
Software Engineering in Practice
Software design

Diomidis Spinellis
Department of Management Science and Technology

Athens University of Economics and Business

dds@aueb.gr
http://www.dmst.aueb.gr/dds

@CoolSWEng

2024-03-11

Team presentations
• Select a (significant-popular) open source project and inspect its design
elements:
– look for good design practices,
– identify factors that are significant for the selected project
– select a software design strategy and the appropriate notations in
order to provide a static representation of the software’s design. You
can use abstractions, a software design principle, in order to repre-
sent entities that you consider to be the most important.

Software design
• Design: one word, two meanings

– The process
– The outcome of the process

• Includes
– An architectural overview of the system (high-level design)
– Detailed designs for each component

Process
• Determine who are the stakeholders
• Determine their concerns
• Select viewpoints that can frame those concerns (e.g. 4+1, TOGAF,
GERA)
– Each viewpoint can have its own models and use its own language

• Populate the views according to the viewpoints ensuring consistency
across viewpoints

Deliverables
• Models

1

mailto:dds@aueb.gr
http://www.dmst.aueb.gr/dds
https://twitter.com/CoolSWEng

Figure 1: College of Architecture and Planning

2

• High-level descriptions

• Documentation

– Decisions
– The reasoning during the decision making

Software design principles
• Abstraction of:

– procedures
– data
– control structures

• Low coupling
• High cohesion
• Decomposition and modularization
• Encapsulation and information hiding
• Separation of interface and implementation
• Sufficiency, completeness, and primitiveness (simplicity)
• Separation of concerns

Increased cohesion between components
A good design should group highly cohesive units. We observe the following
high-cohesive types:

• Coincidental cohesion
• Logical cohesion
• Temporal cohesion
• Procedural cohesion
• Communicational cohesion
• Sequential cohesion
• Functional cohesion

Coupling, from bad to worse
A good design should avoid coupling between components, as much as possi-
ble. We observe the following high-coupling types:

• Data coupling: Data exchange only.
• Stamp coupling: Unneeded structured data passed.
• Control coupling: Passing control flags.
• Common coupling: Sharing global data.
• External coupling: Shared knowledge about external systems.
• Content coupling: Access to implementation’s internals.

3

Key issues
• Concurrency
• Control and handling of events
• Data persistence
• Distribution of components
• Error and exception handling
• Fault tolerance
• Interaction and presentation
• Security

4+1 design views
There are views from different perspectives:

• Logical (based on functional requirements)
• Process
• Physical (deployment)
• Development
• Scenarios

TOGAF Architectural Domains
According to The Open Group Architecture Framework enterprise architecture
is divided into the following domains.

• Business (processes, guidelines, structures)
• Applications (to be developed)
• Data (logical and physical models)
• Technical (computing, network, storage resources)

Architectural styles
• General

– Layers
– Pipes and filters
– Blackboard

• Distributed
– Client-server
– Three-tier
– Broker

• Specialized
– Model - View - Controller (MVC)
– Reflection
– Interpreter
– Domain Specific Language (DSL)

4

– Data-driven

Example: layers

Figure 2: Layers of indirection in the FreeBSD implementation of the read sys-
tem call

Example: pipes and filters
tr -cs A-Za-z '\n' |
tr A-Z a-z |
sort |
uniq |
comm -23 - /usr/dict/words

Example: DSL
{{Chess diagram small|=
| tright
|

5

|=
8 |rd| | |qd| |rd|kd| |=
7 |pd|pd| | |pd|pd|bd|pd|=
6 | |nd|pd| | |nd|pd| |=
5 | | |ql| | | |bl| |=
4 | | | |pl|pl| |bd| |=
3 | | |nl| | |nl| | |=
2 |pl|pl| | | |pl|pl|pl|=
1 | | | |rl|kl|bl| |rl|=

a b c d e f g h
| The position after 11. Bg5.
}}

Example: DSL output

Figure 3: Chess board

Design patterns
• Creational: Builder, Factory, Prototype, Singleton

6

• Structural: Adapter, Bridge, Composite, Decorator, Facade, Flighweight
Proxy

• Behavioral: Command, Intepreter, Iterator, Mediator

Example: Factory

Figure 4: Factory

(Source: Wikipedia)

Example: Observer

Figure 5: Observer

7

(Source: Wikipedia)

Example: Decorator

Figure 6: Decorator

(Source: Wikipedia)

Satisfying the developers’ needs
• Families of programs
• Frameworks

User interface design principles
• Learnability
• User familiarity
• Consistency
• Minimal surprise (POLA)
• Recoverability
• User guidance
• User diversity

User interaction modalities
• Question-answer
• Direct manipulation
• Menu selection
• Form fill-in
• Command language
• Natural language

8

User interface design guidelines
• Quick response time
• Feedback and indication of progress
• Attention on the colour usage
• Internationalization and localization
• Use of metaphors

Software design notations
• UML class diagram
• UML object diagram
• UML component diagram
• UML deployment diagram
• Entity relationship diagram (ERD)
• «Class, responsibility, collaborator» (CRC) cards

