
Technical Report IR–LP–31–21

September 1989

The Design and Implementation of

a Two Process Prolog Debugger

Diomidis Spinellis

Abstract

A Prolog debugger running in the same process as the debugged program presents some problems. In
many environments the debugger and the debugged process are separate. We examine how this separation
is commonly implemented and present a system abstraction based on a set of primitives for accessing
a trace line continuum. We then describe the implementation of such a system, giving how the two
processes are created, how they communicate and how the underlying Prolog system meshes with our
implementation.

European Computer-Industry
Research Centre GmbH

Arabellastr. 17
D-8000 München 81

West Germany

Contents

1 Introduction 4

1.1 The Previous Implementation of Opium � 4

1.1.1 Advantages � 4

1.1.2 Problems � 4

1.2 The New Implementation � 5

2 Related Work 6

2.1 Requirements of a Debugging System � 6

2.2 The UNIX ptrace approach � 7

2.3 The UNIX /proc approach � 7

2.4 Lessons Learned � 8

3 The Two Process Debugger Design 10

3.1 A Debugger Abstraction � 10

3.2 Primitives Needed by Opium � 11

3.3 Primitives Implemented � 11

3.3.1 Prolog Interpreter Control � 11

3.3.2 Prolog Interpreter State Control � 12

3.3.3 Prolog System Access � 12

3.3.4 Prolog Execution Information � 12

4 The Two Process Implementation of Opium 14

4.1 The Structure of the System � 14

4.2 A Tale of Two Processes � 14

1

4.2.1 Things the Processes Have in Common � 14

4.2.2 Differences of the slave � 15

4.2.3 Differences of the master � 16

4.2.4 The Creation of a Master � 16

4.2.5 The Creation of a Slave � 16

4.3 Method of Communication � 17

4.3.1 Communication Protocol � 18

4.3.2 Structure of the Messages � 18

4.4 Interface with the Prolog System � 18

4.4.1 Predicate Splitting � 18

4.4.2 Arbitration � 20

4.4.3 Synchronisation � 21

4.4.4 Modification of C Variables � 23

4.4.5 Passing Terms Between the Processes � 24

4.4.6 Remote Execution of Predicates � 24

4.4.7 Handling of Asynchronous Events � 24

5 Conclusions 26

6 Acknowledgements 27

2

List of Figures

4.1.1 The two process implementation of Opium � 15

4.4.1 The implementation of the master part of CurrArity � � � � � � � � � � � � � � � � � 19

4.4.2 A (slightly simplified) implementation of the slave part of CurrArity � � � � � � � � 20

4.4.3 Pseudo-code for the arbitrate function � 21

4.4.4 State diagram for the slave. � 22

3

Chapter 1

Introduction

Opium [5] is an extensible Prolog debugger. One of its key features is that its command language is
Prolog. This allows for sophisticated interaction with the user [6], implementation of scenarios — Prolog
programs that present to the user a higher level debugging abstraction by filtering and processing raw
debugging information — and a flexible user interface.

In this paper we present the design and implementation of a two process version of Opium. The design
description will be limited to the aspects of transforming the one process Opium debugger to a two
process debugging system.

1.1 The Previous Implementation of Opium

Opium was implemented as a single process debugger. This was made possible by a context switching
mechanism. The user program was executing in one context and the debugger scenarios in the other.
When information was needed from the user program (such as the next trace line) the context switched
from the debugger process to the user process. The context switch involved saving and restoring the
Prolog stack and all the state variables of the Prolog interpreter.

1.1.1 Advantages

The approach was relatively easy to implement. As the whole data was accessible from both contexts it
was possible for the debugging scenarios to access and modify the dictionary of the debugged session.
All the information needed for debugging could be extracted by looking at the appropriate data structures.
The communication overhead between the two contexts was minimal as in many cases data structures
could be shared.

1.1.2 Problems

The implementation was not without problems however. As the debugger and the user programs were
executing in the same process they were very closely coupled. This was undesirable firstly from a
pragmatic point of view as there could be interference between them. From a theoretical point of view
it was almost impossible to abstract the features needed by the debugger in order to create a portable
framework that could be applied to any Prolog system. One additional problem became apparent as the
complexity of the scenarios grew. The loop scenario is about 3000 lines long [7] and naturally during its

4

development a debugger was needed. That meant a debugger debugging the debugger, a model which
was not supported by the previous implementation.

1.2 The New Implementation

The problems mentioned above can be solved by implementing the system as two processes. Their data
areas are totally disjoint and the loose coupling between them helps defining an interface abstraction.
By implementing the system in a general way, debugging the debugger is a natural extension.

New problems have been tackled in the new approach:

� How to partition the two processes. Various amounts of responsibility and processing can be
delegated between them. The extremes vary from the debugger being hooked to the lowest level
of the Prolog interpreter in the debugged process, up to the debugger being a dump terminal
programmable in Prolog. The conceptual point where the two processes communicate creates
a partition between them that must be crossed by some sort of message passing mechanism.
Partitioning too close on the debugged process side will make the system inefficient, making the
partition close on the debugger side will make the system inflexible.

� The synchronisation of the two processes. Since both processes can execute concurrently a protocol
must be defined both, in order to present to the user a smooth debugging environment and for the
processes to stay synchronised during the whole session. This problem is quite common in such
applications [19].

� The set of primitives and the communication interface have been redefined for communication
between the two processes.

