DIOMIDIS SPINELLIS

some types of
Memaory are more
equal than others

Diomidis Spinellis is an associate professor in the
Department of Management Science and
Technology at the Athens University of Economics
and Business, a FreeBSD committer, and a four-times
winner of the International Obfuscated C Code
Contest.

dds@aueb.gr

Parts of this article are excerpted from
Diomidis Spinellis’s Code Quality: The
Open Source Perspective, Addison Wesley,
2006. The last section was inspired by the
book’s Exercise 5-8.

IF WE WANT TO MAKE INTELLIGENT
decisions regarding the performance of our
systems, we must understand how the vari-
ous types of memory we find in them work
together to provide us with the illusion of a
huge and blindingly fast memory store. For
example, a program’s space requirements
often affect its execution speed. This hap-
pens because a computer system’s memory
is a complex amalgam of various memory
technologies, each with different cost, size,
and performance characteristics. Making
our program’s working set small enough to
get a front seat on a processor’s level 1
cache may provide us with a very notice-
able boost in its execution speed. Along the
same lines, in today’s networked comput-
ing environments and distributed applica-
tions, lower size requirements translate
into lower bandwidth requirements and,
therefore, swifter program loading and
operation. Finally, a program’s service
capacity is often constrained by the space
requirements of its data set.

Due to a number of engineering decisions involv-
ing complicated tradeoffs, modern computers
sport numerous different memory systems layered
on top of each other. (As a general rule, whenever
you see “complicated tradeoffs,” read “cost.”) At
any time, our data will be stored in one (or more)
of these many layers, and the way a program’
code is organized may take advantage of the stor-
age system’s organization or be penalized by it.
Some of the layers we will talk about are related
to caching. In this article we describe them from
the viewpoint of storage organization.

Let us summarize how data storage is organized
on a modern computer. Figure 1, below, illustrates
the hierarchy formed by different storage tech-
nologies. Elements near the top represent scarce
resources: fast but expensive. As we move toward
the bottom the elements represent abundant
resources: cheap but slow. The fastest way to have
a processor process a data element is for the ele-
ment to be in a register (or an instruction). The
register is encoded as part of the CPU instruction
and is immediately available to it. However, this
advantage means that processors offer only a

;LOGIN: APRIL 2006 SOME TYPES OF MEMORY ARE MORE EQUAL THAN OTHERS

29

30

;LOGIN: VOL. 31, NO. 2

| Increasing size CPU registers

Level 1 cache (on chip)

Level 2 cache

Level 3 cache (off chip)

Main memory

Disk cache and banked memory
Paged out memory

File-based disk storage

T Increasing speed and cost | Off line storage

FIGURE 1. A MODERN COMPUTER’S STORAGE HIERARCHY

small fixed number of registers (eight, for example, on the ia-32; 128 on
Sun’s SPARC architecture.) See how a data processing instruction (such as
add) is encoded on the arm architecture:

31 28 27 26 25 24 21 20 19 16 15 12 11 0

Cond | 00 I I | Opcode| S | Rn l Rd IOperandZI

Rn is the source register and Rd the destination. Each register is encoded
using four bits, limiting the number of registers that can be represented
on this architecture to 16. Registers are used for storing local variables,
temporary values, function arguments, and return values. Nowadays, they
are allocated to their various uses by the compiler, which uses extremely
sophisticated algorithms for optimizing performance at a local and global
level. In older programs you may find this allocation specified by the pro-
grammers, based on their intuition of which values should be placed in a
register; here is a typical example from the Korn shell source code:

struct thl *
global(n)
register const char *n;
{
register struct block *I = e->loc;
register struct thl *vp;
register int c;
unsigned h;
bool_t array;
int val;

This strategy might have been beneficial when compilers had to fit in 64KB
of memory and could not afford to do anything clever with register alloca-
tion; modern compilers simply ignore the register keyword.

