and comparison of
strings,

• term support: a set of functions providing support for the basic term datatype,
the term, and

• library routines: a number of routines providing useful term functions.

In the following sections we will describe each of the parts in more detail.

A.1.1 Lexical Analysis

The lexical analyser is implemented in regex. Its functionality is simple: it ignores
white-space, converts special character sequences into the single tokens, and the rest of
the character sequences into atoms of the appropriate type (integer, character, variable,
floating point). The special character sequences converted into appropriate tokens are
the following:

not is import \== == =.. :- -> >= <=

The atom character sequences are converted into term atoms using the functions mkvar,
mkatom, mkint, and mkdouble listed in table 4.4, page 85. As an example, inte-
gers are recognised by the following code fragment:

183



184 APPENDIX A. IMPLEMENTATION NOTES

append([], L -> L).

append([H | T], L -> [H | L2]) :-
append(T, L, L2).

Figure A.1: The append rule in term

[
imply(

head(append, [ [], L ], [ L ]),
[ ]

),
imply(

head(append, [ [ H | T ], L ], [ [ H | L2 ] ]),
[ append(T, L, L2) ]

)
]

Figure A.2: The append rule as a term term

[+-]?[0-9]+ { /* Integer */
yylval.t = mkint(atoi(yytext));
return T_ATOM;

}

After an integer is scanned, the value of yylval.twill contain a pointer to an integer
term atom.

A.1.2 Parsing

The parser is implemented in bnf with a grammar description similar to the one listed
in table 4.5, page 82. The term-expression part of the grammar is expanded, to list
one-by-one all term infix operators whose precedence is set by special precedence
disambiguifying rules. After parsing, the global variable module is set to point to a
term containing the whole parse tree of the program. The parse tree, is of the form of
a list containing all the clause definitions. Each list element is a term with the name
imply and two elements: the head of the clause as a single element of a term named
head, and the rest of its elements in the form of a list. As an example parsing the
append implementation in figure A.1 will generate the term term listed in figure A.2.

The term is created using the interface functions mkterm, mktermbyname,
mkfunctor, and mkatom listed in table 4.4, page 85. For example the bnf rule
for an infix multiplication term is:

| term ’*’ term { $$ = mktermbyname(2, "*", $1, $3); }
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rule-name(input-arg1.1, ..., input-arg1.i − > output-arg1.1, ..., output-arg1.o) :-
body-clause1.1(args),
...
body-clause1.m(args).

...
rule-name(input-argn.1, ..., input-argn.i − > output-argn.1, ..., output-argn.o) :-

body-clausen.1(args),
...
body-clausen.m(args).

Figure A.3: An arbitrary term rule

A.1.3 Code Generation

The code generator, written in term, converts the syntax tree term into imper code. In
order to understand this process, we must first explain how a term rule can be mapped
into imper code. Taking a set of term rules of the form listed in figure A.3 (where
1.i = n.i and 1.o = n.o) we can map it into an imper function of the form listed in
figure A.4. As a concrete example, compiling the append implementation listed in
figure A.1, will generate the imper code listed in figure A.5.

The process of code generation is performed in the following way:

1. A pass is made through the parse tree to create a list of rules defined, or imported,
together with their respective parameter types (input or output).

2. For each rule defined in the parse tree, the parse tree is separated into the rules
that have the same name and arity and the rest.

3. Code is generated for the first set of rules.

4. The process repeats with the rest of the rules.

Code for a set of rules with the same name and arity is generated in the form of a
single imper function as follows:

1. An imper function is declared according to the name and arity as shown in figure
A.4.

2. For every rule in the set, code is generated to check if the input parameters
passed to the imper function match with those specified in the rule head.

3. Code is generated, so that if a match is found each one of the body clauses
will be called while they return TRUE. This is done, by merging the calls in
a boolean-and expression, which is short-circuit evaluated according to the C
programming language specification [ANS89, §3.3.13].
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bool
rule-name (i+ o)(struct s Term *i0, ... struct s Term *i1.i,

struct s Term *o0, ... struct s Term **o1.o)
{

if (matches i0 – i1.i against input-arg1.1 – input-arg1.i ) {
declare a local variable for every output variable
of body-clause1.1 – body-clause1.m
if ( body-clause1.1 && ... && body-clause1.m) {

set o0–o1.o to the appropriate values
return TRUE;

}
}
...
if (matches i0 – in.i against input-argn.1 – input-argn.i ) {

declare a local variable for every output variable
of body-clausen.1 – body-clausen.m
if ( body-clausen.1 && ... && body-clausen.m) {

set o0–on.o to the appropriate values
return TRUE;

}
}
return FALSE;

}

Figure A.4: An arbitrary term rule compiled into imper
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bool
append_3(struct s_Term *i0, struct s_Term *i1, struct s_Term **o0)
{

if (i0->type == et_Null && 1) {
/*
* L is i1

*/
if (1) {

*o0 = i1;
return TRUE;

}
}
if (i0->type == et_C1 && i0->arity == 2 && 1) {

struct s_Term *v0;
/*
* L2 is v0, L is i1, H is i0->t[0], T is i0->t[1]

*/
if (append_3(i0->t[1], i1, &v0) && 1) {

*o0 = mkterm(2, et_C1, i0->t[0], v0);
return TRUE;

}
}
return FALSE;

}

Figure A.5: Append compiled into imper

4. Code is generated so that if all body clause evaluations succeed, the output vari-
ables of the rule are set to the values defined in the head, and the function suc-
ceeds, returning TRUE.

5. The final piece of generated code, is executed when all rules of the set fail: the
function fails, returning FALSE.

The head matching code is generated, by recursively matching the elements of
each term defined in the head, against the input variables passed in the function. This
matching, is performed from the root of the term tree to the branches, also using the
logical and operator of C, so that if the root of two term trees do not match, no further
checks are made. Thus, matching of a term and a parameter is performed as follows:

1. If the term is a variable, ignore it.

2. If the term is an atom, check that the atom name of the term matches that of the
parameter.

3. If the term is a number, check that is has the same value as the parameter.
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4. If the term is a composite structure, check that the name and arity of the term
matche that of the parameter.