5

Chapter 2

Related Work

Opium, as far as we know, is the only Prolog debugging system which runs as two separate processes.
The idea however of using one process to debug another is quite common in multitasking operating
systems. Multics, UNIX 1 and VMS use this approach [14] [2] [3]. The usual procedure is to arrange
for a separate process, the debugger, to somehow attach itself to the debugged process and from that
point control the execution.

2.1 Requirements of a Debugging System

It has been recognised that debugging systems are a valuable aid to programer productivity [9]. The
functionality a programer expects from a debugging tool is outlined in [15]. A debugger should be able
to:

1. Start, stop and resume the program execution.

2. Show the execution flow of the program.

3. Call arbitrary pieces of code in the debugged program.

4. Display a traceback of procedures called.

5. Keep a history of the program execution.

6. Access variables by their names.

7. Display the program being debugged.

8. Give the user access to some sort of debugging language.

9. Allow the user to customise the interface to the debugger.

10. Provide a user interface to the command language so that commands can be reexecuted.

11. Provide some sort of profiling information.

A lot of this functionality (7, 8, 9, 10) can be addressed at the user level, i.e. no support from the
operating system is needed. The rest of the functionality can be built on top of two low level functions
provided by the underlying system.

1UNIX is a registered trademark of AT&T in the USA and other countries.

6

1. The ability to execute exactly one instruction of the underlying execution mechanism or, alterna-
tively, to be able to set a breakpoint at an arbitrary place of the code.

2. The ability to examine and modify the complete state of the execution including variables, code
(source and executable) and internal variables of the executing machine.

We will examine two approaches for providing this functionality in the UNIX domain. Some general
conclusions based on this study will be presented in section 2.4.

2.2 The UNIX ptrace approach

The traditional way one process can debug another under UNIX is using the ptrace system call [8]. A
typical setup used by debuggers such as adb [12], dbx [18] and gdb [16] is to run the program from
within the debugger or to start the debugger specifying the process-id of an already running program.
Then the user can issue commands to the debugger which are translated to appropriate ptrace requests.

Ptrace requests allow the debugging process to:

� Read the debugged process’ code, data and user information. (PT READ I, PT READ D and
PT READ U).

� Modify the debugged process’ code, data and user information. (PT WRITE I, PT WRITE D and
PT WRITE U).

� Continue the execution of a stopped process. (PT CONTINUE).

� Terminate the debugged process. (PT KILL).

� Execute a single instruction. (PT STEP).

The two process debugging implementation using the ptrace approach has been criticised as inefficient
[2] [11]. Three are the main reasons for the inefficiency:

� A single data structure for the exchange of the messages is shared by all processes. Thus every
time the data structure is to be used it must be locked in order to ensure mutual exclusion.

� Only a small amount of data (one word) can be transferred by each call.

� Two context switches are needed for every request.

2.3 The UNIX /proc approach

A better solution than the ptrace approach whereby the debugger views the process as a special file has
been proposed [10] and implemented under the Eighth Research Unix Edition [1]. Under this approach
an image of each executing process can be found in a special file (named by appending its process-id
to “/proc/”). The processes’ code, data and stack are located in documented positions of the file
and they can be read or modified by using the normal read and write system calls. Thus in order to
examine the value of a variable the debugger finds the address of the variable from the symbol table of
the process and seeks to the appropriate position of the file. Reading from that position gets the value
of the variable, writing to it modifies it. Special requests (other than reading or modifying the process’
image) are handled by the system ioctl call. A set of parameters allows the debugging process to:

7

� Start, stop or wait for a stop of the debugged process. (PIOCSTOP,PIOCRUN and PIOCWSTOP).

� Examine the proc structure where various system parameters of the executing process are stored.
(PIOCGETPR).

� Specify that specific signals received by the debugged process shall be traced, ignored or received
by the debugger. (PIOCSMASK, PIOCSIG and PIOCKILL).

� Cause the process to stop when another program is executed by it. (PIOCSEXEC andPIOCREXEC).

� Change the process’ execution priority and access its executable file. (PIOCNICE andPIOCOPENT).

One side effect of this interface is that since normal I/O calls are used to communicate with the debugged
process, they can be interrupted. As an example the debugger can set an alarm to be interrupted if the
process does not reach a breakpoint after a set amount of time.

2.4 Lessons Learned

The (limited) examination of the approaches used for two process debugging systems which we described
above supported the design of the two process implementation of Opium in a number of ways:

1. The debugger and the debugged process are always separate processes. In all the cases the debugged
process runs under the control of the debugger. However provisions exist for the debugger to get
control from the debugged process when an abnormal event occurs in it. For example the debugger
can be given control when the process accesses an illegal memory location.

2. The interface implementations focus on time efficiency. Latter implementations always try to be
more efficient either by addressing issues of the communication efficiency (such as the 8th Edition
implementation) or by increasing the quantity and quality of the information that can be passed
across them. As an example the latest implementation of ptrace under SunOS [17] added the
following extensions:

� The ability to read and write blocks of text and data instead of single words. This was done
by adding the requestsPTRACE READTEXT,PTRACE READDATA,PTRACE WRITETEXT
and PTRACE WRITEDATA. This addition increases the quantity of information that passes
through the two processes in a given amount of time.