Main Memory and Its Caches

The next four layers of our hierarchy (from the level 1 cache up to the
main memory) involve the specification of data through a memory address.
This (typically 16, 32, or 64-bit) address is often encoded on a word sepa-
rate from the instruction (it can also be specified through a register) and
thus may involve an additional instruction fetch. Worse, it involves inter-
facing with dynamic RAMs, the storage technology used for a computer’s
main memory, which is simply not keeping pace with the speed increases
of modern processors. Fetching an instruction or data element from main
memory can have the processor wait for a time equivalent to that of the
execution of hundreds of instructions. To minimize this penalty, modern
processors include facilities for storing temporary copies of frequently used
data on faster, more versatile, more easily accessible, and, of course, more
expensive memory: a cache. For a number of reasons a memory cache is

1. A larger processor die means there is a higher
chance for an impurity to result in a malfunctioning
chip, thus lowering the production’s yield.

;LOGIN: APRIL 2006

typically organized as a set of blocks (typically 8-128 bytes long) contain-
ing the contents of consecutive memory addresses. Keep this fact in mind,
we'll come back to it later on.

The level 1 cache is typically part of the processor’s die. It is often split into
an area used for storing instructions and one used for storing data, because
the two have different access patterns. To minimize the cache’s impact on
the die size (and therefore on the processor’s production yield! and its
cost), this cache is kept relatively small. For example, the Sun Micro
SPARC I featured a 4KB instruction and a 2KB data cache; moving upward,
the Intel 3.2GHz Pentium 4 processor features a IMB cache.

Because of the inherent size limitations of the on-chip cache, a level 2 cache
is sometimes implemented through a separate memory chip and control
logic, either packaged with the processor or located near the processor.
This can be a lot larger: it used to be 64KB on early 486 PC motherboards;
an Intel 3.2GHz Xeon processor comes with 2MB. Finally, computer manu-
facturers are increasingly introducing in their designs a level 3 cache, which
either involves different speed versus cost tradeoffs or is used for keeping a
coherent copy of data in multiprocessor designs.

How do these levels of the memory hierarchy relate to our code and its
properties? By reducing a program’s memory consumption and increasing
its locality of reference, we can often speed up its performance. All of us
have witnessed the pathological case where increased memory consump-
tion coupled with a lack of locality of reference leads to a dramatic per-
formance drop due to thrashing. In the following paragraphs we will
examine the winning side of the coin, where appropriate design and imple-
mentation decisions can lead to time performance increases.

Memory savings can translate into speed increases when the corresponding
data set is made to fit into a more efficient part of a memory hierarchy. In
an ideal world, all of our computer’s memory would consist of the high-
speed memory chips used in its cache. (This ideal world actually exists,
and it is called a government-funded supercomputer.) We can, however,
also pretend to live in the ideal world, by being frugal in the amount of
memory our application requires. If that amount is small enough to fit into
the level 2 (or, even better, the level 1) cache, then we will notice an (often
dramatic) speed increase. Here is an actual code comment detailing this
fact:

// Be aware that time will be affected by the buffer fitting/not
// fitting in the cache (ie, if default_total*sizeof(T) bytes
// fit in the cache).

Cases where the effort of fitting an application into a cache can be a worth-
while exercise typically involve tight, performance-critical, code. For
example, a JVM implementation that could fit in its entirety into a proces-
sor’s level 1 instruction cache would enjoy substantial performance benefits
over one that couldn’t.

There are, however, many cases where our program’ data or instructions
could never fit the processor’s cache. In such cases, improving a program’s
locality of reference can result in speed increases, as data elements are
more likely to be found in a cache. Improved locality of reference can
occur both at the microscopic level (e.g., two structure elements being
only 8 bytes apart) and at the macroscopic level (e.g., the entire working
set for a calculation fitting in a 256KB level 1 cache). Both can increase a
program’s speed, but for different reasons.

SOME TYPES OF MEMORY ARE MORE EQUAL THAN OTHERS 31

32

;LOGIN: VOL. 31, NO. 2

Related data elements that are very close together in memory have an
increased chance of appearing together in a cache block, one of them caus-
ing the other to be prefetched. Earlier on, we mentioned that caches organ-
ize their elements in blocks associated with consecutive memory addresses.
This organization can result in increased memory access efficiency, as the
second related element is fetched from the slow main memory as a side
effect of filling the corresponding cache block. For this reason some style
guides (such as the following excerpt from the FreeBSD documentation)
recommend placing structure members together ordered by use.

* When declaring variables in structures, declare them sorted
* by use, then by size, and then by alphabetical order. The

* first category normally doesn't apply, but there are

* exceptions. Each one gets its own line.