5. If the term is a composite structure, recursively invoke the matching procedure
for every element of that term.

If a term variable is used twice within the input part of a rule head, a run-time matching
function fct unifies 2 is called, to verify that both imper variables point to terms
that are equivalent. For example the code for equals(X, X ->). is:

bool
equals_2(struct s_Term *i0, struct s_Term *i1)
{

if (fct_unifies_2(i0, i1)) {
return TRUE;

}
return FALSE;

}

Scanning for variables with the same name is performed recursively through all the
input terms of the rule.

The clauses in the body of the rule are called by creating their input arguments in
situ at the place of call. If the head of a rule matches, local variables are defined to be
used as result holders for the output parameters of the body clauses.

For reasons of run-time and compilation efficiency, there is a direct mapping be-
tween term atoms and imper identifiers. All atom names that are valid as imper iden-
tifiers are used by prepending the prefix et to them. Sometimes though, a term
atom will not form a valid imper identifier. 1 In those cases, a special routine will
transform it into a coded identifier consisting of a string of the ASCII character codes
of the original identifier. Thus for example, the term atom ’hello world’ (which
is not a valid imper identifier, as it contains a space) is converted to the identifier
et X10410110810811132119111114108100. The printing routine of term is
responsible (at compile-time), to map the printing of such atoms to their real names.

A.1.4 Symbol Table

All the atom names that are used in term are stored in exactly one place in memory.
Therefore, comparing two string atoms (or term names) for equality, can be done by a
single pointer comparison operation. This is made possible, by a symbol table, which
is used to store all the atom names. At program load time, when each paradigm ob-
ject is initialised, the symbol table is used to initialise the variables used to refer to
atoms, to point to the respective atom name strings in memory. The same symbol
table, is used by all modules within a program, and therefore comparisons between
terms generated in different modules (or paradigms) behave as expected. The symbol
table, — based on the implementation described in [Spi90] — is organised as a hash

1A term identifier must start with an alphabetic character or an underscore and can only contain
alphanumeric characters including the underscore. In addition, C keywords can not be used as identifiers
[ANS89, §3.1.2].
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#define et_C1 handles[0]

stab_handle handles[1];

void
mpss_add_constructor_instance_term(void)
{

handles[0] = stab_findadd(atoms, ".");

}

Figure A.6: Append initialisation code

table of binary trees. From data presented in [LV73], it appears that a hash table is a
viable technique for organising a symbol table, if another mechanism is available for
resolving hash collisions. The first character of the symbol is used as the index into
the hash table. A special opaque data type the stab entry has been defined as the
handle in conjunction with symbols. In addition, the data type stab table provides
the opaque data type definition of the symbol table. Access procedures for adding new
symbols, accessing existing symbols, walking through the table using a higher order
function, and getting the symbol values are defined.

The class initialisation function of term, initialises the hash entries of the table,
while the instance initialisation method of each module, will add to the symbol table
all the atoms used in that module. All the code in the modules, refers to the atom
names by the handle returned by the symbol table findadd routine. In this sense, the
atom names are similar to the notion of ”dynamic constants” proposed in [GM79]. In
our append example, the initialisation code generated for the append module instance,
contains the statements listed in figure A.6. The identifier et C1 is used throughout
the code generated to refer to the “.” atom name, which is the list constructor functor2.
According to the above, the initialisation code of append, adds to the global symbol
table atoms, the list constructor functor “.”, and initialises the first element of the
handles array, with the address of that symbol in the symbol table. If that symbol
had already been added to the table by another class, then the address returned, would
be that of the symbol first added.

A.1.5 Term Support

Term support (implemented in imper) supplies the basic functions needed to handle
the term data-type. A term is defined as the following imper structure:

struct s_Term {
stab_handle type; /* Term name */
short arity; /* Number of sub-terms */
struct s_Term *t[1]; /* Sub-terms */

2A list [a, b] is just a shorthand for the term .(a, .(b,NULL))).
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};

The first two elements of the structure, the type and the arity, are common for all
terms. The third element can vary across terms; for example it is an integer on terms of
integer type, and a floating point number in terms of floating point type. Furthermore,
there can be an arbitrary number of term pointers in the array denoted by the element
t; the structure is dynamically allocated with a real size depending on the terms arity.
Variables are implemented as special terms whose name is VARIABLE , arity is 0,
but which contain a single element in the t array: the name of the variable.

The term support module implements all term creation functions listed in table
4.4, page 85, and all term access functions listed in table 4.5, page 85. Their imple-
mentation is simple and straightforward. The creation functions allocate the memory
required to store the term structure, and set the members of the structure to the appro-
priate values. Most of the access functions are coded as macros to access the members
of the structure. The only slightly complicated function, is that returning the name of
the functor. That function first needs to examine the type of the functor. If the functor
is of type integer, or floating point number, then it calls the system print routine to
print the value of the number into a static buffer and returns the address of the buffer,
otherwise it returns the name of the symbol as stored in the symbol table.

A.1.6 Library Routines

A term program can use a number of rules that are built-in to the language. These rules
are listed in table 4.3, page 84. Many are implemented in imper, as they provide very
basic functions that need special access to the contents of the term structure. Other,
higher level ones, are coded in term and provide functionality often needed by term
programs, in order to reduce code duplication. The split of the implementation code
between imper and term, reflects both genuine technical decisions and development
history3. Table A.1 provides a summary of the size4 and implementation paradigm of
all the library routines.