� The ability to stop an execution only whenever a system call is executed (PTRACE SYSCALL)
. This addition increases the quality of the information that is exchanged and delegates a lot
of responsibility to the debugged process. It introduces the concept of filtering [7] at the
context of the process being debugged.

The approach of searching in the debugged process context as outlined in section 3.1 follows this
notion.

3. A general and extensible interface strategy, based on simple primitives (such as the /ptrace one
based on read, write and ioctl) seems to be preferable to a complex and implementation specific
one. In our implementation we defined a general and flexible base set of primitives (given in
section 3.3) that satisfy all the debugging needs.

4. A two process debugging system will have to address asynchronous and non deterministic events.
Although the debugged process is under the control of the debugger a request from the debugger
may always lead to an irrelevant and unexpected response from the debugged process. As an

8

example a request for continuation up to a breakpoint can make the debugged process to signal a
segmentation violation. The debugger must be able to handle such events. Section 4.4.3 gives a
description on how this has been achieved in our system.

9

Chapter 3

The Two Process Debugger Design

In this chapter we will try to isolate the key design choices behind this implementation. We hope to
distinguish them from technical implementation related decisions and thus present the framework onto
which the debugger was built.

3.1 A Debugger Abstraction

A two process debugging system has been implemented by adhering to the following abstraction:

� A process can create another process which is controlling and debugging it.

� The granularity of items that can be traced is a trace line. The trace line is the basic source
representation unit of the language being debugged. Associated with it, is its source representation
and the relevant state of the execution environment.

� Trace lines form a continuum that starts at the beginning of the execution and ends at the end of it.
Single stepping and breakpoints can be implemented by searching through the continuum for a line
matching some characteristics. The search can be made either by specifying the characteristics as
part of the primitive or referring to characteristics saved on the slave.

� The two processes communicate via primitives sent from the debugging process (the master) to
the original process (the slave). Trace lines are accessed by searching forwards or backwards from
a point in the execution history called the current line. Pragmatic considerations may dictate the
need for additional primitives. These may be needed in order to implement a reasonable user
interface or limit the amount of storage or processing time needed.

� The only requirement from the slave is for it to be able to present to the master the traced lines
continuum. This can be implemented by a storage mechanism, or by reexecuting up to a point or
by any other suitable mechanism.

We claim that a high level, configurable and extensible debugger for sequential Prolog can be built on
top of this abstraction. A minimal set of primitives presenting this abstraction would be:

ForwardSearch Search forwards for the first line in the continuum that matches some given character-
istics.

BackwardSearch Search backwards for the first line in the continuum that matches some given charac-
teristics.

10

The characteristics can be things like the file and line number of the trace line, value of some arguments,
the name of a procedure to be called or an interesting phenomenon of the target language.

SetEntityLeapable This primitive implements the “characteristics saved in the slave” part of the ab-
straction. It sets a specified entity such as a procedure or a variable or memory address to satisfy
a future leap request.

ForwardLeap Search forwards for the first line that contains an entity that has been set as leapable.

BackwardLeap Search backwards for the first line that contains an entity that has been set as leapable.

GetCurrentLineData Retrieve the data that has been associated with the current line. This can be its
file and line number, its source representation, values of variables or arguments.

3.2 Primitives Needed by Opium

The primitives needed in order to implement the scenarios of Opium are based on the above abstraction.
However some more have been added in order to create a real life implementation. They can be classified
into four broad categories.

1. Primitives that control the execution of the Prolog interpreter. Such predicates may cause the
interpreter to abort the execution of the current goal or make the goal under execution fail. None
of them are part of the abstraction, but they help to conserve user time as a wrong goal can be
terminated immediately.

2. Primitives that can read or modify the state of the Prolog interpreter. These predicates can set the
execution limits, control the recording of the lines executed, tracing and setting of spypoints.

3. Primitives that enable access to the Prolog system. These can be used to:

� Access the source of the predicates. This is only true for this implementation, based on an
interpreted Prolog, where the predicates can be trivialy “decompiled”.

� Access the Prolog dictionary on th debugged process.

� Implement conditional spypoints.

� Allow the user to execute goals from within the debugger.

4. Get information about the program execution. This includes accessing all lines that have been or
will be executed.

3.3 Primitives Implemented

The following set of primitives was implemented:

3.3.1 Prolog Interpreter Control

Abort/0Abort the current execution and returns control to the top level.

Fail/0 Cause the current goal to fail.

11

3.3.2 Prolog Interpreter State Control

VarValueGet/2Return the value stored in a specified address in the slave.

VarValueSet/2 Set the value stored in a specified address in the slave.

These primitives are used to read or modify global C variables of the debugged process. The
variables that are currently accessed are:

LimitDepth Specifies how deep the execution may nest before it gets interrupted.

LimitCallNumber Specifies how many goals may be invoked before the execution gets
interrupted.

These two limits can be used to halt non-terminating computations and are used by the loop
analysis scenarios.

sm in opium This variable enables the master to see if a goal is under execution or not. It is
needed as only a limited number of commands have meaningful semantics when no goal is
executed.

RecordOnCan be used to enable the recording of the lines executed.

PredFlagSet/4 Modify the flags associated with a predicate. These flags can specify for the
predicate to be hidden or to set a spypoint.

PredFlagGet/4Get the value of the flags associated with a predicate.

3.3.3 Prolog System Access

RemoteExec/2There is only one primitive used to access the Prolog system. It allows any predicate
to be executed on the slave and returns the results back to the master. Its generality allows it to be
used to access the source of the predicates in the slave, or executing goals from the master prompt
on the slave.