(The exceptions referred to above are probably performance-critical sec-
tions of code, sensitive to the phenomenon we described.)

In other cases, a calculation may use a small percentage of a program’s
data. When that working set is concentrated in a way that allows it all to
fit into a cache at the same time, the calculations will all run at the speed
of the cache and not at that of the much slower main memory. Here is a
comment from the NetBSD TCP processing code describing the rationale
behind a design to improve the data’s locality of reference:

* (2) Allocate syn_cache structures in pages (or some other
* large chunk). This would probably be desirable for
* maintaining locality of reference anyway.

Locality of reference can also be important for code; here is another related
comment from the X Window System VGA server code:

* Reordered code for register starved CPU's (Intel x86) plus
* it achieves better locality of code for other processors.

Disk Cache and Banked Memory

Moving down our memory hierarchy, before reaching the disk-based file
storage we encounter two strange beasts: the disk cache and banked mem-
ory. The disk cache is a classic case of space over time optimization, and
the banked memory is . . . embarrassing. Accessing data stored in either of
the two involves approximately the same processing overhead, and for this
reason they appear together in our table. Nevertheless, their purpose and
operation are completely different, so we’ll examine each one in turn.

The disk cache is an area of the main memory reserved for storing tempo-
rary copies of disk contents. Accessing data on disk-based storage is at
least an order of magnitude slower than accessing main memory. Note that
this figure represents a best (and relatively rare) case: sustained serial I/O
to or from a disk device. Any random-access operation involving a head
seek and a disk rotation is a lot slower; a six-orders-of-magnitude differ-
ence between disk and memory access time (12ms over 2ns) should not
surprise you. To overcome this burden, an operating system aggressively
keeps copies of the disk contents in an area of the main memory it reserves
for this purpose. Any subsequent read or write operations involving the
same contents (remember the locality-of-reference principle) can then be
satisfied by reading or writing the corresponding memory blocks. Of
course, the main memory differs from the disk in that its contents get lost
when power is lost; therefore, periodically (e.g., every 30 seconds on some
UNIX systems) the cache contents are written to disk.

;LOGIN: APRIL 2006

Furthermore, for some types of data (such as elements of a database trans-
action log, or a file system’s directory contents—the so-called directory
metadata) the 30-second flush interval can be unacceptably high; such data
is often scheduled to be written to disk in a synchronous manner or
through a time-ordered journal. Keep in mind here that some file systems,
either by default (the Linux ext2fs) or through an option (the FreeBSD FFS
with soft updates enabled), will write directory metadata to disk in an
asynchronous manner. This affects what will happen when the system
powers down in an anomalous fashion, due to a power failure or a crash.
In some implementations, after a reboot the file system’s state may not be
consistent with the order of the operations that were performed on it
before the crash.

Nevertheless, the performance impact of the disk cache is big enough to
make a difference between a usable system and one that almost grinds to a
halt. For this reason, many modern operating systems will use all their free
memory as a disk cache.

As we mentioned, banked memory is an embarrassment; we would not be
discussing it at all but for the fact that the same embarrassment keeps
recurring (in different forms) every couple of years. Recall that with a vari-
able N bits wide we can address 2V different elements. Consider the task of
estimating the number of elements we might need to address (the size of
our address space) over the lifetime of our processor’s architecture. If we
allocate more bits to a variable (say, a machine’s address register) than
those we would need to address our data, we end up wasting valuable
resources. On the other hand, if we underestimate the number of elements
we might need to address, we will find ourselves in a tight corner.

Intel Address Addressing Stopgap measure

architecture bits limit

8080 16 64KB IA-16 segment registers

T1A-16 20 1MB XMS (Extended Memory
Specification); LIM EMS
(Lotus/Intel/Microsoft
Expanded Memory
Specification)

1A-32 32 4GB PAE (Physical Address

Extensions); AWE (Address
Windowing Extensions)

TABLE 1. SUCCESSIVE ADDRESS SPACE LIMITATIONS
AND THEIR INTERIM SOLUTIONS

In Table 1 you can see three generations of address space limitations en-
countered within the domain of Intel architectures, and a description of
the corresponding solutions. Note that the table refers only to an architec-
ture’s address space; we could draw similar tables for other variables, such
as those used for addressing physical bytes, bytes in a file, bytes on a disk,
and machines on the Internet. The technologies associated with the table’s
first two rows are fortunately no longer relevant. One would think that we
would have known by now to avoid repeating those mistakes, but this is,
sadly, untrue.