UML diagrams

Figure 7: UML Diagrams

(Source: Wikipedia)

UML relationships
UML defines the following four basic relationships:

• Dependency
• Generalization

9

• Association
• Realization

Dependency
The dependency declares that a change of one entity will affect an other entity.
It is represented with a dashed line between two entities, while the arrow shows
towards the entity that it depends upon:

Figure 8: UML Dependency

Generalization
The generalization defines a relationship between a generalized entity (base
class or parent) and a specialized entity (subclass or child class). It is repre-
sented with a continuous line with a closed arrow that points towards the base
class:

Figure 9: UML Dependency

Association
The association refers to related entities. When two classes are related some-
one can access objects of one class through the objects of the other class. The
relationship is represented with a straight line between the related entities:

Figure 10: UML Association

Aggregation and composition
Relationships where an object part of a whole are defined as aggregations and
are represented with a diamond at the side of the whole object:

10

Figure 11: UML Aggregation

When the objects that participate in the whole share the same lifecycle with the
whole object, then this relationship is called composition and is represented
with a filled diamond at the side of the whole object:

Figure 12: UML Composition

Relationship information
• Single-direction relationships are represented with an open arrow.
• The name of the relationship should be placed over the line while the
direction of the relationship is defined by an arrow located next to the
name.

• The roles of the participating entities should be stated at the two edges of
the line.

• The number of the objects that participate in a relationship between two
entities (multiplicity) should be defined as a number (i.e. 3), or a range
(i.e. 1…* for one to many) over the appropriate edge of the relationship.

• An X on the edge of a line states that navigation towards that direction is
not provided.

Realization
The realization defines a relationship where the entity at the tail of the arrow
implements all the responsibilities defined by the interface at the head of the
arrow:

UML: Class diagram

UML: Deployment diagram
(Source: Wikipedia)

11

Figure 13: UML Realization

Figure 14: UML class diagram

Figure 15: UML

12

Entity relationship diagram

Figure 16: ERD

(Source: Christos Papadoulis)

UML: Component diagram
(Source: Wikipedia)

UML: Package diagram
(Source: Wikipedia)

Behavioural diagrams
• UML activity diagram
• UML statechart
• Data flow diagram
• Decision table
• Flow chart
• UML sequence diagram
• UML state diagram
• UML collaboration diagram

13

Figure 17: UML

Figure 18: UML

14

UML: State diagram

UML: Sequence diagram

Tools and other material
• How to draw beautiful software architecture diagrams
• Community list of comparisons between Text to Diagram tools

Preparation for the next lecture (1)
• Study Chapter 3: “Software Construction” from SWEBOK v 3.0
• Assignment (Software Construction)

– Evaluate the characteristics of a popular open source project with
respect to the construction:

– Look for construction guidelines and standards. How do they enable
the validation of the software’s correctness?

– Identify reusable and reused software components.
– Look for code quality analysis techniques.
– Try to improve the system’s construction quality. Contribute to a
change that you propose.

Preparation for the next lecture (2)
• Video (Designing an Application Programming Interface (API))
https://www.youtube.com/watch?v=aAb7hSCtvGw

Advice for the assignment:
• Identify and focus on components that provide the main functionality of
the system.

• Identify software construction standards and good practices.
• Comprehend the term drive-by commit.
• Make use of the Github service. Check the “How to”.

Distribution License

Unless otherwise expressly stated, all original material on this page created by
Diomidis Spinellis, Marios Fragkoulis, and Antonis Gkortzis is licensed under
the Creative Commons Attribution-Share Alike Greece.

15

https://terrastruct.com/blog/post/draw-software-architecture-diagrams/
https://text-to-diagram.com/
https://www.computer.org/education/bodies-of-knowledge/software-engineering
http://www.se.uni-hannover.de/pub/File/pdfpapers/Pham2013a.pdf
http://weblogs.asp.net/jgalloway/archive/2011/06/17/submitting-a-drive-by-commit-to-a-github-project-in-under-5-minutes.aspx
https://creativecommons.org/licenses/by-sa/3.0/gr/deed.en

Figure 19: UML

16

Figure 20: UML

17

	Team presentations
	Software design
	Process
	Deliverables
	Software design principles
	Increased cohesion between components
	Coupling, from bad to worse
	Key issues
	4+1 design views
	TOGAF Architectural Domains
	Architectural styles
	Example: layers
	Example: pipes and filters
	Example: DSL
	Example: DSL output
	Design patterns
	Example: Factory
	Example: Observer
	Example: Decorator
	Satisfying the developers' needs
	User interface design principles
	User interaction modalities
	User interface design guidelines
	Software design notations
	UML diagrams
	UML relationships
	Dependency
	Generalization
	Association
	Aggregation and composition
	Relationship information
	Realization
	UML: Class diagram
	UML: Deployment diagram
	Entity relationship diagram
	UML: Component diagram
	UML: Package diagram
	Behavioural diagrams
	UML: State diagram
	UML: Sequence diagram
	Tools and other material
	Preparation for the next lecture (1)
	Preparation for the next lecture (2)
	Advice for the assignment:
	Distribution License