A.1.7 Debugging

A simple debugging capability has been implemented by means of a tracer. The term
compiler will generate debugging code when the debugging flag is set. This code will
at run-time, print the calls and exits from the rules. A sample output of the tracer,
for the invocation of the clause t :- append([a,b], [c], L). is listed in figure
A.7. Each line consists of the following parts:

• the name of the port (Call, Exit, or Fail),

• an increasing sequence number,

• the name of the rule, and

3The ability to use term modules together was added fairly late at the term development cycle, and
therefore, up to that point all library routines had to be coded in imper.

4Lines of code without comments.
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Name Paradigm L.O.C.
(<)(A, B ->) imper 40
(>)(A, B ->) imper 38
(\==)(A, B -> ) imper 49
(=..)(T -> L) imper 14
(==)(A, B -> ) imper 48
anint(A -> B) imper 6
append(L1, L2 -> L3) term 4
arg(N, T -> A) imper 19
atom(A) imper 12
cos(A -> B) imper 6
exp(A -> B) imper 6
fail imper 7
functor(T -> N , A) imper 9
head(L -> H) term 1
integer(I ->) imper 12
is(A <- B) imper 52
length(L -> N) term 5
log(A -> B) imper 6
makefunctor(L -> T) imper 9
member(X, L -> ) term 4
nameio(A -> L) imper 16
nameoi(L -> A) imper 16
nl imper 8
pow(X, Y -> Z) term 4
print(T ->) imper 8
real(R ->) imper 12
reverse(L1 -> L2) term 5
sdebugflag imper 7
sin(A -> B) imper 6
tab(N ->) imper 11
tail(L -> T) term 1
tan(A -> B) imper 6
termdebug(F ->) imper 8
var(V ->) imper 12
write(T ->) imper 40
Unary function support imper 17
Total imper 500
Total term 24

Table A.1: Term library routines implementation summary
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Call 0: t_0()
Call 1: test_append_3([a,b],[c],OUT)
Call 2: test_append_3([b],[c],OUT)
Call 3: test_append_3([],[c],OUT)
Exit 4: test_append_3(IN,IN,[c])
Exit 5: test_append_3(IN,IN,[b,c])
Exit 6: test_append_3(IN,IN,[a,b,c])
Exit 7: t_0()

Figure A.7: Append sample debug output

• its input parameters in the case of a Call or the output results in the case of an
Exit.

The tracer is implemented by inserting suitable code at all the entry and exit points
of all rules. This code is compiled, only when debugging is enabled, and therefore no
performance cost is associated with it. Furthermore, the printing of tracing information
can be disabled even when debugging is enabled. The code calls the special function
debug real with the name of the rule, its parameter modes (input / output), and the
actual parameters as arguments. This function prints the tracing information, and can
be used as a hook to provide more advanced debugging support.

A.2 Btrack: Logic Programming Paradigm

The syntax of btrack is relatively near to that of term; for this reason btrack is directly
translated to a term, by a small Perl [WS90] script. An abstract code interpreter based
on a solve/unify loop [Coh85, p. 1313], [ASS85, p. 335–380], [SS86b, p. 150], is
implemented in term. The code that does the btrack to term translation detects all
the import and export declarations and generates the appropriate term call gates.
Thus, for every exported predicate, an equivalent term rule is generated, and for every
imported term rule, btrack access code is generated.

A.2.1 Translation to Term

The btrack interpreter is a term clause of the form btrack(Goal, Rules ->
Bindings). Btrack will try to solve the goal using the rules, and return the gen-
erated variable bindings. Variables in the internal form of btrack are designated by a
name starting with a “$” sign. The predicates of a btrack program are represented as a
rules list. Each predicate of the rules list, is a list. The first element of that list is the
head of the predicate; the goal — if any — is represented by the remaining elements
of the list. The whole list is packaged within the term rule rules(-> Rules) for
retrieval. This is illustrated by the path-find predicate [SS86b, p. 220] listed in figure
A.8 and its associated term rule listed in figure A.9
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path(X, X, [X]).

path(X, Y, [X | W]) :-
edge(X, V),
path(V, Y, W).

edge(a, b).
edge(c, f).
edge(a, c).
edge(c, g).
edge(a, d).
edge(f, h).
edge(a, e).
edge(e, k).
edge(d, j).
edge(f, i).

%%

export path(From, To -> Path).

Figure A.8: Path finding predicate in btrack

rules(->[
[path($X, $X, [$X])],
[path($X, $Y, [$X | $W]) ,

edge($X, $V),
path($V, $Y, $W)],

[edge(a, b)],
[edge(c, f)],
[edge(a, c)],
[edge(c, g)],
[edge(a, d)],
[edge(f, h)],
[edge(a, e)],
[edge(e, k)],
[edge(d, j)],
[edge(f, i)],
[]
]).

Figure A.9: Path finding predicate rules as translated to term
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/* Succeed for an empty goal */
solve([], Prog, env(_, Bindings) -> Bindings).

/* Solve for built-in predicates */
solve([Goal | Goals], Prog, env(Level, Bindings)-> Result) :-

builtin_unify(Goal, Bindings, Newenv),
solve(Goals, Prog, env(Level, Newenv), Result).

/* Solve for rules in Prog */
solve(Goal, Prog, env(Level, Bindings)-> Result) :-

Newlevel is Level + 1,
tryall(Goal, Prog, env(Newlevel, Bindings), Prog, Result).

Figure A.10: Btrack evaluator: the solve rules

A.2.2 Execution

As mentioned above, the execution of a btrack predicate involves finding the vari-
able bindings, that will satisfy a given goal for the set of rules specified. This is
implemented by the solve rule, that takes as parameters the goal, the program,
and the variable bindings, and returns the new variable bindings. The variable bind-
ings are represented as an environment. The environment is a list of terms of type
bind(variable, value), representing bindings of variables to values. This ap-
proach is inefficient, resulting in O(n2) search time. More efficient approaches based
on structure-copying and structure-sharing [BM72] were not implemented in this pro-
totype version. Within the solve rule this list is packaged within a term of type
env(level, environment), where level is the current level of the search
tree. This is used in order to rename variables and avoid name clashes.