As of this writing, some programs and applications are facing the 4GB limit
of the 32-bit address space. There are systems, such as database servers
and busy Web application servers, that can benefit from having at their dis-
posal more than 4GB of physical memory. New members of the IA-32
architecture have hardware that can address more than 4GB of physical

SOME TYPES OF MEMORY ARE MORE EQUAL THAN OTHERS 33

34

;LOGIN: VOL. 31, NO. 2

memory. This feature comes under the name Physical Address Extensions
(PAE). Nowadays we don't need segment registers or BIOS calls to extend
the accessible memory range, because the processor’s paging hardware
already contains a physical-to-virtual address translation feature. All that is
needed is for the address translation tables to be extended to address more
than 4GB. Nevertheless, this processor feature still does not mean that an
application can transparently access more than 4GB of memory. At best,
the operating system can allocate different applications in a physical memo-
ry area larger than 4GB by appropriately manipulating their corresponding
virtual memory translation tables. Also, the operating system can provide
an API so that an application can request different parts of the physical
memory to be mapped into its virtual memory space—again, a stopgap
measure, which involves the overhead of operating system calls. An exam-
ple of such an API is the Address Windowing Extensions (AWE) available
on the Microsoft Windows system.

Swap Area and File-Based Disk Storage

The next level down in our memory storage hierarchy moves us away from
the relatively fast main memory into the domain governed by the (in com-
parison) abysmally slow and clunky mechanical elements of electromag-
netic storage devices (hard disks). The first element we encounter here is
the operating system’s swap area containing the memory pages it has tem-
porarily stored on the disk, in order to free the main memory for more
pressing needs. Also here might be pages of code that have not yet been
executed and will be paged in on demand. At the same level in terms of
performance, but more complicated to access in terms of the API, is the
file-based disk storage. Both areas have typically orders-of-magnitude larg-
er capacity than the system’s main memory. Keep in mind, however, that
on many operating systems the amount of available swap space or the
amount of heap space a process can allocate is fixed by the system admin-
istrator and cannot grow above the specified limit without manual admin-
istrative intervention. On many UNIX systems the available swap space is
determined by the size of the device or file specified in the swapon call and
the corresponding command; on Windows systems, the administrator can
place a hard limit on the maximum size of the paging file. It is therefore
unwise not to check the return value of a malloc memory allocation call
against the possibility of memory exhaustion. The code in the following
code excerpt could well crash when run on a system low on memory:

TMPOUTNAME = (char *) malloc (tmpname_len);
strepy (TMPOUTNAME, tmpdir);

The importance of the file-based disk storage in relationship to a program’s
space performance is that disk space tends to be a lot larger than a system’s
main memory. Therefore, uncaching (Bentley’s term) is a strategy that can
save main memory by storing data into secondary storage. If the data is
persistent and rarely used, or does not exhibit a significant locality of refer-
ence in the program’s operation, then the program’s speed may not be
affected; in some cases by removing the caching overhead it may even be
improved. In other cases, when main memory gets tight, this approach
may be the only affordable one. As an example, the UNIX sort implementa-
tions will only sort a certain amount of data in-core. When the file to be
sorted exceeds that amount, the program will work by splitting its work
into parts sized according to the maximum amount it can sort. It will sort
each part in memory and write the result to a temporary disk file. Finally,
it will merge sort the temporary files, producing the end result. As another

;LOGIN: APRIL 2006

Component

L1 D cache
L2 cache

DDR RAM
Hard drive

example, the nvi editor will use a backing file to store the data correspon-
ding to the edited file. This makes it possible to edit arbitrarily large files,
limited only by the size of the available temporary disk space.