3.3.4 Prolog Execution Information

These primitives operate on the notion of the current line. Unlike other debugging systems in Opium
there is no imposed difference between code that has been executed and code that will be executed.
They are both viewed in a unified way. The current line can be set by asking for a line that has some
characteristics. The search starts from the last current line and can be specified to proceed either forwards
or backwards. Execution may continue if the recorded lines do not contain the line searched for and
the search is going in the forward direction. The execution is however more a side effect of the search
than an intended action. The abstract model used by the scenarios usually does not take into account the
execution.

CurrArg/1Return the arguments of the current line.

CurrChrono/1Return the chronological number of the current line in the sequence of all trace lines.

CurrCall/1Return the call number of the current line.

CurrDepth/1Return the execution depth of the current line.

CurrPort/1Return the debug port of the current line according to Byrd’s box model [4].

12

CurrPred/1Return the name of the predicate executed at the current line.

CurrArity/1Return the arity of the predicate executed in the current line.

Leap/0 Search forward for a call to a predicate on which a spypoint has been set.

FGet/10 Search forwards for a trace line matching some given characteristics.

BGet/10 Search backwards for a trace line matching some given characteristics.

The characteristics given to FGet and BGet are a conjunction of call number, call depth, debug
port, predicate name, and chronological number lists or ranges.

13

Chapter 4

The Two Process Implementation of
Opium

4.1 The Structure of the System

A session in Opium starts like a session in any Prolog system. When the user wants to start debugging,
the command ‘tracing(on).’ needs to be given. At that point the Prolog system changes into a two
process debugging system. The original process is called the slave. A new process is started up by the
slave and will be used to control the execution of it. The new process, naturally called the master, is
a fresh invocation of Prolog and appears in a new window. The two processes communicate via pipes.
Both processes run the same code, namely the modified Prolog interpreter. At various points of the
Prolog execution the slave stops and waits for a command from the master. The master can execute
Prolog predicates that send commands to the slave. The slave receives a command, acts accordingly and
sends a reply back to the master. Figure 4.1.1 shows the components of the system and the execution of
some commands.

4.2 A Tale of Two Processes

The real life of the debugging system starts when the master process is started up. At that point the
system can function as shown in Figure 4.1.1. We will examine what the two processes have in common,
how they differ and then show how each one of them acquires its properties.

4.2.1 Things the Processes Have in Common

Both processes are an invocation of a modified MU-Prolog [13] interpreter. The modifications are
mainly:

� Additional predicates which form the core of the Opium debugging system. These predicates form
the extraction module [7].

� A recording mechanism for saving the history of the computation in the form of trace lines.

� A modified Prolog main loop with hooks that can divert the execution flow into the Opium system.
This is used for handling recoring and some of the predicates.

14

�

�

�

�
�

�

�

�

�

�

�

�

�
�
��

�

�
�
�� �

MU�PROLOG V ���d � Opium

MU�PROLOG V ���d � Opium

���

� �	�
call append�	b
�	c�d
�D

��� next�

� �	�
redo append�	a�b
�	c�d
�X

��� next�

��� append�	a�b
�	c�d
�X
�

� �	�
call append�	a�b
�	c�d
�X

��� print line�

yes

��� tracing�on
�

Slave window

Master window

Slave�master pipe

Master�slave pipe

Slave process

Master process

Figure 4.1.1: The two process implementation of Opium

� The module that handles the mechanics of the communication between the two processes.

4.2.2 Differences of the slave

The differences of the slave from a normal Prolog session are the following:

� It has the C variable master exists set to true. This is used so that the slave will not try to
communicate with a non existing master. The sequence that starts up a master also checks this
variable in order to avoid the creation of two masters.

� The C variable master process id contains the process id of the master. It is used for sending
signals to the master.

� It has the stdio streams fslavein and fslaveout connected via pipes to the master. These
are used for reading commands from the master and sending replies to it.

� It has arranged to kill the master when it finishes execution.

� It has arranged to be notified when the master finishes execution, so that it can revert to being a
normal Prolog session. This is done by undoing the differences described above, that is closing

15

the two files and setting master exists and master process id to 0.

4.2.3 Differences of the master

The differences of the master from a normal Prolog session are the following:

� The C variable master indicates its level on the master hierarchy. For a master that has been
fired up by a normal Prolog session this variable has the value of 1. If the master was fired up in
order to debug Prolog code in a lower level master (e.g. in order to debug a complex scenario) then
the variable has the value of 2. This can go on to higher levels, although we don’t think that there
will be often more than two masters in the hierarchy. This variable can be examined by Prolog
predicates to see if the process where the predicate is executed in is a master. The variable can
also be displayed to help the user tell the processes apart.

� It has the stdio streams fmasterin and fmasterout connected via pipes to the slave. They
are used for sending commands to the slave and getting results back.

4.2.4 The Creation of a Master

The master is created by the create master c/0 predicate, which in turn calls the OpCreate-
Master C function. This C function after checking that no master already exists, creates two pipes to
be used for communication and then forks. This means the original process splits in two. The original
is called the parent and the new one is called the child. Both continue the execution from the point after
the call to the fork. All open files and variable values exist in both processes.