The implementation of solve is shown in figure A.10. We distinguish three cases
in its operation:

1. The list of goals is empty: solve succeeds.

2. The head of the list of goals unifies with a built-in predicate: the environment
is updated according to the unification with the built-in predicate and solve is
recursively invoked for the rest of the goals.

3. If the goal does not fall in any of the first two cases, then solve will invoke the
tryall rule which will try to match the goal with any of the goals within the
program, returning a new, updated environment.

Tryall (listed in figure A.11) works by trying to unify the head of the goals
passed as the first parameter, with the head of the predicate list passed as the second
parameter. If this unification succeeds, the rest of the goals passed as the first parameter
are appended to the subgoals of the matched predicate from the predicate list (with the
appropriate variable renaming), and solve is invoked with a new set of goals. If the
goal does not unify with the head of the first predicate in the list, then tryall is
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tryall([Goal | Goals], [[Subgoal | Subgoals] | Rules],
env(Level, Env), Prog-> Result) :-

copy(Subgoal, Level, Nsubgoal),
lunify(Goal, Nsubgoal, Env, Newenv),
copy(Subgoals, Level, Nsubgoals),
append(Nsubgoals, Goals, New),
solve(New, Prog, env(Level, Newenv), Result).

tryall(Goal, [Rule | Rules], Env, Prog-> Result) :-
tryall(Goal, Rules, Env, Prog, Result).

Figure A.11: Btrack evaluator: the tryall rules

recursively invoked with the rest of the predicate list. The copy rule, creates a new
copy of the composite structure passed, with all variables renamed according to level,
by appending to them, an underscore, followed by the character representation of level.

A.2.3 Unification

Unification is performed by first looking up the values of variables passed in the en-
vironment (lunify), and then invoking the real unification rule (unify). The real
unification is based on [SS86b, p. 150] and is listed in figure A.12. The implementa-
tion of the lookup rule is not trivial. When lookup finds a variable binding within
the environment, it has to check the whole environment again for possible bindings
of that variable. Lookup is therefore implemented by calling a recursive version of
lookup with two copies of the environment: one to check for the current variable bind-
ing, and one to use on recursive invocations.

A.2.4 Built-in Predicates

Btrack built-in predicates (listed in table 4.6, page 89) are handled by the special term
rule builtin unify. This tries to match the head of the goal, with one of the
built-in predicates, and then invokes the appropriate predicate implementation. The
implementation is suitably coded in order to provide logical semantics. This is done
by checking if the parameters passed are variables, or constants. A sample implemen-
tation of the plus built-in predicate is listed in figure A.13.

A.2.5 Inter-operation with Term

Inter-operation with the super-paradigm of btrack, term (and through that, by means
of call-gates, with all other paradigms), is achieved by creating term compatible rules
for all predicates that are exported, and btrack compatible predicates for all term rules
that are imported. The term interface rule for each exported btrack predicate, performs
the following functions:

• get a copy of the module’s rules,
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/* Unify after looking up the variables in the environment */
lunify(X, Y, Env -> Newenv) :-

lookup(X, Env, X1),
lookup(Y, Env, Y1),
unify(X1, Y1, Env, Newenv).

/* Unify simple terms */
unify(X, Y, Env -> [bind(Y, X) | Env]) :-

btrackvar(X), btrackvar(Y).

unify(X, Y, Env -> [bind(X, Y) | Env]) :-
btrackvar(X), not btrackvar(Y).

unify(X, Y, Env -> [bind(Y, X) | Env]) :-
not btrackvar(X), btrackvar(Y).

unify(X, Y, Env -> Env) :-
not btrackvar(X), not btrackvar(Y),
atom(X), atom(Y),
X == Y.

unify(X, Y, Env -> Newenv) :-
not btrackvar(X), not btrackvar(Y),
not atom(X), not atom(Y),
term_unify(X, Y, Env, Newenv).

term_unify(X, Y, Env -> Newenv) :-
functor(X, FX, NX), functor(Y, FY, NY),
FX == FY, NX == NY,
unify_args(NX, X, Y, Env, Newenv).

unify_args(0, X, Y, Env -> Env).

unify_args(N, X, Y, Env -> Env2) :-
unify_arg(N, X, Y, Env, Env1),
N1 is N - 1,
unify_args(N1, X, Y, Env1, Env2).

unify_arg(N, X, Y, Env -> Newenv) :-
arg(N, X, ArgX), arg(N, Y, ArgY),
lunify(ArgX, ArgY, Env, Newenv).

Figure A.12: Btrack evaluator: the unify rules
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/* X = Y + Z */
logplus(X, Y, Z -> bind(X, R)) :-

btrackvar(X), integer(Y), integer(Z),
R is Y + Z.

logplus(X, Y, Z -> bind(Y, R)) :-
integer(X), btrackvar(Y), integer(Z),
R is X - Z.

logplus(X, Y, Z -> bind(Z, R)) :-
integer(X), integer(Y), btrackvar(Z),
R is X - Y.

logplus(X, Y, Z -> nobind) :-
integer(X), integer(Y), integer(Z),
R is Y + Z,
X == R.

Figure A.13: Btrack evaluator: plus with logical semantics rules

• execute the btrack evaluator with the term rule as a goal (with suitably mapped
variable names), getting a new environment, and

• set the appropriate term output variables from the returned environment.

For example the term interface code for the path predicate is the following:

path(From, To -> Path) :-
rules(Rules),
btrack([path(From, To , $Path)], Rules, Bindings),
varval($Path, Bindings, Path).

Importing term rules from btrack, is made possible by adding another term rule import -
unify, which is handled in a way similar to the builtin unify rule. One such
rule is added for every imported term rule. The rule is called from solve as another
special case. It performs the following functions:

• looks up the variables of the predicate passed in the current environment,

• verifies that the variables are of the correct type (i.e. that the variables on the left
of the arrow are bound within the environment to constants and that the variables
on the right of the arrow are not bound in the current environment),

• calls the term rule with the correct values, and finally,

• returns back to the btrack evaluator with an updated environment containing the
output variables bound to the term return values.