The Lineup

Nominal ~ Worst case Sustained Productivity

size latency throughput $1 buys (Bytes read / s / $)
(MB/s) Worst case Best case

64KB 1.4ns 19022 10.7KB 7.91.1012 2.19.10

512KB 9.7ns 5519 12.8KB 1.35.1012 7.61.1013

256MB 28.5ns 2541 9.48MB 3.48-10'% 2.65-101°

250GB 25.6ms 67 2.91GB 1.22.10M1 2.17-10%7

TABLE 2. PERFORMANCE AND COST OF VARIOUS MEMORY TYPES

(Author pauses to don his flame retardant suit.) To give you a feeling of
how different memory types compare in practice, I've calculated some
numbers for a fairly typical configuration, based on some currently best-
selling middle-range components: an AMD Athlon XP 3000+ processor, a
256MB PC2700 DDR memory module, and a 250GB 7200 RPM Maxtor
hard drive. The results appear in Table 2. I obtained the component prices
from TigerDirect.com on January 19, 2006. I calculated the cost of the
cache memory by multiplying the processor’s price by the die area occu-
pied by the corresponding cache divided by the total size of the processor
die (I measured the sizes on a die photograph). The worst-case latency col-
umn lists the time it would take to fetch a byte under the worst possible
scenario: for example, a single byte from the same bank and following a
write for the DDR RAM, with a maximum seek, rotational latency, and
controller overhead for the hard drive. On the other hand, the sustained
throughout column lists numbers where the devices operate close to ideal
conditions for pumping out bytes as fast as possible: eight bytes delivered
at double the bus speed for the DDR RAM; the maximum sustained outer
diameter data rate for the hard drive. In all cases, the ratio between band-
width implied by the worst-case latency and the sustained bandwidth is at
least one order of magnitude, and it is this difference that allows our
machines to deliver the performance we expect. In particular, the ratio is
27 for the level 1 cache, 56 for the level 2 cache, 76 for the DDR RAM, and
1.8 million for the hard drive. Note that as we move away from the proces-
sor there are more tricks we can play to increase the bandwidth, and we
can get away with more factors that increase the latency.

The byte cost for each different kind of memory varies by three orders of
magnitude: with one dollar we can buy KBs of cache memory, MBs of DDR
RAM, and GBs of disk space. However, as one would expect, cheaper
memory has a higher latency and a lower throughput. Things get more
interesting when we examine the productivity of various memory types.
Productivity is typically measured as output per unit of input; in our case,
I calculated it as read operations per second and $ cost for one byte. As
you can see, if we look at the best-case scenarios (the device operating at
its maximum bandwidth), the hard drive’s bytes are the most productive.
In the worst case (latency-based) scenarios the productivity performance of
the disk is abysmal, and this is why disks are nowadays furnished with
abundant amounts of cache memory (8MB in our case). The most produc-
tive device in the worst-case latency-based measurements is the DDR RAM.
These results are what we would expect from an engineering point of view:
the hard disk, which is a workhorse used for storing large amounts of data
with the minimum cost, should offer the best overall productivity under

SOME TYPES OF MEMORY ARE MORE EQUAL THAN OTHERS 35

36

ideal (best-case) conditions, while the DDR RAM, which is used for satisfy-
ing a system’s general-purpose storage requirements, should offer the best
overall productivity even under worst-case conditions. Also note the low
productivity of the level 1 and level 2 caches. This factor easily explains
why processor caches are relatively small: they work admirably, but they
are expensive for the work they do.

What can we, as programmers and system administrators, learn from these
numbers? Modeling the memory performance of modern systems is any-
thing but trivial. As a programmer, try to keep the amount of memory

you use low and increase the locality of reference so as to take advantage
of the available caches and bandwidth-enhancing mechanisms. As a system
administrator, try to understand your users’ memory requirements in terms
of the hierarchy we saw before making purchasing decisions; depending on
workload, you may want to trade processor speed for memory capacity or
bandwidth, or the opposite. Finally, always measure carefully before you
think about optimizing. And next time you send a program whizzing
through your computer’s memory devices, spare a second to marvel at the
sophisticated technical and economic ecosystem these devices form.

5th System Administration and Network Engineering Conference

SANE 2006

15-19 May 2006

Aula Congresscentre, Delft, The Netherlands

The 5th System Administration and Network Engineering Conference will offer.three days of training followed
by a two-day conference program, filled with the latest:developments in 'system administration, network
engineering, security, open-source software, and practical approaches to your problems and puzzles. You will
also-have the opportunity to meet-other system administrators and network professionals and chat with
peers who share your concerns and interests.

www.sane.nl/sane2006
A conference organized by Stichting SANE,
co-sponsored by Stichting NLnet, USENIX, SURFnet,and NLUUG

;LOGIN: VOL. 31, NO. 2