The original process is the slave. It does the following actions:

1. Closes the pipe ends which the master will be using.

2. Reopens its own pipe ends as buffered stdio streams called fslavein and fslaveout.

3. Sets the function kill master to be called when it exits using the on exit function. The
function kill master just sends a SIGKILL signal to the master process. This is needed so
that the master will terminate together with the slave.

4. Arranges for the function master is dead to be called when a SIGCHLD signal is received.
This signal, sent whenever something happens to a child process, would indicate that the master
has terminated. Since master is not the only possible child of the slave (the slave can invoke other
UNIX commands using the system predicate of Prolog) the action to this signal is temporarily
suspended each time another process is executed from the slave. This creates a small window in
which the death of a master would go unnoticed. The way to eliminate this window would be to
recode all uses of the C library system function to an elaborate system of waits and return value
checks.

5. Finally the predicate returns SUCCEED and the normal Prolog execution resumes.

4.2.5 The Creation of a Slave

The child of the fork is the master. The master does the following actions in order to set up an new fresh
Prolog process:

16

1. Closes the pipe ends which the slave will be using.

2. Increment the C variable master to pass it to the new process.

3. Create a suitable command line for executing the new master. This is done by reading the
OPIUM WINDOW environment variable, which is set by the user to the command that can be used
on the system to fire up an new window running a given command. A typical value under X-11
might be:

xterm -T Opium_%d -n Opium_%d -e

The %d in the variable is replaced by the value of the master variable. In the case above it is
used so that the master level will be shown on the title bar of the window.

4. Modify the command line so that the new process starts up as a master and gets the information
needed. That is:

� The fact that the process is a master and not a normal Prolog session.

� The file descriptor numbers to be used for writing commands and reading results.

� The level of the master in the hierarchy.

This is done by giving to the new process the argument -master followed by three numbers,
them being the ASCII representations of the hierarchical level of the master-to-be and the two file
descriptors. Thus at the end the command to be executed would be something like:

xterm -T Opium_1 -n Opium_1 -e Opium -master 4 5 1

In the above line 4 is the file descriptor used for writing commands to the slave, 5 the one of
reading the results and 1 the master level.

5. Execute the new process. The old process is overlaid by the new one. The name of the process to
execute is taken to be the zeroth command line argument. The only link remaining between the
two processes are the two file descriptors.

6. As the new process starts up a check is made for the first argument being -master. Since that is
the case the next three arguments are processed in a special way.

7. The C variable master is set to be the value of the first argument.

8. Two stdio buffered streams are opened on the values of the file descriptors passed as seconds and
third arguments.

9. The normal Prolog initialisation starts and the main loop is entered.

4.3 Method of Communication

In this section we explain the way the two processes communicate. We examine the way the two
processes communicate and the structure of the messages exchanged. The synchronisation of the two
processes will be examined in section 4.4.3.

17

4.3.1 Communication Protocol

A simple request-reply protocol — with the master initiating the requests — has been implemented. All
communication from the master to the slave goes through the write command to slaveC function.
This function receives a command number, the types of the arguments and the arguments to send to the
slave assembles them into a message, sends the message to the slave reads the results back and returns.
On the slave side the command, the types of the arguments and the arguments themselves are read by
the read command from master function, the command is executed and the (possibly modified)
arguments are passed back to the master.

4.3.2 Structure of the Messages

A message exchange sequence is done in the following steps:

� The master sends a command number to the slave. This is the number assigned to an executable
function via an enumeration. The slave calls the appropriate function by indexing an array of
pointers to functions using this number.

� The master sends the types of the arguments. Argument passing is not implemented as a general
mechanism. Rather, all the different possible combinations were found and hard coded into a
switch statement. Although this approach is not flexible (it requires a change each time a function
with different arguments is added) it is efficient and portable. A general solution would be machine
specific as we do not know of a portable way to call an arbitrary function with a variable number
of arguments.

� The master sends the actual arguments. Since the types of the arguments known, the actual
arguments can be read by the slave into the correct variables. Strings are passed by first giving
their length as an integer and then the actual string data. One more special case is the passing of
Prolog terms. This will be discussed in section 4.4.5. At this point it is enough to note that the
appropriate Prolog printing and parsing functions are called on each end.

� The slave sends the modified arguments back to the master.

� The slave sends the return code of the execution (SUCCESS, FAIL, ERROR etc.) to the master.

4.4 Interface with the Prolog System

4.4.1 Predicate Splitting

In order to present a consistent interface abstraction and as a result of the previous implementation of the
system all commands are just the back ends of Prolog predicates. In fact the commands started their life
as simple C function implementations of Prolog predicates. Such a C function will typically examine
the type of its arguments, perform some action on them and then bind any free Prolog variables to the
appropriate values.

In the two process implementation each C implementation of a predicate gets split into two parts, one half
is executed in the master and the other in the slave. The part in the master is the one actually called from
Prolog. It unbundles and checks the arguments, calls send command to slave with the command
number, the types of the arguments and the arguments, binds the modified arguments to the appropriate
Prolog variables and returns to Prolog. The slave halve is called by the read command from master

18

MasterOpCurrArity(t, l)
Ptr t;
levtype l;

{
long arity;

/* Send the command to the slave. Arity will be set to the value. */
write_command_to_slave(sm_CurrArity, sm_argument_types_l, &arity);
/* Unbundle the argument */
findbind((Ptr)targ(1, t), l, &t, &l);
switch (tagtype(t)) { /* Check its type and act */
case TAGNUM: /* It is a number */

if(tnum(t) == arity) /* Check if they match */
return(SUCCEED); /* Yes, succeed */

else
return(FAIL); /* No, fail */

case TAGVAR: /* It is a variable */
nbind(t, l, ConsInt(arity)); /* Bind it to arity */
return(SUCCEED); /* succeed */

default: /* Wrong type */
plerror(EUFUNC); /* Signal an error */
return(ERROR);

}
}

Figure 4.4.1: The implementation of the master part of CurrArity
.

function. The function called is the one pointed to by the array of pointers to functions, indexed by the
number sent by the master. It is called with pointer to the arguments sent by the master. After executing
its part, it sets the variables to the correct values and returns.