As an example a btrack import line like
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call: edge(a,$V_1)
call: path(b,i,$W_1)
call: path(b,i,$W_1)
call: path(b,i,$W_1)
call: edge(b,$V_3)
call: edge(b,$V_3)
call: edge(b,$V_3)
fail: edge(b,$V_3)
fail: path(b,i,$W_1)
call: path(c,i,$W_1)
call: path(c,i,$W_1)

Figure A.14: Btrack sample debug output for the solving of path

import cos(A -> B).

will result in the following term code being generated:

import cos(A -> B).
import_unify(cos(V0, V1), Env -> [bind(LV1, R0) | Env ]) :-

lookup(V0, Env, LV0),
lookup(V1, Env, LV1),
not btrackvar(LV0),
btrackvar(LV1),
cos(LV0, R0).

A.2.6 Debugging

Debugging is handled by a tracer following the Byrd [Byr80] model. Is is imple-
mented, by calling a debug information printing rule, at suitable points of the btrack
evaluator. In order to avoid intermixing term debug output from the execution of the
btrack evaluator, together with actual debug out from the btrack evaluator, the term
debugging output is switched off, when executing btrack. In this way, the programmer
debugging a multiparadigm application, will only see debugging output from his ap-
plication, and not “noise” output from the execution of the btrack evaluator. A part of
the debugging output from evaluating the clause path(a, i, P) is listed in figure
A.14.

A.3 Fun: Functional Programming Paradigm

Fun is also implemented using the blueprint multiparadigm programming environ-
ment. Lexical analysis is done in regex, parsing in bnf, intermediate code generation in
imper, and intermediate code interpretation in term. An eval/apply interpreter [FH88,
p. 193–195] written in term provides the runtime machinery.
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Fun Construct Description Intermediate Code
name v1 ... vn = E Function definition val(N, lam(V1, ... lam(VN, E) ... )
expr1 expr2 Function application app(E1, E2)
expr1 infixprim expr2 Infix primitive app(app(prim(P), E1), E2)
number Number num(X)
variable Variable identifier var(V)
primitive Primitive function prim(P)

Table A.2: Fun program representation, as a term environment

fac x =
cond (x == 0)

1
(x * fac (x - 1)).

Figure A.15: A factorial implementation in fun

A.3.1 Lexical Analysis

The lexical analyser for fun, written in regex, converts the input stream of characters
into tokens. During the scanning process, all white space and comments are ignored.
Apart from the single character tokens, four token categories are returned:

1. primitive function identifiers: the names of the fun primitive functions (listed in
table 4.8, page 93),

2. variable names: all other identifiers starting with an alphabetic character,

3. integers, and

4. floating point numbers.

In addition, the character sequences == and <= are scanned as a single token, as are
the identifiers import and export.

A.3.2 Intermediate Code

Fun programs are converted into a term representation of sugared lambda calculus.
Their term representation, is an environment: a list of terms named val, each of
the terms containing the name of a variable, and its value. The way fun language
elements are represented as an environment is summarised in table A.2. In order to
avoid variable name clashing, all variables are given unique names, by appending an
underscore followed by a function definition serial number to their names. As an
example, the environment representation of the fac factorial function listed in figure
A.15 as a term term, is listed in figure A.16.
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val(fac,
lam(

x_9,
app(

app(
app(

prim(cond),
app(

app(
prim(’==’),
var(x_9)

),
num(0)

)
),
num(1)

),
app(

app(
prim(’*’),
var(x_9)

),
app(

var(fac),
app(

app(
prim(’-’),
var(x_9)

),
num(1)

)
)

)
)

)
)

Figure A.16: The fun factorial function as a term term
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A.3.3 Execution

The execution of a fun function is implemented by an eval/apply interpreter imple-
mented in term. The implementation of the interpreter is closely modelled after the
one described in [FH88, p. 205–211]. Three term constructors, not listed in table A.2,
are used for the internal operation of the interpreter:

1. Closure(Expr, Env) is used to package a weak head-normal form expres-
sion Expr, together with its environment Env, at the point of the evaluation of
a lambda expression.

2. Susp(Expr, Env) is used when evaluating a function application to suspend
the second expression evaluation, which is passed in that form to apply. In this
way, the interpreter evaluates the expressions in a lazy manner.

3. Op(Prim, Arity, Args) represents a primitive in curried form. Arity
is the number of arguments is still needs, while arguments already collected
are contained in the list Args. As an example the primitive “+” is internally
represented before any arguments have been collected as op(’+’, 2, []);
when it is ready for δ reduction it will be of the form op(’+’, 0, [x, y]).

The whole fun interpreter together with the implementation of the “+” primitive is
listed in figure A.17.

A.3.4 Inter-operation with Term

Inter-operation with the super-paradigm of fun, term (and through that, by means of
call-gates, with all other paradigms), is achieved by creating term compatible rules for
all functions that are exported, and fun compatible primitive functions for all term rules
that are imported.

Whenever a fun function of the form name arg1 arg2 . . . argn is exported to
term, a term rule with the signature name(arg1, arg2 . . . , argn-> Result) is cre-
ated. That rule retrieves the environment where all the function definitions are stored,
and evaluates a recursive-let of those functions to the application of the name of the
function to the arguments passed. The result of the evaluation is also the result of the
term rule. For example, exporting the fac function would result in the following term
rule being generated:

fac(V0-> R) :-
funs(F),
feval(rlet(F, app( var(fac), V0)), [], R).