As an example let us consider the sequence of events when a typical split predicate is called. Curr arity c
is a predicate which unifies its argument with the arity of the current predicate in the slave. Its C imple-
mentation for the master is shown in Figure 4.4.1 and for the slave in Figure 4.4.2.

When Curr arity c is called from Prolog in the master, the following things happen:

1. Curr arity c calls the master part of the C function OpCurrArity.

2. OpCurrArity calls write command to slave with its special code and the arguments it
was given.

3. Write command to slave writes the special code for OpCurrArity and the arguments
passed to the slave.

4. The slave reads the function code and the arguments. This is done by the read command -
from master C function.

5. The read command from master C function calls the slave part of the OpCurrArity.

6. The slave part does any processing needed and returns to read command from master.

19

SlaveOpCurrArity(arity)
long *arity;

{
/* Check the current predicate */
if (IsAtom(Curr.Pred))

/* It is an atom. Arity is 0 */
*arity = 0;

else
/* It had parameters. Extract its arity from the dictionary */
arity = d_nargs(tdict(Curr.Pred)) - 1;

}

Figure 4.4.2: A (slightly simplified) implementation of the slave part of CurrArity
.

7. Read command from master passes the modified arguments and the return code back to the
master.

8. The master write command to slave function passes the results back to the master part of
the OpCurrArity.

9. OpCurrArity passes the results back to Curr arity c.

4.4.2 Arbitration

After the master is created, the slave has to respond to commands from the master as well as to normal
user requests. As an example, a user might first set a breakpoint by executing the spy predicate on the
master. A command, PredFlagSet, would be sent to the slave to set a spy point on the predicate.
The the user would enter a goal on the slave and a leap command on the master. Clearly the slave
must be able to accept commands from both the user and the master. If the slave was to try to read
from the terminal it would block in the read call until something was entered. No commands from the
master could be accepted during that time. Specifying for the read call not to block and continuously
loop trying to read from the terminal and from the master would be horrendously inefficient.

The problem is solved by the arbitrate function. Whenever Prolog tries to read from a file or
device the arbitrate function is first called. This function uses the select(2) system call to multiplex
between reading a command from the master and reading user input from the terminal. Select receives a
bit vector of file descriptors which the program is interested in reading, writing or checking for abnormal
conditions. It then blocks until one of the descriptors given is ready for the action specified. At that
point the vector is updated to show which descriptor is ready. In our case we specify for select to block
until either input is available from the terminal or in the descriptor associated with fmasterin— the
descriptor where commands from the master are received.

The pseudo-code for the arbitrate function is shown in Figure 4.4.3. If data is available from the
terminal arbitrate simply returns to the caller — the Prolog function reading from the terminal.
That function will now read without blocking (since input is available). This cycle is repeated for every
character read. As Prolog uses buffered stdio streams for input the arbitrate function first checks
if there is any buffered data available before calling select. In the case where data form the master is
available read command from master is called which reads and executes the command. Then the
arbitrate function will loop, calling select again.

20

arbitrate()
{

if (buffered_data_available_on_input())
return;

for(;;) {
select();
if (data_available_on_input())

return;
if (data_available_from_master())

read_command_from_master();
}

}

Figure 4.4.3: Pseudo-code for the arbitrate function
.

There are two more special cases that have to be handled by the arbitrate code. The select call might get
interrupted and in that case it will return with an error indication. The reasons for the interrupt could be:

� The tracing of the program from a debugger.

� The termination of the master with a corresponding signal being sent to the slave.

� The termination of the master making one of the file descriptors which select is examining invalid.

One might wonder why there are two possible outcomes of a master termination. The reason for this is
a race condition. When the master terminates stdio closes the open descriptors. If the slave gets run by
the operating system after that time and before the master actually terminates then a bad descriptor error
(EBADF)will be returned from select. If on the other hand the master fully terminates before the slave
gets a chance to run then the select will be interrupted by the signal of the master death(EINTR).

4.4.3 Synchronisation

Having examined all the components of the system we will now focus our attention on how they interact
to orchestrate the intended result. The slave can be at any moment in one of five different states. The
state transition diagram is shown in Figure 4.4.4. The states are:

1. Top level loop
This is the state where the slave starts. In this state a prompt is printed, commands are read from
the screen and executed as normal Prolog predicates.

2. Arbitrate
This state is entered when a Prolog read predicate is encountered in state 1. At this state the
arbitrate function is checking for input from the master or from the user. If input comes from
the user, then the slave moves back to state 1.

3. Top level read command from master
This state is entered when a master command appears while the slave is in state 2. A command
from the master is read and executed, the result is written back immediately. Only a subset of
commands can be meaningfully executed here, as no program is yet running.

21

5

4

3

2

1

All other cases

input
Master

User input

Prolog read

Abort
Notrace

Limits reached
Line Found

Unseccessful Leap or Fget

RemoteExec
bget
Flag*
Curr*
Successful Leap or Fget

Mainloop

Top-level

(execution)
from master

read cmd

Mainloop

Execution

Arbitrate

Write result

Write result

Write result

Tracing on and
First line executed

read cmd
from master
(toplevel)

Write result

Figure 4.4.4: State diagram for the slave.

4. Execution read command from master
This state can be entered in two ways:

(a) When the first goal of a command is executed in state 1 and tracing is switched on.

(b) When, while the execution main loop is running a line which has been previously requested
is found, or some execution limits are reached.

Depending on the command received and the recorded history this state can be affected in three
different ways:

(a) When a command that can be executed immediately and does not alter the Prolog execution
is requested from the master then a reply is given immediately and the state does not change.
These commands are:

� Fail

� PredFlagSet

� PredFlagGet

� CurrArg

� CurrChrono

� CurrCall

� CurrDepth

� CurrPort

22

� CurrPred

� CurrArity

� VarValueGet

� VarValueSet

� RemoteExec

� BGet

In addition to the above commands an fget or leap that can be satisfied by the recorded
history are also handled in the same way.

(b) If a Notrace or Abort command is received from the master then control is given back to
state 1.

(c) When an fget or leap are received from the master and they cannot be satisfied from the
recorded history then the system moves to state 5 until a suitable line is found.

5. Execution main loop
This state is entered when the master requests a line that does not exist in the recorded history via
an fget or a leap. In this case Prolog execution has to continue in order to satisfy the master
request. When the suitable line is found, or the execution limits are reached the slave enters again
state 4.

The manifestation of the various states in the source code is unfortunately not very clear. The rea-
son for this is the structure imposed by the preexisting system. States 1 and 5 are the Opium
mainloop function. In state 1 tracing is off. If tracing is turned on then the system is in state 5
when mainloop is executed. In state 5 after every goal execution the TraceDisplay function is
called, which in turn calls ExecOpiumProlog if a suitable line has been found or limits have been
reached. ExecOpiumPrologwrites the result for the last fget or leap to the master and then calls
read command from master.

Read command from master is used for states 3 and 4. It is called with a parameter which specifies
whether it should loop on some commands (as it should do in state 4) or just return. When called from
arbitrate no looping is specified, when called from ExecOpiumProlog looping is enabled.

4.4.4 Modification of C Variables

During the design of the system it was found that a number of split predicates were needed in order to
check or set a C global variable on the slave. These variables control the tracing, recording, the state
of the execution etc. Having to write two wrapper functions for each of these variables and add the
corresponding enumerations and entries into the function pointer array was a repetitive and mundane
process. A more general solution should offer increased flexibility. For this reason the predicate
var value in slave/2was written. The primitivesVarValueGet andVarValueSet described
in section 3.3.2 are the back ends of this predicate. This predicate unifies its second parameter with the
name of a C global variable given as its first parameter. In order to do so it finds the location of the
system executable, and looks the address of the variable in the symbol table. It then sends a command
to the slave to set or get the value at specified address.

The location of the executable (whose name is given in argv[0]) is found by looking in all the places
specified in the PATH environment variable. This search is only done if the name is not an absolute
path. After the search is performed the result is saved, so this process is only preformed once. Also for
performance reasons a small cache is maintained for all the variable addresses found in the symbol table.
When the cache fills up a warning is printed and the symbol table is searched every time when variables
are not found in the cache.

23

4.4.5 Passing Terms Between the Processes

Passing a Prolog term from one session to another is not trivial. Terms are stored in the form of a tree data
structure inside the Prolog system. Clearly the pointers in the one session had no relation to the pointers
in the other. For this reason the term tree needs to be traversed, its items converted into some portable
form, transmitted to the other process and then reassembled at that end. This was almost equivalent to
the pwrite and pread C functions that can write the ASCII representation of a term into a file or
transform a string into a term. Thus whenever a term needs to be sent from the master to the slave the
output of pwrite on the master is redirected to fmasterout and the input of pread on the slave
is changed to fslavein. This approach is a bit slower than a system specifically constructed for this
purpose as for example the integers are redundantly transformed to and from ASCII, but is more portable
as all Prolog systems have predicates that can read and write terms.

4.4.6 Remote Execution of Predicates

As noted in section 3.3.3 a predicate is needed that can executed Prolog predicates on the slave from
the master section. This is needed for example so that scenarios on the master can access the Prolog
database on the slave. This predicate was implemented by having the slave save all its internal state
variables, create a new environment, read the predicate to be executed into that environment, execute it,
print the resulting term back to the master and restore the old state. One particular difficulty in writing
this predicate was that the routines used for input and output were not reentrant and thus could not be
called in the middle of a Prolog execution. A special routine was created that saved all the static variables
of the I/O module in a stack every time a new level of nesting was needed.