The reverse direction, of importing term rules of the form name(arg1, arg2 . . . , argn->
Result) is implemented by adding a special builtin and arity term pair, sim-
ilar to the one used to implement primitive functions, called import arity and
import builtin. The import arity term, specifies the number of input pa-
rameters expected by the term rule. The import builtin rule, has as a head, the
name of the imported term rule, followed by a a list containing as many variables,
as the term rule has input parameters. When that head matches (by a call from the
apply function of the fun interpreter), the arguments passed in the list, are evaluated
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eval(app(E1, E2), Env -> Result) :-
eval(E1, Env, R1),
apply(R1, susp(E2, Env), Result).

eval(num(X), _ -> num(X)).
eval(var(V), Env -> X) :-

envlookup(V, Env, Val),
eval(Val, Env, X).

eval(prim(P), _ -> op(P, Ap, [])) :-
arity(P, Ap).

eval(op(A, B, C), _ -> op(A, B, C)).
eval(let(V, E1, E2), Env -> Result) :-

eval(E2, [val(V, susp(E1, Env)) | Env], Result).
eval(lam(A, B), Env -> closure(lam(A, B), Env)).
eval(closure(A, B), _ -> closure(A, B)).
eval(susp(E, Env), _ -> R) :-

eval(E, Env, R).
eval(rlet(Defs, E), Env -> Result) :-

append(Defs, Env, Newenv),
eval(E, Newenv, Result).

apply(closure(lam(V, B), Env), A -> Result) :-
eval(B, [val(V, A) | Env], Result).

apply(op(P, 1, Args), A -> Result) :-
builtin(P, [A | Args], Result).

apply(op(P, N, Args), A -> op(P, N1, [A | Args])) :-
N1 is N - 1.

arity(’+’ -> 2).

builtin(’+’, [A, B] -> num(C)) :-
eval(A, [], A1),
getnum(A1, A2),
eval(B, [], B1),
getnum(B1, B2),
C is B2 + A2.

Figure A.17: The fun eval/apply interpreter
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var: fac
num: 0
var: x_9
num: 5
num: 0
var: x_9
num: 5
built: equal(num(0),num(5),0)
var: fac
num: 0
var: x_9
num: 1
var: x_9
num: 5
built: sub(5,1,4)
num: 0

Figure A.18: Fun sample debug output for evaluating fac

in an empty environment, and then the term rule is called with the result variable being
the result of the import builtin rule. For example assuming that there is a term
rule with the signature termmult(A, B -> C), the resulting term interface rule
would be:

import_arity(termmult -> 2).
import_builtin(termmult, [V0, V1] -> R) :-

eval(V0, [], V0L),
eval(V1, [], V1L),
termmult(V0L, V1L, R).

A.3.5 Debugging

Debugging, is implemented by calling a debug information printing rule, at suitable
points of the fun evaluator. A part of the debugging output from evaluating the func-
tion fac(5) is listed in figure A.18. The num and val lines, signify evaluation of
numbers, and variables; they are implemented by modifying the two respective eval
rules. The built lines refer to evaluation of built-in primitive functions (δ reduc-
tions); they list as their parameters, the arguments and the result of the primitive func-
tion. In order to avoid intermixing term debug output from the execution of the fun
evaluator, together with actual debug out from the fun evaluator, the term debugging
output is switched off, when executing fun. In this way, the programmer debugging a
multiparadigm application, will only see debugging output from his application, and
not “noise” output from the execution of the fun evaluator.



204 APPENDIX A. IMPLEMENTATION NOTES



Index

A
aint

integrator command 87
ALF 7
ALICE 8
anint 76, 84, 177
app 84
append 76, 177
append

compiled into C 173
initialisation code 175
in term 73
in term internal form 170

application specific paradigms 137
Applog 8
arg 76, 177
assembly language 68
awk 30

B
blueprint 70, 165, see also multiparadigm

language, and multiparadigm, pro-
gramming environment

as a programming environment 124
bnf 79, 98
btrack 80, 98, 178
debugging 125, 135
design objectives 70
execution support 125
fun 81, 98, 184
imper 71, 95
implementation 94
implementation metrics 105
linguistic support 124
metrics 105
paradigm addition 126
program semantics 124
regex 78, 98
system structure 71

term 71, 96, 169
using 86

bnf 87, 96, 170, see also BNF grammar
paradigm

design 79
implementation 98
related work 79

BNF grammar
fun 83
term 74

BNF grammar paradigm see also bnf
Bon87 8
bootstrapping

term 96
Bourne shell 30
btrack 87, 165, see also logic program-

ming paradigm
built-in predicates 80, 81, 181
debugging 81, 183
design 80
execution 80, 178
implementation 98, 178
interfacing with term 181
inter-operation with term 81
language elements 80
syntax 80
unification 180

built-in
btrack predicates 80, 81, 181
fun functions 84
fun library functions 85
term predicates 76, 176

C
C++ 22
call gate 51, 118, 165

automatic implementation 131
export 69, 165
import 69, 165

205



206 INDEX

logic 128
type interface 128

call synchronisation 31
cb 132
class browser 130
class definition file 69, 165
class initialisation method 165
class instance initialisation 69, 166
class variable

COMPILE 69
INSTANCEV 92

closure 186
code generation

term 171
Common Lisp Object System 18
Common Loops 18
Common Objects 18
communicating sequential processes 133
COMPILE 92
COMPILE class variable 69
compositional approach 31, 35
conceptual schema 123
Concurrent Prolog 24
cond 84
constraint paradigm 5, 6, 134

combined with functional 26
combined with logic programming 26

cos 76, 177
CSP 32, 133
ctags 132
cuncurrent paradigm 5
C with Rule Extensions 12

D
database paradigm 5
dc 30
debugging

blueprint 125, 135
btrack 81, 183
fun 84, 188
multiparadigm 131
term 78, 176

definiteness 121
design

bnf 79
btrack 80
fun 81

imper 71
instance variable detection 66
paradigm description compiler 66
private variable protection 68
regex 78
system wrapper 69
term 71

design methodology
language see language design issues

design objectives
blueprint 70

distributed paradigm 5, 6
combined with logic programming 24
combined with object-oriented 24

document processing 136
DSM 27

E
Echidna 27
Edinburgh syntax 80
editor 132
Educe 27
efficiency 45, 122, 133

space 122
time 122

Eiffel 22
Eli 135
elision 5
emacs 132
Enhanced C 27
EqL, E 8
Eqlog 26
eqn 136
event synchronisation 31
evolution

software process 124
execution

btrack 80, 178
fun 82, 186
term 73

execution support 125
existing tool support 54, 165
exp 76, 177
export

btrack keyword 81
fun keyword 84

expressiveness 121



INDEX 207

F
fail 76, 177
Falcon 26
FGL+LV 8
FL 16
Flang 26
Flavors 18
Fluent 16
Fooplog 27
Foops 18
foreknowledge 38
formal semantics 128
Fortran 5, 135
FPL 8
Fresh 8
fun 87, 165, see also functional paradigm

BNF grammar 83
built-in functions 84
data structure building terms 84
debugging 84, 188
design 81
execution 82, 186
implementation 98, 184
interfacing with term 186
intermediate code 184
inter-operation with term 84
language elements 82
lexical analysis 184
library built-in functions 85
operator precedence 82
related work 86
syntax 82

functional paradigm 5, 6, see also fun
combined with constraint 26
combined with imperative 15, 23
combined with logic programming 7,

23, 26
combined with object-oriented 18, 23

functor 76, 177
functorname 77
Funlog 8

G
G 23
G-2 23
Gedanken 16
generic run-time support 56, 165

graph
integrator command 87

H
Han90 8
HASL 8
HCPRVR 8
head 76, 177
hermeneutical cycle 38
HHT82 8

I
Icon 27
Id Nouveau 8
imper 87, 96, 165, see also imperative para-

digm
design 71
implementation 95

imperative paradigm 5, see also imper
combined with functional 15, 23
combined with logic programming 12,

23
combined with object-oriented 21, 23

implementation
approaches 59
blueprint 94
bnf 98
btrack 98, 178
fun 98, 184
imper 95
instancev 92
integrator 105
metrics 105, 114
mpld 94
mpss 91
pdc 92
protect 93
regex 98
term 96, 169

import
bnf keyword 79
btrack keyword 81
fun keyword 84
term keyword 72

indent 132
inheritance 48, 57
initialisation



208 INDEX

class method 165
instance method 166

input / output mode 166
instancev 66, 69, 130, 166

example 98
implementation 92

instance variable 166
instance variable detection 66
INSTANCEV class variable 92
instrumentation 125, 132
integer 76, 81, 177
integration

by-parts 88, 111
numeric 87, 106
symbolic 88, 108

integrator 166
call graph 114
design 86
expression simplification 111
graph generation 112
implementation 105
implementation metrics 114
lexical analysis 106
metrics 114
paradigm delegation 87
parsing 106
sample session 113
specification 87

interface builder 75
interfacing see inter-operation

btrack with term 181
fun with term 186

Intermission 20
inter-operation 69, 125

across paradigms 50, see also under
specific paradigms

btrack with term 81
control transfer 50
data transfer 51
fun with term 84
limitations 51
term with imper 75

is 73, 76, 177

K
Kaleidoscope 27
KE88 27

Kuhn 4

L
lam 84
language

multiparadigm see multiparadigm lan-
guage

reduced feature 137
language development systems 135
language elements

btrack 80
fun 82
term 72

language extension 33
language-specific tools 132
language translation systems 72, 135
LAP 20
LaTeX 136
Leaf 9
Leda 12
length 76, 177
less 81
let 84
Lex 27, 68
lexical analysis

fun 184
integrator 106
term 169

library 33
linear logic 13
linguistic support 124
linguistic transformation 45
lists

expressed in term 72
LML 9
L&O 20
log 76, 177
log2 84
LogiC++ 20
Logicon 12
logic programming paradigm 5, 6, see also

btrack
combined with constraint 26
combined with distributed 24
combined with functional 7, 23, 26
combined with imperative 12, 23



INDEX 209

combined with object-oriented 20, 23,
24

implementation 81
LOGIN 20
LOGLISP 9
Loops 19
Lucid 16

M
MacDraw 136
makefunctor 76, 177
member 76, 177
Met87 22
metrics

blueprint 105
integrator 114

Microsoft Word 136
Milena 135
Miranda 81
Mixed Language Programming 30, 35
mixed language programming environment

3
mkatom 77
mkdouble 77
mkint 77
mktermbyname 77
mkvar 77
ML 17
ML-Lex 28
MLP 30, 35
ML-Yacc 28
mm (macro package) 136
Modcap 23
Modula-3 22
Modula-Prolog 12
Monk 136
mpld 68, 166

implementation 94
mpss main 71
mpss 65, 166, see also multiparadigm, pro-

gramming environment develop-
ment system

as a process support environment 123
evolution 124
experience with 102
implementation 91
instancev 66, 92

mpld 68, 94
pdc 66, 92
protect 68, 93
structure 66
using 69
wrap 69

MU 20
multiparadigm

application 38, 60, 120, 166
applications 40
compositional approach 31, 35
debugging 131, see also debugging
document processing 136
framework 34, 166
language see multiparadigm language
problem areas 39
programming environment 38, 41, 56,

119, 166, see also blueprint
programming environment development

system see also mpss
programming environment generator

42, 53, 118, 166
programming system 28, 166
research contributions 117
system structure 38, 48, 117, 166

multiparadigm framework 34, 166
multiparadigm language 5, see also blueprint,

and multiparadigm, programming
environment

constraint 26
distributed 24
functional 7, 15, 18, 23, 26
imperative 12, 15, 21, 23
logic programming 7, 12, 20, 23, 24,