4.4.7 Handling of Asynchronous Events

In this section we examine how the handling of asynchronous events could be implemented. This
work has not been done, but looks like an interesting, valuable and straightforward extension. In many
debuggers the user is able to interrupt the execution of the program by sending a signal from the keyboard.
This should be also possible in Opium. The user should be able to type ˆ C at the master while the
slave is executing and the master is waiting for a result. The effect should be the same as if execution
limits had been reached — the user should receive a prompt at the master and control should return to
read command from master at the slave. This feature can be implemented as follows:

� The master arranges to propagate the interrupt signal to the slave by setting up a signal handler
which then sends the signal to the slave by using in the master some code like:

master_sigint_handler()
{

kill(getppid(), SIGINT);
}

master_setup()
{

/* ... */
signal(SIGINT, master_sigint_handler);
/* ... */

}

24

� On the slave side a signal handler is set up to indicate via a global variable that a signal has been
received. The Prolog main loop checks the value of that variable every time a new goal is executed,
at the same place where a check for execution limits is made. If it is found that a signal has been
received then a result is written back to the master and the system moves from state 5 to state 4.

25

Chapter 5

Conclusions

The system as implemented performed remarkably well. After the six month design and implementation
period all the scenarios developed on the old system were used under the new one. The ability to debug
scenarios was extensibly used and was a welcome addition. There were no complaints on the performance
of the system, which indicates that the way the two processes were partitioned was acceptable. The
whole functionality of the old system was retained. Implementing a Prolog debugger as two processes is
possible without any disadvantage and might be the best way to implement advanced debugging tools.

26

Chapter 6

Acknowledgements

I would like to thank Mireille Ducassé and Anna-Maria Emde for their support during the whole project.
Mireille spent countless hours trying to make me understand the ideas behind Opium and was extremely
patient with my difficulty in comprehending her vision of debugging. Anna implemented the remote
execution command, surely the most demanding and difficult primitive and gave me valuable and
dependable help on all sorts of Prolog problems I had. Working with them was fun as well as a privilege.
Finally I want to thank all the members of ECRC for making it possible for me to work in an exciting,
productive and very pleasant environment.

27

Bibliography

[1] AT&T Bell Laboratories, Murray Hill, New Jersey. UNIX Time-Sharing System, Programmer’s
Manual, Research Version, February 1985. Eighth Edition.

[2] Maurice J. Bach. The Design of the UNIX Operating System, page 376. Prentice Hall, 1985.

[3] Bert Beander. VAX DEBUG: An interactive, symbolic, multilingual debugger. In M.S. Johnson,
editor, Proceedings of the Software Engineering Symposium on High-Level Debugging, pages
173–179. ACM SIGSOFT/SIGPLAN, March 1983.

[4] L. Byrd. Understanding the control flow of Prolog programs. In Logic Programming Workshop,
Debrecen, 1980.

[5] M. Ducassé. Opium, an extensible tracer for Prolog, prototype description, further specifications.
Technical Report LP-14, ECRC, January 1987.

[6] M. Ducassé. Opium+, a meta-debugger for Prolog. In Proceedings of the European Conference on
Artificial Intelligence, pages 272–277, Munich, August 1988. ECCAI.

[7] M. Ducassé and A-M. Emde. Automated debugging of real Prolog programs using symptom-driven
abstraction. The non-termination analysis. Technical Report IR-LP-41, ECRC, July 1989.

[8] Computer Systems Research Group. UNIX Programmer’s Reference Manual. Computer Science
Division, Department of Electrical Engineering and Computer Science, University of California,
Berkeley, California 94720, April 1986. 4.3 Berkeley Distribution.

[9] S.J. Hanson and R.R. Robinski. Programmer perceptions of productivity and programming tools.
Communications of the ACM, 28(2):180–189, February 1985.

[10] T. S. Killian. Processes as files. In Proceedings of the USENIX Summer 84 Conference, pages
203–207. USENIX Association, 1984.

[11] Samuel J. Leffler, Marshall Kirk McKusick, Michael J. Karels, and John S. Quarterman. The Design
and Implementation of the 4.3BSD Unix Operating System, page 104. Addison-Wesley, 1988.

[12] J. F. Maranzano and S. R. Bourne. A tutorial introduction to adb. In UNIX Programmer’s
Supplementary Documents, Volume 1. Computer Systems Research Group, Department of Electrical
Engineering and Computer Science, University of California, Berkeley, California 94720, April
1986. 4.3 Berkeley Software Distribution.

[13] Lee Naish. Mu-prolog 3.1db Reference Manual. Melbourne University, 1984.

[14] Elliot I. Organick. The Multics System: An Examination of Its Structure, chapter 7.2.4, page 284.
The MIT Press, 1972.

[15] R. Seidner and N. Tindall. Interactive debug requirements. In M.S. Johnson, editor, Proceed-
ings of the Software Engineering Symposium on High-Level Debugging, pages 9–22. ACM SIG-
SOFT/SIGPLAN, March 1983.

28

[16] Richard M. Stallman. The GNU source-level debugger. Distributed by the Free Software Founda-
tion, 675 Mass Ave, Cambridge, MA 02139, January 1989.

[17] Sun Microsystems Inc., Mountain View, California. SunOS Reference Manual, 1988. Release 4.0.

[18] Bill Tuthill and Kevin J. Dunlap. Debugging with dbx. In UNIX Programmer’s Supplementary
Documents, Volume 1. Computer Systems Research Group, Department of Electrical Engineering
and Computer Science, University of California, Berkeley, California 94720, April 1986. 4.3
Berkeley Software Distribution.

[19] R. Winder and J. Nicolson. Jdb: An adaptable interface for debugging. Software-Practice and
Experience, 18(3):221–238, March 1988.

29