26
object-oriented 18, 20, 21, 23, 24
various 27

multiparadigm link editor 68, 166, see also
mpld

Multiparadigm Pseudocode 23
multiparadigm structure

integrator 87
term 96

multiparadigm system requirements
efficiency 45
flexibility 43
structural 44



210 INDEX

mutual recursion see recursion

N
name-space verification 130
Nar85 9
Nial 17
nl 76, 177
non-determinism 14
not 73
num 84
numeric integration 87

O
Objective C 22
object-oriented paradigm 5, 6

combined with distributed 24
combined with functional 18, 23
combined with imperative 21, 23
combined with logic programming 20,

23, 24
operator precedence

fun 82
term 73

Orient84/K 25
orthogonality 121

P
2.PAK 12
PAL 20
paradigm 4, 167

application specific 137
as an object class 46
BNF grammar see BNF grammar para-

digm
class browser 130
classes see paradigm classes
combined see multiparadigm
constraint 5, 6, 134
CSP 133
database 5
data centered 5
delegation see paradigm delegation
distributed 5, 6
exemplar definition 4
extentional definition 4
functional see functional paradigm
historic definition 4
imperative 71, see imperative paradigm

intentional definition 4
interfacing see inter-operation
Kuhn 4
logic programming see logic program-

ming paradigm
multiple see multiparadigm
object-oriented 166, see object-oriented

paradigm
objects see paradigm objects
process centered 5
programming 167
regular expression see regular expres-

sion paradigm
rule-based 5
rule-rewrite see rule-rewrite paradigm
spreadsheet 5
Wittgenstein 4

paradigm class 167
paradigm classes

instance variables 47
methods 47

paradigm cuncurrent 5
paradigm delegation

integrator implementation 87
term implementation 96

paradigm description compiler 54, 66, 167,
see also pdc

paradigm description file 167
paradigm objects

instance variables 46
methods 46

parallel processor architecture 135
parsing

integrator 106
term 170

Paslog 13
path find 178
pdc 167, see also paradigm description com-

piler
implementation 92

PEACE 20
performance analysis 125
Perl 94
PIC 12
pic 136
pipe 30
Planlog 13



INDEX 211

plus 81
POL 20
Pool2 22
Postscript 136
pow 76, 177
Predicate Logic in APL 13
pre-processor 33
pretty-printing 132
prim 84
primitive function 167
print 76, 177
private variable protection 68
process evolution 123
process support 123
process support environment 123
profiling see instrumentation
programming methodology 5
programming paradigm 167, see paradigm
program semantics 124
Prolog 32, 80, 96
Prolog/KR 21
Prolog-with-Equality 26
protect 68, 167

implementation 93

Q
Qute 9

R
readability 121
real 76, 177
recursion see mutual recursion
reduced feature languages 137
regex 87, 96, 167, see also regular expres-

sion paradigm
design 78
implementation 98
related work 79

regular expression paradigm see also regex
reliability 122
reverse 76, 177
RTF 136
rule-based paradigm 5
rule-rewrite paradigm 5, see also term
run-time support

generic 56, 165

S

Sather 22
SB86 28
Scheme 17
SchemeLog 9
SCOOP 25
sdebugflag 76, 177
sed 30
SELF 66
semantics

formal 128
sh see Bourne shell
signature 167
simplicity 120
sin 76, 177
sint

integrator command 87
Smalltalk 56
Sparc architecture 71
SPOOL 28
Spreadsheet 17
spreadsheet paradigm 5
SProlog 9
Strand 13
stream synchronisation 31
subclassing 57
SUPER 66
suspension 186
symbolic integration 88
syntax

btrack 80
fun 82
term 72

system wrapper 56, 69, 70, 167

T
tab 76, 177
TABLOG 9
tag generation 132
tail 76, 177
tan 76, 177
TAO 23
tbl 136
term 87, 96, 167, see also rule rewrite para-

digm
BNF grammar 74
bootstrapping 96
built-in predicates 76, 176



212 INDEX

code generation 171
debugging 78, 176
design 71
execution 73
implementation 96, 169
inter-operation functions 77
inter-operation with imper 75
language elements 72
lexical analysis 169
multiparadigm structure 96
operator precedence 73
paradigm delegation 96
parsing 170
pattern matching rules 173
related work 78
symbol table 174
syntax 72
term access functions 77
term support 175

termdebug 76, 177
Term Desc. 9
TeX 136
tgetarg 77
tgetarity 77
tgetdouble 77
tgethead 77
tgetint 77
tgetname 77
tgettail 77
tgrind 132
theoretical approach 34
times 81
tisdouble 77
tisint 77
tislist 77
tisvar 77
TNULL 77
T Object 19
tools

language-specific 132
trace(1) 137
tree class structure 49, 69
troff 136
type checking 131, 134

U
Unicorn 26

unification 14
in btrack 180

Uniform 28
Universal Type System 31
Unix 30, 34, 136
user interface tools 125
using blueprint 86
using mpss 69
UTS 31

V
var 76, 84, 177
variable protection 167
viewpoints 4
Viron 17
Vulcan 25

W
wide spectrum languages 4
Wittgenstein 4
wrap 69
writability 120
write 76, 177

Y
Yacc 28, 68, 79
YAPS 19
YS86 9
yyhide 68

Z
Zan84 21



Appendix B

Trademarks

Intel, 386 and iAPX386 are trademarks of Intel Corporation.
Microsoft and MS-DOS are trademarks of Microsoft Corporation.

Miranda is a trademark of Research Software Ltd.
PDP-11 and VAX are trademarks of Digital Equipment Corporation.

TeX is a trademark of the American Mathematical Society.
Unix, is a registered trademark of USL/Novell in the USA and some other countries.

Colgate is a registered trademark of Procter and Gamble Inc.
Ada is a registered trademark of the U.S. department of defence.

Eiffel is a trademark of Interactive Software Engineering Inc.
Objective-C is a trademark of Productivity Products International.

Simula 67 is a trademark of Simula AS.
Smalltalk is a trademark of Xerox Inc.

All other trademarks are property of their respective owners.

213


